{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} {-# LANGUAGE DeriveDataTypeable, DeriveFunctor, DeriveFoldable, DeriveTraversable #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} -- Note [Pass sensitive types] -- in module PlaceHolder {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleInstances #-} -- | Abstract syntax of global declarations. -- -- Definitions for: @SynDecl@ and @ConDecl@, @ClassDecl@, -- @InstDecl@, @DefaultDecl@ and @ForeignDecl@. module HsDecls ( -- * Toplevel declarations HsDecl(..), LHsDecl, HsDataDefn(..), HsDeriving, HsDerivingClause(..), LHsDerivingClause, -- ** Class or type declarations TyClDecl(..), LTyClDecl, TyClGroup(..), mkTyClGroup, emptyTyClGroup, tyClGroupTyClDecls, tyClGroupInstDecls, tyClGroupRoleDecls, isClassDecl, isDataDecl, isSynDecl, tcdName, isFamilyDecl, isTypeFamilyDecl, isDataFamilyDecl, isOpenTypeFamilyInfo, isClosedTypeFamilyInfo, tyFamInstDeclName, tyFamInstDeclLName, countTyClDecls, pprTyClDeclFlavour, tyClDeclLName, tyClDeclTyVars, hsDeclHasCusk, famDeclHasCusk, FamilyDecl(..), LFamilyDecl, -- ** Instance declarations InstDecl(..), LInstDecl, NewOrData(..), FamilyInfo(..), TyFamInstDecl(..), LTyFamInstDecl, instDeclDataFamInsts, DataFamInstDecl(..), LDataFamInstDecl, pprDataFamInstFlavour, TyFamEqn(..), TyFamInstEqn, LTyFamInstEqn, TyFamDefltEqn, LTyFamDefltEqn, HsTyPats, LClsInstDecl, ClsInstDecl(..), -- ** Standalone deriving declarations DerivDecl(..), LDerivDecl, -- ** @RULE@ declarations LRuleDecls,RuleDecls(..),RuleDecl(..), LRuleDecl, RuleBndr(..),LRuleBndr, collectRuleBndrSigTys, flattenRuleDecls, pprFullRuleName, -- ** @VECTORISE@ declarations VectDecl(..), LVectDecl, lvectDeclName, lvectInstDecl, -- ** @default@ declarations DefaultDecl(..), LDefaultDecl, -- ** Template haskell declaration splice SpliceExplicitFlag(..), SpliceDecl(..), LSpliceDecl, -- ** Foreign function interface declarations ForeignDecl(..), LForeignDecl, ForeignImport(..), ForeignExport(..), noForeignImportCoercionYet, noForeignExportCoercionYet, CImportSpec(..), -- ** Data-constructor declarations ConDecl(..), LConDecl, HsConDeclDetails, hsConDeclArgTys, getConNames, getConDetails, gadtDeclDetails, -- ** Document comments DocDecl(..), LDocDecl, docDeclDoc, -- ** Deprecations WarnDecl(..), LWarnDecl, WarnDecls(..), LWarnDecls, -- ** Annotations AnnDecl(..), LAnnDecl, AnnProvenance(..), annProvenanceName_maybe, -- ** Role annotations RoleAnnotDecl(..), LRoleAnnotDecl, roleAnnotDeclName, -- ** Injective type families FamilyResultSig(..), LFamilyResultSig, InjectivityAnn(..), LInjectivityAnn, resultVariableName, -- * Grouping HsGroup(..), emptyRdrGroup, emptyRnGroup, appendGroups, hsGroupInstDecls ) where -- friends: import {-# SOURCE #-} HsExpr( LHsExpr, HsExpr, HsSplice, pprExpr, pprSpliceDecl ) -- Because Expr imports Decls via HsBracket import HsBinds import HsTypes import HsDoc import TyCon import Name import BasicTypes import Coercion import ForeignCall import PlaceHolder ( PostTc,PostRn,PlaceHolder(..),DataId, OutputableBndrId ) import NameSet -- others: import InstEnv import Class import Outputable import Util import SrcLoc import Bag import Maybes import Data.Data hiding (TyCon,Fixity, Infix) {- ************************************************************************ * * \subsection[HsDecl]{Declarations} * * ************************************************************************ -} type LHsDecl id = Located (HsDecl id) -- ^ When in a list this may have -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnSemi' -- -- For details on above see note [Api annotations] in ApiAnnotation -- | A Haskell Declaration data HsDecl id = TyClD (TyClDecl id) -- ^ Type or Class Declaration | InstD (InstDecl id) -- ^ Instance declaration | DerivD (DerivDecl id) -- ^ Deriving declaration | ValD (HsBind id) -- ^ Value declaration | SigD (Sig id) -- ^ Signature declaration | DefD (DefaultDecl id) -- ^ 'default' declaration | ForD (ForeignDecl id) -- ^ Foreign declaration | WarningD (WarnDecls id) -- ^ Warning declaration | AnnD (AnnDecl id) -- ^ Annotation declaration | RuleD (RuleDecls id) -- ^ Rule declaration | VectD (VectDecl id) -- ^ Vectorise declaration | SpliceD (SpliceDecl id) -- ^ Splice declaration -- (Includes quasi-quotes) | DocD (DocDecl) -- ^ Documentation comment declaration | RoleAnnotD (RoleAnnotDecl id) -- ^ Role annotation declaration deriving instance (DataId id) => Data (HsDecl id) -- NB: all top-level fixity decls are contained EITHER -- EITHER SigDs -- OR in the ClassDecls in TyClDs -- -- The former covers -- a) data constructors -- b) class methods (but they can be also done in the -- signatures of class decls) -- c) imported functions (that have an IfacSig) -- d) top level decls -- -- The latter is for class methods only -- | Haskell Group -- -- A 'HsDecl' is categorised into a 'HsGroup' before being -- fed to the renamer. data HsGroup id = HsGroup { hs_valds :: HsValBinds id, hs_splcds :: [LSpliceDecl id], hs_tyclds :: [TyClGroup id], -- A list of mutually-recursive groups; -- This includes `InstDecl`s as well; -- Parser generates a singleton list; -- renamer does dependency analysis hs_derivds :: [LDerivDecl id], hs_fixds :: [LFixitySig id], -- Snaffled out of both top-level fixity signatures, -- and those in class declarations hs_defds :: [LDefaultDecl id], hs_fords :: [LForeignDecl id], hs_warnds :: [LWarnDecls id], hs_annds :: [LAnnDecl id], hs_ruleds :: [LRuleDecls id], hs_vects :: [LVectDecl id], hs_docs :: [LDocDecl] } deriving instance (DataId id) => Data (HsGroup id) emptyGroup, emptyRdrGroup, emptyRnGroup :: HsGroup a emptyRdrGroup = emptyGroup { hs_valds = emptyValBindsIn } emptyRnGroup = emptyGroup { hs_valds = emptyValBindsOut } hsGroupInstDecls :: HsGroup id -> [LInstDecl id] hsGroupInstDecls = (=<<) group_instds . hs_tyclds emptyGroup = HsGroup { hs_tyclds = [], hs_derivds = [], hs_fixds = [], hs_defds = [], hs_annds = [], hs_fords = [], hs_warnds = [], hs_ruleds = [], hs_vects = [], hs_valds = error "emptyGroup hs_valds: Can't happen", hs_splcds = [], hs_docs = [] } appendGroups :: HsGroup a -> HsGroup a -> HsGroup a appendGroups HsGroup { hs_valds = val_groups1, hs_splcds = spliceds1, hs_tyclds = tyclds1, hs_derivds = derivds1, hs_fixds = fixds1, hs_defds = defds1, hs_annds = annds1, hs_fords = fords1, hs_warnds = warnds1, hs_ruleds = rulds1, hs_vects = vects1, hs_docs = docs1 } HsGroup { hs_valds = val_groups2, hs_splcds = spliceds2, hs_tyclds = tyclds2, hs_derivds = derivds2, hs_fixds = fixds2, hs_defds = defds2, hs_annds = annds2, hs_fords = fords2, hs_warnds = warnds2, hs_ruleds = rulds2, hs_vects = vects2, hs_docs = docs2 } = HsGroup { hs_valds = val_groups1 `plusHsValBinds` val_groups2, hs_splcds = spliceds1 ++ spliceds2, hs_tyclds = tyclds1 ++ tyclds2, hs_derivds = derivds1 ++ derivds2, hs_fixds = fixds1 ++ fixds2, hs_annds = annds1 ++ annds2, hs_defds = defds1 ++ defds2, hs_fords = fords1 ++ fords2, hs_warnds = warnds1 ++ warnds2, hs_ruleds = rulds1 ++ rulds2, hs_vects = vects1 ++ vects2, hs_docs = docs1 ++ docs2 } instance (OutputableBndrId name) => Outputable (HsDecl name) where ppr (TyClD dcl) = ppr dcl ppr (ValD binds) = ppr binds ppr (DefD def) = ppr def ppr (InstD inst) = ppr inst ppr (DerivD deriv) = ppr deriv ppr (ForD fd) = ppr fd ppr (SigD sd) = ppr sd ppr (RuleD rd) = ppr rd ppr (VectD vect) = ppr vect ppr (WarningD wd) = ppr wd ppr (AnnD ad) = ppr ad ppr (SpliceD dd) = ppr dd ppr (DocD doc) = ppr doc ppr (RoleAnnotD ra) = ppr ra instance (OutputableBndrId name) => Outputable (HsGroup name) where ppr (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls, hs_derivds = deriv_decls, hs_fixds = fix_decls, hs_warnds = deprec_decls, hs_annds = ann_decls, hs_fords = foreign_decls, hs_defds = default_decls, hs_ruleds = rule_decls, hs_vects = vect_decls }) = vcat_mb empty [ppr_ds fix_decls, ppr_ds default_decls, ppr_ds deprec_decls, ppr_ds ann_decls, ppr_ds rule_decls, ppr_ds vect_decls, if isEmptyValBinds val_decls then Nothing else Just (ppr val_decls), ppr_ds (tyClGroupTyClDecls tycl_decls), ppr_ds (tyClGroupInstDecls tycl_decls), ppr_ds deriv_decls, ppr_ds foreign_decls] where ppr_ds :: Outputable a => [a] -> Maybe SDoc ppr_ds [] = Nothing ppr_ds ds = Just (vcat (map ppr ds)) vcat_mb :: SDoc -> [Maybe SDoc] -> SDoc -- Concatenate vertically with white-space between non-blanks vcat_mb _ [] = empty vcat_mb gap (Nothing : ds) = vcat_mb gap ds vcat_mb gap (Just d : ds) = gap $$ d $$ vcat_mb blankLine ds -- | Located Splice Declaration type LSpliceDecl name = Located (SpliceDecl name) -- | Splice Declaration data SpliceDecl id = SpliceDecl -- Top level splice (Located (HsSplice id)) SpliceExplicitFlag deriving instance (DataId id) => Data (SpliceDecl id) instance (OutputableBndrId name) => Outputable (SpliceDecl name) where ppr (SpliceDecl (L _ e) f) = pprSpliceDecl e f {- ************************************************************************ * * Type and class declarations * * ************************************************************************ Note [The Naming story] ~~~~~~~~~~~~~~~~~~~~~~~ Here is the story about the implicit names that go with type, class, and instance decls. It's a bit tricky, so pay attention! "Implicit" (or "system") binders ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Each data type decl defines a worker name for each constructor to-T and from-T convertors Each class decl defines a tycon for the class a data constructor for that tycon the worker for that constructor a selector for each superclass All have occurrence names that are derived uniquely from their parent declaration. None of these get separate definitions in an interface file; they are fully defined by the data or class decl. But they may *occur* in interface files, of course. Any such occurrence must haul in the relevant type or class decl. Plan of attack: - Ensure they "point to" the parent data/class decl when loading that decl from an interface file (See RnHiFiles.getSysBinders) - When typechecking the decl, we build the implicit TyCons and Ids. When doing so we look them up in the name cache (RnEnv.lookupSysName), to ensure correct module and provenance is set These are the two places that we have to conjure up the magic derived names. (The actual magic is in OccName.mkWorkerOcc, etc.) Default methods ~~~~~~~~~~~~~~~ - Occurrence name is derived uniquely from the method name E.g. $dmmax - If there is a default method name at all, it's recorded in the ClassOpSig (in HsBinds), in the DefMethInfo field. (DefMethInfo is defined in Class.hs) Source-code class decls and interface-code class decls are treated subtly differently, which has given me a great deal of confusion over the years. Here's the deal. (We distinguish the two cases because source-code decls have (Just binds) in the tcdMeths field, whereas interface decls have Nothing. In *source-code* class declarations: - When parsing, every ClassOpSig gets a DefMeth with a suitable RdrName This is done by RdrHsSyn.mkClassOpSigDM - The renamer renames it to a Name - During typechecking, we generate a binding for each $dm for which there's a programmer-supplied default method: class Foo a where op1 :: op2 :: op1 = ... We generate a binding for $dmop1 but not for $dmop2. The Class for Foo has a Nothing for op2 and a Just ($dm_op1, VanillaDM) for op1. The Name for $dmop2 is simply discarded. In *interface-file* class declarations: - When parsing, we see if there's an explicit programmer-supplied default method because there's an '=' sign to indicate it: class Foo a where op1 = :: -- NB the '=' op2 :: We use this info to generate a DefMeth with a suitable RdrName for op1, and a NoDefMeth for op2 - The interface file has a separate definition for $dmop1, with unfolding etc. - The renamer renames it to a Name. - The renamer treats $dmop1 as a free variable of the declaration, so that the binding for $dmop1 will be sucked in. (See RnHsSyn.tyClDeclFVs) This doesn't happen for source code class decls, because they *bind* the default method. Dictionary functions ~~~~~~~~~~~~~~~~~~~~ Each instance declaration gives rise to one dictionary function binding. The type checker makes up new source-code instance declarations (e.g. from 'deriving' or generic default methods --- see TcInstDcls.tcInstDecls1). So we can't generate the names for dictionary functions in advance (we don't know how many we need). On the other hand for interface-file instance declarations, the decl specifies the name of the dictionary function, and it has a binding elsewhere in the interface file: instance {Eq Int} = dEqInt dEqInt :: {Eq Int} So again we treat source code and interface file code slightly differently. Source code: - Source code instance decls have a Nothing in the (Maybe name) field (see data InstDecl below) - The typechecker makes up a Local name for the dict fun for any source-code instance decl, whether it comes from a source-code instance decl, or whether the instance decl is derived from some other construct (e.g. 