module GF.Speech.RegExp (RE(..),
epsilonRE, nullRE,
isEpsilon, isNull,
unionRE, concatRE, seqRE,
repeatRE, minimizeRE,
mapRE, mapRE', joinRE,
symbolsRE,
dfa2re, prRE) where
import Data.List
import GF.Data.Utilities
import GF.Speech.FiniteState
data RE a =
REUnion [RE a]
| REConcat [RE a]
| RERepeat (RE a)
| RESymbol a
deriving (Eq,Ord,Show)
dfa2re :: (Ord a) => DFA a -> RE a
dfa2re = finalRE . elimStates . modifyTransitions merge . addLoops
. oneFinalState () epsilonRE . mapTransitions RESymbol
where addLoops fa = newTransitions [(s,s,nullRE) | (s,_) <- states fa] fa
merge es = [(f,t,unionRE ls)
| ((f,t),ls) <- buildMultiMap [((f,t),l) | (f,t,l) <- es]]
elimStates :: (Ord a) => DFA (RE a) -> DFA (RE a)
elimStates fa =
case [s | (s,_) <- states fa, isInternal fa s] of
[] -> fa
sE:_ -> elimStates $ insertTransitionsWith (\x y -> unionRE [x,y]) ts $ removeState sE fa
where sAs = nonLoopTransitionsTo sE fa
sBs = nonLoopTransitionsFrom sE fa
r2 = unionRE $ loops sE fa
ts = [(sA, sB, r r1 r3) | (sA,r1) <- sAs, (sB,r3) <- sBs]
r r1 r3 = concatRE [r1, repeatRE r2, r3]
epsilonRE :: RE a
epsilonRE = REConcat []
nullRE :: RE a
nullRE = REUnion []
isNull :: RE a -> Bool
isNull (REUnion []) = True
isNull _ = False
isEpsilon :: RE a -> Bool
isEpsilon (REConcat []) = True
isEpsilon _ = False
unionRE :: Ord a => [RE a] -> RE a
unionRE = unionOrId . nub' . concatMap toList
where
toList (REUnion xs) = xs
toList x = [x]
unionOrId [r] = r
unionOrId rs = REUnion rs
concatRE :: [RE a] -> RE a
concatRE xs | any isNull xs = nullRE
| otherwise = case concatMap toList xs of
[r] -> r
rs -> REConcat rs
where
toList (REConcat xs) = xs
toList x = [x]
seqRE :: [a] -> RE a
seqRE = concatRE . map RESymbol
repeatRE :: RE a -> RE a
repeatRE x | isNull x || isEpsilon x = epsilonRE
| otherwise = RERepeat x
finalRE :: Ord a => DFA (RE a) -> RE a
finalRE fa = concatRE [repeatRE r1, r2,
repeatRE (unionRE [r3, concatRE [r4, repeatRE r1, r2]])]
where
s0 = startState fa
[sF] = finalStates fa
r1 = unionRE $ loops s0 fa
r2 = unionRE $ map snd $ nonLoopTransitionsTo sF fa
r3 = unionRE $ loops sF fa
r4 = unionRE $ map snd $ nonLoopTransitionsFrom sF fa
reverseRE :: RE a -> RE a
reverseRE (REConcat xs) = REConcat $ map reverseRE $ reverse xs
reverseRE (REUnion xs) = REUnion (map reverseRE xs)
reverseRE (RERepeat x) = RERepeat (reverseRE x)
reverseRE x = x
minimizeRE :: Ord a => RE a -> RE a
minimizeRE = reverseRE . mergeForward . reverseRE . mergeForward
mergeForward :: Ord a => RE a -> RE a
mergeForward (REUnion xs) =
unionRE [concatRE [mergeForward y,mergeForward (unionRE rs)] | (y,rs) <- buildMultiMap (map firstRE xs)]
mergeForward (REConcat (x:xs)) = concatRE [mergeForward x,mergeForward (REConcat xs)]
mergeForward (RERepeat r) = repeatRE (mergeForward r)
mergeForward r = r
firstRE :: RE a -> (RE a, RE a)
firstRE (REConcat (x:xs)) = (x, REConcat xs)
firstRE r = (r,epsilonRE)
mapRE :: (a -> b) -> RE a -> RE b
mapRE f = mapRE' (RESymbol . f)
mapRE' :: (a -> RE b) -> RE a -> RE b
mapRE' f (REConcat xs) = REConcat (map (mapRE' f) xs)
mapRE' f (REUnion xs) = REUnion (map (mapRE' f) xs)
mapRE' f (RERepeat x) = RERepeat (mapRE' f x)
mapRE' f (RESymbol s) = f s
joinRE :: RE (RE a) -> RE a
joinRE (REConcat xs) = REConcat (map joinRE xs)
joinRE (REUnion xs) = REUnion (map joinRE xs)
joinRE (RERepeat xs) = RERepeat (joinRE xs)
joinRE (RESymbol ss) = ss
symbolsRE :: RE a -> [a]
symbolsRE (REConcat xs) = concatMap symbolsRE xs
symbolsRE (REUnion xs) = concatMap symbolsRE xs
symbolsRE (RERepeat x) = symbolsRE x
symbolsRE (RESymbol x) = [x]
prRE :: (a -> String) -> RE a -> String
prRE = prRE' 0
prRE' :: Int -> (a -> String) -> RE a -> String
prRE' _ _ (REUnion []) = "<NULL>"
prRE' n f (REUnion xs) = p n 1 (concat (intersperse " | " (map (prRE' 1 f) xs)))
prRE' n f (REConcat xs) = p n 2 (unwords (map (prRE' 2 f) xs))
prRE' n f (RERepeat x) = p n 3 (prRE' 3 f x) ++ "*"
prRE' _ f (RESymbol s) = f s
p n m s | n >= m = "(" ++ s ++ ")"
| True = s