module GF.Compile.CFGtoPGF (cf2pgf) where
import GF.Grammar.CFG
import GF.Infra.UseIO
import PGF
import PGF.Internal
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import Data.Array.IArray
import Data.List
cf2pgf :: FilePath -> ParamCFG -> PGF
cf2pgf fpath cf =
let pgf = PGF Map.empty aname (cf2abstr cf) (Map.singleton cname (cf2concr cf))
in updateProductionIndices pgf
where
name = justModuleName fpath
aname = mkCId (name ++ "Abs")
cname = mkCId name
cf2abstr :: ParamCFG -> Abstr
cf2abstr cfg = Abstr aflags afuns acats
where
aflags = Map.singleton (mkCId "startcat") (LStr (fst (cfgStartCat cfg)))
acats = Map.fromList [(cat, ([], [(0,mkRuleName rule) | rule <- rules], 0))
| (cat,rules) <- (Map.toList . Map.fromListWith (++))
[(cat2id cat, catRules cfg cat) |
cat <- allCats' cfg]]
afuns = Map.fromList [(mkRuleName rule, (cftype [cat2id c | NonTerminal c <- ruleRhs rule] (cat2id (ruleLhs rule)), 0, Nothing, 0))
| rule <- allRules cfg]
cat2id = mkCId . fst
cf2concr :: ParamCFG -> Concr
cf2concr cfg = Concr Map.empty Map.empty
cncfuns lindefsrefs lindefsrefs
sequences productions
IntMap.empty Map.empty
cnccats
IntMap.empty
totalCats
where
cats = allCats' cfg
rules = allRules cfg
sequences0 = Set.fromList (listArray (0,0) [SymCat 0 0] :
map mkSequence rules)
sequences = listArray (0,Set.size sequences01) (Set.toList sequences0)
idFun = CncFun wildCId (listArray (0,0) [seqid])
where
seq = listArray (0,0) [SymCat 0 0]
seqid = binSearch seq sequences (bounds sequences)
((fun_cnt,cncfuns0),productions0) = mapAccumL (convertRule cs) (1,[idFun]) rules
productions = foldl addProd IntMap.empty (concat (productions0++coercions))
cncfuns = listArray (0,fun_cnt1) (reverse cncfuns0)
lbls = listArray (0,0) ["s"]
(fid,cnccats0) = (mapAccumL mkCncCat 0 . Map.toList . Map.fromListWith max)
[(c,p) | (c,ps) <- cats, p <- ps]
((totalCats,cs), coercions) = mapAccumL mkCoercions (fid,Map.empty) cats
cnccats = Map.fromList cnccats0
lindefsrefs =
IntMap.fromList (map mkLinDefRef cats)
convertRule cs (funid,funs) rule =
let args = [PArg [] (cat2arg c) | NonTerminal c <- ruleRhs rule]
prod = PApply funid args
seqid = binSearch (mkSequence rule) sequences (bounds sequences)
fun = CncFun (mkRuleName rule) (listArray (0,0) [seqid])
funid' = funid+1
in funid' `seq` ((funid',fun:funs),let (c,ps) = ruleLhs rule in [(cat2fid c p, prod) | p <- ps])
mkSequence rule = listArray (0,length syms1) syms
where
syms = snd $ mapAccumL convertSymbol 0 (ruleRhs rule)
convertSymbol d (NonTerminal (c,_)) = (d+1,if c `elem` ["Int","Float","String"] then SymLit d 0 else SymCat d 0)
convertSymbol d (Terminal t) = (d, SymKS t)
mkCncCat fid (cat,n)
| cat == "Int" = (fid, (mkCId cat, CncCat fidInt fidInt lbls))
| cat == "Float" = (fid, (mkCId cat, CncCat fidFloat fidFloat lbls))
| cat == "String" = (fid, (mkCId cat, CncCat fidString fidString lbls))
| otherwise = let fid' = fid+n+1
in fid' `seq` (fid', (mkCId cat,CncCat fid (fid+n) lbls))
mkCoercions (fid,cs) c@(cat,[p]) = ((fid,cs),[])
mkCoercions (fid,cs) c@(cat,ps ) =
let fid' = fid+1
in fid' `seq` ((fid', Map.insert c fid cs), [(fid,PCoerce (cat2fid cat p)) | p <- ps])
mkLinDefRef (cat,_) =
(cat2fid cat 0,[0])
addProd prods (fid,prod) =
case IntMap.lookup fid prods of
Just set -> IntMap.insert fid (Set.insert prod set) prods
Nothing -> IntMap.insert fid (Set.singleton prod) prods
binSearch v arr (i,j)
| i <= j = case compare v (arr ! k) of
LT -> binSearch v arr (i,k1)
EQ -> k
GT -> binSearch v arr (k+1,j)
| otherwise = error "binSearch"
where
k = (i+j) `div` 2
cat2fid cat p =
case Map.lookup (mkCId cat) cnccats of
Just (CncCat fid _ _) -> fid+p
_ -> error "cat2fid"
cat2arg c@(cat,[p]) = cat2fid cat p
cat2arg c@(cat,ps ) =
case Map.lookup c cs of
Just fid -> fid
Nothing -> error "cat2arg"
mkRuleName rule =
case ruleName rule of
CFObj n _ -> n
_ -> wildCId