'deriving'). - The occurrence name it chooses is derived from the instance decl (just for documentation really) --- e.g. dNumInt. Two dict funs may share a common occurrence name, but will have different uniques. E.g. instance Foo [Int] where ... instance Foo [Bool] where ... These might both be dFooList - The CoreTidy phase externalises the name, and ensures the occurrence name is unique (this isn't special to dict funs). So we'd get dFooList and dFooList1. - We can take this relaxed approach (changing the occurrence name later) because dict fun Ids are not captured in a TyCon or Class (unlike default methods, say). Instead, they are kept separately in the InstEnv. This makes it easy to adjust them after compiling a module. (Once we've finished compiling that module, they don't change any more.) Interface file code: - The instance decl gives the dict fun name, so the InstDecl has a (Just name) in the (Maybe name) field. - RnHsSyn.instDeclFVs treats the dict fun name as free in the decl, so that we suck in the dfun binding -} -- | Located Declaration of a Type or Class type LTyClDecl name = Located (TyClDecl name) -- | A type or class declaration. data TyClDecl name = -- | @type/data family T :: *->*@ -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnType', -- 'ApiAnnotation.AnnData', -- 'ApiAnnotation.AnnFamily','ApiAnnotation.AnnDcolon', -- 'ApiAnnotation.AnnWhere','ApiAnnotation.AnnOpenP', -- 'ApiAnnotation.AnnDcolon','ApiAnnotation.AnnCloseP', -- 'ApiAnnotation.AnnEqual','ApiAnnotation.AnnRarrow', -- 'ApiAnnotation.AnnVbar' -- For details on above see note [Api annotations] in ApiAnnotation FamDecl { tcdFam :: FamilyDecl name } | -- | @type@ declaration -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnType', -- 'ApiAnnotation.AnnEqual', -- For details on above see note [Api annotations] in ApiAnnotation SynDecl { tcdLName :: Located name -- ^ Type constructor , tcdTyVars :: LHsQTyVars name -- ^ Type variables; for an associated type -- these include outer binders , tcdFixity :: LexicalFixity -- ^ Fixity used in the declaration , tcdRhs :: LHsType name -- ^ RHS of type declaration , tcdFVs :: PostRn name NameSet } | -- | @data@ declaration -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnData', -- 'ApiAnnotation.AnnFamily', -- 'ApiAnnotation.AnnNewType', -- 'ApiAnnotation.AnnNewType','ApiAnnotation.AnnDcolon' -- 'ApiAnnotation.AnnWhere', -- For details on above see note [Api annotations] in ApiAnnotation DataDecl { tcdLName :: Located name -- ^ Type constructor , tcdTyVars :: LHsQTyVars name -- ^ Type variables; for an associated type -- these include outer binders -- Eg class T a where -- type F a :: * -- type F a = a -> a -- Here the type decl for 'f' includes 'a' -- in its tcdTyVars , tcdFixity :: LexicalFixity -- ^ Fixity used in the declaration , tcdDataDefn :: HsDataDefn name , tcdDataCusk :: PostRn name Bool -- ^ does this have a CUSK? , tcdFVs :: PostRn name NameSet } | ClassDecl { tcdCtxt :: LHsContext name, -- ^ Context... tcdLName :: Located name, -- ^ Name of the class tcdTyVars :: LHsQTyVars name, -- ^ Class type variables tcdFixity :: LexicalFixity, -- ^ Fixity used in the declaration tcdFDs :: [Located (FunDep (Located name))], -- ^ Functional deps tcdSigs :: [LSig name], -- ^ Methods' signatures tcdMeths :: LHsBinds name, -- ^ Default methods tcdATs :: [LFamilyDecl name], -- ^ Associated types; tcdATDefs :: [LTyFamDefltEqn name], -- ^ Associated type defaults tcdDocs :: [LDocDecl], -- ^ Haddock docs tcdFVs :: PostRn name NameSet } -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnClass', -- 'ApiAnnotation.AnnWhere','ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnClose' -- - The tcdFDs will have 'ApiAnnotation.AnnVbar', -- 'ApiAnnotation.AnnComma' -- 'ApiAnnotation.AnnRarrow' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId id) => Data (TyClDecl id) -- Simple classifiers for TyClDecl -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- | @True@ <=> argument is a @data@\/@newtype@ -- declaration. isDataDecl :: TyClDecl name -> Bool isDataDecl (DataDecl {}) = True isDataDecl _other = False -- | type or type instance declaration isSynDecl :: TyClDecl name -> Bool isSynDecl (SynDecl {}) = True isSynDecl _other = False -- | type class isClassDecl :: TyClDecl name -> Bool isClassDecl (ClassDecl {}) = True isClassDecl _ = False -- | type/data family declaration isFamilyDecl :: TyClDecl name -> Bool isFamilyDecl (FamDecl {}) = True isFamilyDecl _other = False -- | type family declaration isTypeFamilyDecl :: TyClDecl name -> Bool isTypeFamilyDecl (FamDecl (FamilyDecl { fdInfo = info })) = case info of OpenTypeFamily -> True ClosedTypeFamily {} -> True _ -> False isTypeFamilyDecl _ = False -- | open type family info isOpenTypeFamilyInfo :: FamilyInfo name -> Bool isOpenTypeFamilyInfo OpenTypeFamily = True isOpenTypeFamilyInfo _ = False -- | closed type family info isClosedTypeFamilyInfo :: FamilyInfo name -> Bool isClosedTypeFamilyInfo (ClosedTypeFamily {}) = True isClosedTypeFamilyInfo _ = False -- | data family declaration isDataFamilyDecl :: TyClDecl name -> Bool isDataFamilyDecl (FamDecl (FamilyDecl { fdInfo = DataFamily })) = True isDataFamilyDecl _other = False -- Dealing with names tyFamInstDeclName :: TyFamInstDecl name -> name tyFamInstDeclName = unLoc . tyFamInstDeclLName tyFamInstDeclLName :: TyFamInstDecl name -> Located name tyFamInstDeclLName (TyFamInstDecl { tfid_eqn = (L _ (TyFamEqn { tfe_tycon = ln })) }) = ln tyClDeclLName :: TyClDecl name -> Located name tyClDeclLName (FamDecl { tcdFam = FamilyDecl { fdLName = ln } }) = ln tyClDeclLName decl = tcdLName decl tcdName :: TyClDecl name -> name tcdName = unLoc . tyClDeclLName tyClDeclTyVars :: TyClDecl name -> LHsQTyVars name tyClDeclTyVars (FamDecl { tcdFam = FamilyDecl { fdTyVars = tvs } }) = tvs tyClDeclTyVars d = tcdTyVars d countTyClDecls :: [TyClDecl name] -> (Int, Int, Int, Int, Int) -- class, synonym decls, data, newtype, family decls countTyClDecls decls = (count isClassDecl decls, count isSynDecl decls, -- excluding... count isDataTy decls, -- ...family... count isNewTy decls, -- ...instances count isFamilyDecl decls) where isDataTy DataDecl{ tcdDataDefn = HsDataDefn { dd_ND = DataType } } = True isDataTy _ = False isNewTy DataDecl{ tcdDataDefn = HsDataDefn { dd_ND = NewType } } = True isNewTy _ = False -- | Does this declaration have a complete, user-supplied kind signature? -- See Note [Complete user-supplied kind signatures] hsDeclHasCusk :: TyClDecl Name -> Bool hsDeclHasCusk (FamDecl { tcdFam = fam_decl }) = famDeclHasCusk Nothing fam_decl hsDeclHasCusk (SynDecl { tcdTyVars = tyvars, tcdRhs = rhs }) -- NB: Keep this synchronized with 'getInitialKind' = hsTvbAllKinded tyvars && rhs_annotated rhs where rhs_annotated (L _ ty) = case ty of HsParTy lty -> rhs_annotated lty HsKindSig {} -> True _ -> False hsDeclHasCusk (DataDecl { tcdDataCusk = cusk }) = cusk hsDeclHasCusk (ClassDecl { tcdTyVars = tyvars }) = hsTvbAllKinded tyvars -- Pretty-printing TyClDecl -- ~~~~~~~~~~~~~~~~~~~~~~~~ instance (OutputableBndrId name) => Outputable (TyClDecl name) where ppr (FamDecl { tcdFam = decl }) = ppr decl ppr (SynDecl { tcdLName = ltycon, tcdTyVars = tyvars, tcdFixity = fixity , tcdRhs = rhs }) = hang (text "type" <+> pp_vanilla_decl_head ltycon tyvars fixity [] <+> equals) 4 (ppr rhs) ppr (DataDecl { tcdLName = ltycon, tcdTyVars = tyvars, tcdFixity = fixity , tcdDataDefn = defn }) = pp_data_defn (pp_vanilla_decl_head ltycon tyvars fixity) defn ppr (ClassDecl {tcdCtxt = context, tcdLName = lclas, tcdTyVars = tyvars, tcdFixity = fixity, tcdFDs = fds, tcdSigs = sigs, tcdMeths = methods, tcdATs = ats, tcdATDefs = at_defs}) | null sigs && isEmptyBag methods && null ats && null at_defs -- No "where" part = top_matter | otherwise -- Laid out = vcat [ top_matter <+> text "where" , nest 2 $ pprDeclList (map (pprFamilyDecl NotTopLevel . unLoc) ats ++ map ppr_fam_deflt_eqn at_defs ++ pprLHsBindsForUser methods sigs) ] where top_matter = text "class" <+> pp_vanilla_decl_head lclas tyvars fixity (unLoc context) <+> pprFundeps (map unLoc fds) instance (OutputableBndrId name) => Outputable (TyClGroup name) where ppr (TyClGroup { group_tyclds = tyclds , group_roles = roles , group_instds = instds } ) = ppr tyclds $$ ppr roles $$ ppr instds pp_vanilla_decl_head :: (OutputableBndrId name) => Located name -> LHsQTyVars name -> LexicalFixity -> HsContext name -> SDoc pp_vanilla_decl_head thing (HsQTvs { hsq_explicit = tyvars }) fixity context = hsep [pprHsContext context, pp_tyvars tyvars] where pp_tyvars (varl:varsr) | fixity == Infix = hsep [ppr (unLoc varl), pprInfixOcc (unLoc thing) , hsep (map (ppr.unLoc) varsr)] | otherwise = hsep [ pprPrefixOcc (unLoc thing) , hsep (map (ppr.unLoc) (varl:varsr))] pp_tyvars [] = ppr thing pprTyClDeclFlavour :: TyClDecl a -> SDoc pprTyClDeclFlavour (ClassDecl {}) = text "class" pprTyClDeclFlavour (SynDecl {}) = text "type" pprTyClDeclFlavour (FamDecl { tcdFam = FamilyDecl { fdInfo = info }}) = pprFlavour info <+> text "family" pprTyClDeclFlavour (DataDecl { tcdDataDefn = HsDataDefn { dd_ND = nd } }) = ppr nd {- Note [Complete user-supplied kind signatures] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We kind-check declarations differently if they have a complete, user-supplied kind signature (CUSK). This is because we can safely generalise a CUSKed declaration before checking all of the others, supporting polymorphic recursion. See ghc.haskell.org/trac/ghc/wiki/GhcKinds/KindInference#Proposednewstrategy and #9200 for lots of discussion of how we got here. A declaration has a CUSK if we can know its complete kind without doing any inference, at all. Here are the rules: - A class or datatype is said to have a CUSK if and only if all of its type variables are annotated. Its result kind is, by construction, Constraint or * respectively. - A type synonym has a CUSK if and only if all of its type variables and its RHS are annotated with kinds. - A closed type family is said to have a CUSK if and only if all of its type variables and its return type are annotated. - An open type family always has a CUSK -- unannotated type variables (and return type) default to *. - Additionally, if -XTypeInType is on, then a data definition with a top-level :: must explicitly bind all kind variables to the right of the ::. See test dependent/should_compile/KindLevels, which requires this case. (Naturally, any kind variable mentioned before the :: should not be bound after it.) -} {- ********************************************************************* * * TyClGroup Strongly connected components of type, class, instance, and role declarations * * ********************************************************************* -} {- Note [TyClGroups and dependency analysis] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A TyClGroup represents a strongly connected components of type/class/instance decls, together with the role annotations for the type/class declarations. The hs_tyclds :: [TyClGroup] field of a HsGroup is a dependency-order sequence of strongly-connected components. Invariants * The type and class declarations, group_tyclds, may depend on each other, or earlier TyClGroups, but not on later ones * The role annotations, group_roles, are role-annotations for some or all of the types and classes in group_tyclds (only). * The instance declarations, group_instds, may (and usually will) depend on group_tyclds, or on earlier TyClGroups, but not on later ones. See Note [Dependency analsis of type, class, and instance decls] in RnSource for more info. -} -- | Type or Class Group data TyClGroup name -- See Note [TyClGroups and dependency analysis] = TyClGroup { group_tyclds :: [LTyClDecl name] , group_roles :: [LRoleAnnotDecl name] , group_instds :: [LInstDecl name] } deriving instance (DataId id) => Data (TyClGroup id) emptyTyClGroup :: TyClGroup name emptyTyClGroup = TyClGroup [] [] [] tyClGroupTyClDecls :: [TyClGroup name] -> [LTyClDecl name] tyClGroupTyClDecls = concatMap group_tyclds tyClGroupInstDecls :: [TyClGroup name] -> [LInstDecl name] tyClGroupInstDecls = concatMap group_instds tyClGroupRoleDecls :: [TyClGroup name] -> [LRoleAnnotDecl name] tyClGroupRoleDecls = concatMap group_roles mkTyClGroup :: [LTyClDecl name] -> [LInstDecl name] -> TyClGroup name mkTyClGroup decls instds = TyClGroup { group_tyclds = decls , group_roles = [] , group_instds = instds } {- ********************************************************************* * * Data and type family declarations * * ********************************************************************* -} {- Note [FamilyResultSig] ~~~~~~~~~~~~~~~~~~~~~~~~~ This data type represents the return signature of a type family. Possible values are: * NoSig - the user supplied no return signature: type family Id a where ... * KindSig - the user supplied the return kind: type family Id a :: * where ... * TyVarSig - user named the result with a type variable and possibly provided a kind signature for that variable: type family Id a = r where ... type family Id a = (r :: *) where ... Naming result of a type family is required if we want to provide injectivity annotation for a type family: type family Id a = r | r -> a where ... See also: Note [Injectivity annotation] Note [Injectivity annotation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A user can declare a type family to be injective: type family Id a = r | r -> a where ... * The part after the "|" is called "injectivity annotation". * "r -> a" part is called "injectivity condition"; at the moment terms "injectivity annotation" and "injectivity condition" are synonymous because we only allow a single injectivity condition. * "r" is the "LHS of injectivity condition". LHS can only contain the variable naming the result of a type family. * "a" is the "RHS of injectivity condition". RHS contains space-separated type and kind variables representing the arguments of a type family. Variables can be omitted if a type family is not injective in these arguments. Example: type family Foo a b c = d | d -> a c where ... Note that: (a) naming of type family result is required to provide injectivity annotation (b) for associated types if the result was named then injectivity annotation is mandatory. Otherwise result type variable is indistinguishable from associated type default. It is possible that in the future this syntax will be extended to support more complicated injectivity annotations. For example we could declare that if we know the result of Plus and one of its arguments we can determine the other argument: type family Plus a b = (r :: Nat) | r a -> b, r b -> a where ... Here injectivity annotation would consist of two comma-separated injectivity conditions. See also Note [Injective type families] in TyCon -} -- | Located type Family Result Signature type LFamilyResultSig name = Located (FamilyResultSig name) -- | type Family Result Signature data FamilyResultSig name = -- see Note [FamilyResultSig] NoSig -- ^ - 'ApiAnnotation.AnnKeywordId' : -- For details on above see note [Api annotations] in ApiAnnotation | KindSig (LHsKind name) -- ^ - 'ApiAnnotation.AnnKeywordId' : -- 'ApiAnnotation.AnnOpenP','ApiAnnotation.AnnDcolon', -- 'ApiAnnotation.AnnCloseP' -- For details on above see note [Api annotations] in ApiAnnotation | TyVarSig (LHsTyVarBndr name) -- ^ - 'ApiAnnotation.AnnKeywordId' : -- 'ApiAnnotation.AnnOpenP','ApiAnnotation.AnnDcolon', -- 'ApiAnnotation.AnnCloseP', 'ApiAnnotation.AnnEqual' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (FamilyResultSig name) -- | Located type Family Declaration type LFamilyDecl name = Located (FamilyDecl name) -- | type Family Declaration data FamilyDecl name = FamilyDecl { fdInfo :: FamilyInfo name -- type/data, closed/open , fdLName :: Located name -- type constructor , fdTyVars :: LHsQTyVars name -- type variables , fdFixity :: LexicalFixity -- Fixity used in the declaration , fdResultSig :: LFamilyResultSig name -- result signature , fdInjectivityAnn :: Maybe (LInjectivityAnn name) -- optional injectivity ann } -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnType', -- 'ApiAnnotation.AnnData', 'ApiAnnotation.AnnFamily', -- 'ApiAnnotation.AnnWhere', 'ApiAnnotation.AnnOpenP', -- 'ApiAnnotation.AnnDcolon', 'ApiAnnotation.AnnCloseP', -- 'ApiAnnotation.AnnEqual', 'ApiAnnotation.AnnRarrow', -- 'ApiAnnotation.AnnVbar' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId id) => Data (FamilyDecl id) -- | Located Injectivity Annotation type LInjectivityAnn name = Located (InjectivityAnn name) -- | If the user supplied an injectivity annotation it is represented using -- InjectivityAnn. At the moment this is a single injectivity condition - see -- Note [Injectivity annotation]. `Located name` stores the LHS of injectivity -- condition. `[Located name]` stores the RHS of injectivity condition. Example: -- -- type family Foo a b c = r | r -> a c where ... -- -- This will be represented as "InjectivityAnn `r` [`a`, `c`]" data InjectivityAnn name = InjectivityAnn (Located name) [Located name] -- ^ - 'ApiAnnotation.AnnKeywordId' : -- 'ApiAnnotation.AnnRarrow', 'ApiAnnotation.AnnVbar' -- For details on above see note [Api annotations] in ApiAnnotation deriving Data data FamilyInfo name = DataFamily | OpenTypeFamily -- | 'Nothing' if we're in an hs-boot file and the user -- said "type family Foo x where .." | ClosedTypeFamily (Maybe [LTyFamInstEqn name]) deriving instance (DataId name) => Data (FamilyInfo name) -- | Does this family declaration have a complete, user-supplied kind signature? famDeclHasCusk :: Maybe Bool -- ^ if associated, does the enclosing class have a CUSK? -> FamilyDecl name -> Bool famDeclHasCusk _ (FamilyDecl { fdInfo = ClosedTypeFamily _ , fdTyVars = tyvars , fdResultSig = L _ resultSig }) = hsTvbAllKinded tyvars && hasReturnKindSignature resultSig famDeclHasCusk mb_class_cusk _ = mb_class_cusk `orElse` True -- all un-associated open families have CUSKs! -- | Does this family declaration have user-supplied return kind signature? hasReturnKindSignature :: FamilyResultSig a -> Bool hasReturnKindSignature NoSig = False hasReturnKindSignature (TyVarSig (L _ (UserTyVar _))) = False hasReturnKindSignature _ = True -- | Maybe return name of the result type variable resultVariableName :: FamilyResultSig a -> Maybe a resultVariableName (TyVarSig sig) = Just $ hsLTyVarName sig resultVariableName _ = Nothing instance (OutputableBndrId name) => Outputable (FamilyDecl name) where ppr = pprFamilyDecl TopLevel pprFamilyDecl :: (OutputableBndrId name) => TopLevelFlag -> FamilyDecl name -> SDoc pprFamilyDecl top_level (FamilyDecl { fdInfo = info, fdLName = ltycon , fdTyVars = tyvars , fdFixity = fixity , fdResultSig = L _ result , fdInjectivityAnn = mb_inj }) = vcat [ pprFlavour info <+> pp_top_level <+> pp_vanilla_decl_head ltycon tyvars fixity [] <+> pp_kind <+> pp_inj <+> pp_where , nest 2 $ pp_eqns ] where pp_top_level = case top_level of TopLevel -> text "family" NotTopLevel -> empty pp_kind = case result of NoSig -> empty KindSig kind -> dcolon <+> ppr kind TyVarSig tv_bndr -> text "=" <+> ppr tv_bndr pp_inj = case mb_inj of Just (L _ (InjectivityAnn lhs rhs)) -> hsep [ vbar, ppr lhs, text "->", hsep (map ppr rhs) ] Nothing -> empty (pp_where, pp_eqns) = case info of ClosedTypeFamily mb_eqns -> ( text "where" , case mb_eqns of Nothing -> text ".." Just eqns -> vcat $ map ppr_fam_inst_eqn eqns ) _ -> (empty, empty) pprFlavour :: FamilyInfo name -> SDoc pprFlavour DataFamily = text "data" pprFlavour OpenTypeFamily = text "type" pprFlavour (ClosedTypeFamily {}) = text "type" instance Outputable (FamilyInfo name) where ppr info = pprFlavour info <+> text "family" {- ********************************************************************* * * Data types and data constructors * * ********************************************************************* -} -- | Haskell Data type Definition data HsDataDefn name -- The payload of a data type defn -- Used *both* for vanilla data declarations, -- *and* for data family instances = -- | Declares a data type or newtype, giving its constructors -- @ -- data/newtype T a = -- data/newtype instance T [a] = -- @ HsDataDefn { dd_ND :: NewOrData, dd_ctxt :: LHsContext name, -- ^ Context dd_cType :: Maybe (Located CType), dd_kindSig:: Maybe (LHsKind name), -- ^ Optional kind signature. -- -- @(Just k)@ for a GADT-style @data@, -- or @data instance@ decl, with explicit kind sig -- -- Always @Nothing@ for H98-syntax decls dd_cons :: [LConDecl name], -- ^ Data constructors -- -- For @data T a = T1 | T2 a@ -- the 'LConDecl's all have 'ConDeclH98'. -- For @data T a where { T1 :: T a }@ -- the 'LConDecls' all have 'ConDeclGADT'. dd_derivs :: HsDeriving name -- ^ Optional 'deriving' claues -- For details on above see note [Api annotations] in ApiAnnotation } deriving instance (DataId id) => Data (HsDataDefn id) -- | Haskell Deriving clause type HsDeriving name = Located [LHsDerivingClause name] -- ^ The optional @deriving@ clauses of a data declaration. "Clauses" is -- plural because one can specify multiple deriving clauses using the -- @-XDerivingStrategies@ language extension. -- -- The list of 'LHsDerivingClause's corresponds to exactly what the user -- requested to derive, in order. If no deriving clauses were specified, -- the list is empty. type LHsDerivingClause name = Located (HsDerivingClause name) -- | A single @deriving@ clause of a data declaration. -- -- - 'ApiAnnotation.AnnKeywordId' : -- 'ApiAnnotation.AnnDeriving', 'ApiAnnotation.AnnStock', -- 'ApiAnnotation.AnnAnyClass', 'Api.AnnNewtype', -- 'ApiAnnotation.AnnOpen','ApiAnnotation.AnnClose' data HsDerivingClause name -- See Note [Deriving strategies] in TcDeriv = HsDerivingClause { deriv_clause_strategy :: Maybe (Located DerivStrategy) -- ^ The user-specified strategy (if any) to use when deriving -- 'deriv_clause_tys'. , deriv_clause_tys :: Located [LHsSigType name] -- ^ The types to derive. -- -- It uses 'LHsSigType's because, with @-XGeneralizedNewtypeDeriving@, -- we can mention type variables that aren't bound by the datatype, e.g. -- -- > data T b = ... deriving (C [a]) -- -- should produce a derived instance for @C [a] (T b)@. } deriving instance (DataId id) => Data (HsDerivingClause id) instance (OutputableBndrId name) => Outputable (HsDerivingClause name) where ppr (HsDerivingClause { deriv_clause_strategy = dcs , deriv_clause_tys = L _ dct }) = hsep [ text "deriving" , ppDerivStrategy dcs , pp_dct dct ] where -- This complexity is to distinguish between -- deriving Show -- deriving (Show) pp_dct [a@(HsIB { hsib_body = L _ HsAppsTy{} })] = parens (ppr a) pp_dct [a] = ppr a pp_dct _ = parens (interpp'SP dct) data NewOrData = NewType -- ^ @newtype Blah ...@ | DataType -- ^ @data Blah ...@ deriving( Eq, Data ) -- Needed because Demand derives Eq -- | Located data Constructor Declaration type LConDecl name = Located (ConDecl name) -- ^ May have 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnSemi' when -- in a GADT constructor list -- For details on above see note [Api annotations] in ApiAnnotation -- | -- -- @ -- data T b = forall a. Eq a => MkT a b -- MkT :: forall b a. Eq a => MkT a b -- -- data T b where -- MkT1 :: Int -> T Int -- -- data T = Int `MkT` Int -- | MkT2 -- -- data T a where -- Int `MkT` Int :: T Int -- @ -- -- - 'ApiAnnotation.AnnKeywordId's : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnDotdot','ApiAnnotation.AnnCLose', -- 'ApiAnnotation.AnnEqual','ApiAnnotation.AnnVbar', -- 'ApiAnnotation.AnnDarrow','ApiAnnotation.AnnDarrow', -- 'ApiAnnotation.AnnForall','ApiAnnotation.AnnDot' -- For details on above see note [Api annotations] in ApiAnnotation -- | data Constructor Declaration data ConDecl name = ConDeclGADT { con_names :: [Located name] , con_type :: LHsSigType name -- ^ The type after the ‘::’ , con_doc :: Maybe LHsDocString -- ^ A possible Haddock comment. } | ConDeclH98 { con_name :: Located name , con_qvars :: Maybe (LHsQTyVars name) -- User-written forall (if any), and its implicit -- kind variables -- Non-Nothing needs -XExistentialQuantification -- e.g. data T a = forall b. MkT b (b->a) -- con_qvars = {b} , con_cxt :: Maybe (LHsContext name) -- ^ User-written context (if any) , con_details :: HsConDeclDetails name -- ^ Arguments , con_doc :: Maybe LHsDocString -- ^ A possible Haddock comment. } deriving instance (DataId name) => Data (ConDecl name) -- | Haskell data Constructor Declaration Details type HsConDeclDetails name = HsConDetails (LBangType name) (Located [LConDeclField name]) getConNames :: ConDecl name -> [Located name] getConNames ConDeclH98 {con_name = name} = [name] getConNames ConDeclGADT {con_names = names} = names -- don't call with RdrNames, because it can't deal with HsAppsTy getConDetails :: ConDecl name -> HsConDeclDetails name getConDetails ConDeclH98 {con_details = details} = details getConDetails ConDeclGADT {con_type = ty } = details where (details,_,_,_) = gadtDeclDetails ty -- don't call with RdrNames, because it can't deal with HsAppsTy gadtDeclDetails :: LHsSigType name -> ( HsConDeclDetails name , LHsType name , LHsContext name , [LHsTyVarBndr name] ) gadtDeclDetails HsIB {hsib_body = lbody_ty} = (details,res_ty,cxt,tvs) where (tvs, cxt, tau) = splitLHsSigmaTy lbody_ty (details, res_ty) -- See Note [Sorting out the result type] = case tau of L _ (HsFunTy (L l (HsRecTy flds)) res_ty') -> (RecCon (L l flds), res_ty') _other -> (PrefixCon [], tau) hsConDeclArgTys :: HsConDeclDetails name -> [LBangType name] hsConDeclArgTys (PrefixCon tys) = tys hsConDeclArgTys (InfixCon ty1 ty2) = [ty1,ty2] hsConDeclArgTys (RecCon flds) = map (cd_fld_type . unLoc) (unLoc flds) pp_data_defn :: (OutputableBndrId name) => (HsContext name -> SDoc) -- Printing the header -> HsDataDefn name -> SDoc pp_data_defn pp_hdr (HsDataDefn { dd_ND = new_or_data, dd_ctxt = L _ context , dd_cType = mb_ct , dd_kindSig = mb_sig , dd_cons = condecls, dd_derivs = derivings }) | null condecls = ppr new_or_data <+> pp_ct <+> pp_hdr context <+> pp_sig <+> pp_derivings derivings | otherwise = hang (ppr new_or_data <+> pp_ct <+> pp_hdr context <+> pp_sig) 2 (pp_condecls condecls $$ pp_derivings derivings) where pp_ct = case mb_ct of Nothing -> empty Just ct -> ppr ct pp_sig = case mb_sig of Nothing -> empty Just kind -> dcolon <+> ppr kind pp_derivings (L _ ds) = vcat (map ppr ds) instance (OutputableBndrId name) => Outputable (HsDataDefn name) where ppr d = pp_data_defn (\_ -> text "Naked HsDataDefn") d instance Outputable NewOrData where ppr NewType = text "newtype" ppr DataType = text "data" pp_condecls :: (OutputableBndrId name) => [LConDecl name] -> SDoc pp_condecls cs@(L _ ConDeclGADT{} : _) -- In GADT syntax = hang (text "where") 2 (vcat (map ppr cs)) pp_condecls cs -- In H98 syntax = equals <+> sep (punctuate (text " |") (map ppr cs)) instance (OutputableBndrId name) => Outputable (ConDecl name) where ppr = pprConDecl pprConDecl :: (OutputableBndrId name) => ConDecl name -> SDoc pprConDecl (ConDeclH98 { con_name = L _ con , con_qvars = mtvs , con_cxt = mcxt , con_details = details , con_doc = doc }) = sep [ppr_mbDoc doc, pprHsForAll tvs cxt, ppr_details details] where ppr_details (InfixCon t1 t2) = hsep [ppr t1, pprInfixOcc con, ppr t2] ppr_details (PrefixCon tys) = hsep (pprPrefixOcc con : map (pprParendHsType . unLoc) tys) ppr_details (RecCon fields) = pprPrefixOcc con <+> pprConDeclFields (unLoc fields) tvs = case mtvs of Nothing -> [] Just (HsQTvs { hsq_explicit = tvs }) -> tvs cxt = fromMaybe (noLoc []) mcxt pprConDecl (ConDeclGADT { con_names = cons, con_type = res_ty, con_doc = doc }) = sep [ppr_mbDoc doc <+> ppr_con_names cons <+> dcolon <+> ppr res_ty] ppr_con_names :: (OutputableBndr name) => [Located name] -> SDoc ppr_con_names = pprWithCommas (pprPrefixOcc . unLoc) {- ************************************************************************ * * Instance declarations * * ************************************************************************ Note [Type family instance declarations in HsSyn] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The data type TyFamEqn represents one equation of a type family instance. It is parameterised over its tfe_pats field: * An ordinary type family instance declaration looks like this in source Haskell type instance T [a] Int = a -> a (or something similar for a closed family) It is represented by a TyFamInstEqn, with *type* in the tfe_pats field. * On the other hand, the *default instance* of an associated type looks like this in source Haskell class C a where type T a b type T a b = a -> b -- The default instance It is represented by a TyFamDefltEqn, with *type variables* in the tfe_pats field. -} ----------------- Type synonym family instances ------------- -- | Located Type Family Instance Equation type LTyFamInstEqn name = Located (TyFamInstEqn name) -- ^ May have 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnSemi' -- when in a list -- For details on above see note [Api annotations] in ApiAnnotation -- | Located Type Family Default Equation type LTyFamDefltEqn name = Located (TyFamDefltEqn name) -- | Haskell Type Patterns type HsTyPats name = HsImplicitBndrs name [LHsType name] -- ^ Type patterns (with kind and type bndrs) -- See Note [Family instance declaration binders] {- Note [Family instance declaration binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The HsTyPats field is LHS patterns or a type/data family instance. The hsib_vars of the HsImplicitBndrs are the template variables of the type patterns, i.e. fv(pat_tys). Note in particular * The hsib_vars *includes* any anonymous wildcards. For example type instance F a _ = a The hsib_vars will be {a, _}. Remember that each separate wildcard '_' gets its own unique. In this context wildcards behave just like an ordinary type variable, only anonymous. * The hsib_vars *including* type variables that are already in scope Eg class C s t where type F t p :: * instance C w (a,b) where type F (a,b) x = x->a The hsib_vars of the F decl are {a,b,x}, even though the F decl is nested inside the 'instance' decl. However after the renamer, the uniques will match up: instance C w7 (a8,b9) where type F (a8,b9) x10 = x10->a8 so that we can compare the type pattern in the 'instance' decl and in the associated 'type' decl -} -- | Type Family Instance Equation type TyFamInstEqn name = TyFamEqn name (HsTyPats name) -- | Type Family Default Equation type TyFamDefltEqn name = TyFamEqn name (LHsQTyVars name) -- See Note [Type family instance declarations in HsSyn] -- | Type Family Equation -- -- One equation in a type family instance declaration -- See Note [Type family instance declarations in HsSyn] data TyFamEqn name pats = TyFamEqn { tfe_tycon :: Located name , tfe_pats :: pats , tfe_fixity :: LexicalFixity -- ^ Fixity used in the declaration , tfe_rhs :: LHsType name } -- ^ -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnEqual' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name, Data pats) => Data (TyFamEqn name pats) -- | Located Type Family Instance Declaration type LTyFamInstDecl name = Located (TyFamInstDecl name) -- | Type Family Instance Declaration data TyFamInstDecl name = TyFamInstDecl { tfid_eqn :: LTyFamInstEqn name , tfid_fvs :: PostRn name NameSet } -- ^ -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnType', -- 'ApiAnnotation.AnnInstance', -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (TyFamInstDecl name) ----------------- Data family instances ------------- -- | Located Data Family Instance Declaration type LDataFamInstDecl name = Located (DataFamInstDecl name) -- | Data Family Instance Declaration data DataFamInstDecl name = DataFamInstDecl { dfid_tycon :: Located name , dfid_pats :: HsTyPats name -- LHS , dfid_fixity :: LexicalFixity -- ^ Fixity used in the declaration , dfid_defn :: HsDataDefn name -- RHS , dfid_fvs :: PostRn name NameSet } -- Free vars for dependency analysis -- ^ -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnData', -- 'ApiAnnotation.AnnNewType','ApiAnnotation.AnnInstance', -- 'ApiAnnotation.AnnDcolon' -- 'ApiAnnotation.AnnWhere','ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (DataFamInstDecl name) ----------------- Class instances ------------- -- | Located Class Instance Declaration type LClsInstDecl name = Located (ClsInstDecl name) -- | Class Instance Declaration data ClsInstDecl name = ClsInstDecl { cid_poly_ty :: LHsSigType name -- Context => Class Instance-type -- Using a polytype means that the renamer conveniently -- figures out the quantified type variables for us. , cid_binds :: LHsBinds name -- Class methods , cid_sigs :: [LSig name] -- User-supplied pragmatic info , cid_tyfam_insts :: [LTyFamInstDecl name] -- Type family instances , cid_datafam_insts :: [LDataFamInstDecl name] -- Data family instances , cid_overlap_mode :: Maybe (Located OverlapMode) -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnClose', -- For details on above see note [Api annotations] in ApiAnnotation } -- ^ -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnInstance', -- 'ApiAnnotation.AnnWhere', -- 'ApiAnnotation.AnnOpen','ApiAnnotation.AnnClose', -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId id) => Data (ClsInstDecl id) ----------------- Instances of all kinds ------------- -- | Located Instance Declaration type LInstDecl name = Located (InstDecl name) -- | Instance Declaration data InstDecl name -- Both class and family instances = ClsInstD { cid_inst :: ClsInstDecl name } | DataFamInstD -- data family instance { dfid_inst :: DataFamInstDecl name } | TyFamInstD -- type family instance { tfid_inst :: TyFamInstDecl name } deriving instance (DataId id) => Data (InstDecl id) instance (OutputableBndrId name) => Outputable (TyFamInstDecl name) where ppr = pprTyFamInstDecl TopLevel pprTyFamInstDecl :: (OutputableBndrId name) => TopLevelFlag -> TyFamInstDecl name -> SDoc pprTyFamInstDecl top_lvl (TyFamInstDecl { tfid_eqn = eqn }) = text "type" <+> ppr_instance_keyword top_lvl <+> ppr_fam_inst_eqn eqn ppr_instance_keyword :: TopLevelFlag -> SDoc ppr_instance_keyword TopLevel = text "instance" ppr_instance_keyword NotTopLevel = empty ppr_fam_inst_eqn :: (OutputableBndrId name) => LTyFamInstEqn name -> SDoc ppr_fam_inst_eqn (L _ (TyFamEqn { tfe_tycon = tycon , tfe_pats = pats , tfe_fixity = fixity , tfe_rhs = rhs })) = pp_fam_inst_lhs tycon pats fixity [] <+> equals <+> ppr rhs ppr_fam_deflt_eqn :: (OutputableBndrId name) => LTyFamDefltEqn name -> SDoc ppr_fam_deflt_eqn (L _ (TyFamEqn { tfe_tycon = tycon , tfe_pats = tvs , tfe_fixity = fixity , tfe_rhs = rhs })) = text "type" <+> pp_vanilla_decl_head tycon tvs fixity [] <+> equals <+> ppr rhs instance (OutputableBndrId name) => Outputable (DataFamInstDecl name) where ppr = pprDataFamInstDecl TopLevel pprDataFamInstDecl :: (OutputableBndrId name) => TopLevelFlag -> DataFamInstDecl name -> SDoc pprDataFamInstDecl top_lvl (DataFamInstDecl { dfid_tycon = tycon , dfid_pats = pats , dfid_fixity = fixity , dfid_defn = defn }) = pp_data_defn pp_hdr defn where pp_hdr ctxt = ppr_instance_keyword top_lvl <+> pp_fam_inst_lhs tycon pats fixity ctxt pprDataFamInstFlavour :: DataFamInstDecl name -> SDoc pprDataFamInstFlavour (DataFamInstDecl { dfid_defn = (HsDataDefn { dd_ND = nd }) }) = ppr nd pp_fam_inst_lhs :: (OutputableBndrId name) => Located name -> HsTyPats name -> LexicalFixity -> HsContext name -> SDoc pp_fam_inst_lhs thing (HsIB { hsib_body = typats }) fixity context -- explicit type patterns = hsep [ pprHsContext context, pp_pats typats] where pp_pats (patl:patsr) | fixity == Infix = hsep [pprParendHsType (unLoc patl), pprInfixOcc (unLoc thing) , hsep (map (pprParendHsType.unLoc) patsr)] | otherwise = hsep [ pprPrefixOcc (unLoc thing) , hsep (map (pprParendHsType.unLoc) (patl:patsr))] pp_pats [] = empty instance (OutputableBndrId name) => Outputable (ClsInstDecl name) where ppr (ClsInstDecl { cid_poly_ty = inst_ty, cid_binds = binds , cid_sigs = sigs, cid_tyfam_insts = ats , cid_overlap_mode = mbOverlap , cid_datafam_insts = adts }) | null sigs, null ats, null adts, isEmptyBag binds -- No "where" part = top_matter | otherwise -- Laid out = vcat [ top_matter <+> text "where" , nest 2 $ pprDeclList $ map (pprTyFamInstDecl NotTopLevel . unLoc) ats ++ map (pprDataFamInstDecl NotTopLevel . unLoc) adts ++ pprLHsBindsForUser binds sigs ] where top_matter = text "instance" <+> ppOverlapPragma mbOverlap <+> ppr inst_ty ppDerivStrategy :: Maybe (Located DerivStrategy) -> SDoc ppDerivStrategy mb = case mb of Nothing -> empty Just (L _ ds) -> ppr ds ppOverlapPragma :: Maybe (Located OverlapMode) -> SDoc ppOverlapPragma mb = case mb of Nothing -> empty Just (L _ (NoOverlap s)) -> maybe_stext s "{-# NO_OVERLAP #-}" Just (L _ (Overlappable s)) -> maybe_stext s "{-# OVERLAPPABLE #-}" Just (L _ (Overlapping s)) -> maybe_stext s "{-# OVERLAPPING #-}" Just (L _ (Overlaps s)) -> maybe_stext s "{-# OVERLAPS #-}" Just (L _ (Incoherent s)) -> maybe_stext s "{-# INCOHERENT #-}" where maybe_stext NoSourceText alt = text alt maybe_stext (SourceText src) _ = text src <+> text "#-}" instance (OutputableBndrId name) => Outputable (InstDecl name) where ppr (ClsInstD { cid_inst = decl }) = ppr decl ppr (TyFamInstD { tfid_inst = decl }) = ppr decl ppr (DataFamInstD { dfid_inst = decl }) = ppr decl -- Extract the declarations of associated data types from an instance instDeclDataFamInsts :: [LInstDecl name] -> [DataFamInstDecl name] instDeclDataFamInsts inst_decls = concatMap do_one inst_decls where do_one (L _ (ClsInstD { cid_inst = ClsInstDecl { cid_datafam_insts = fam_insts } })) = map unLoc fam_insts do_one (L _ (DataFamInstD { dfid_inst = fam_inst })) = [fam_inst] do_one (L _ (TyFamInstD {})) = [] {- ************************************************************************ * * \subsection[DerivDecl]{A stand-alone instance deriving declaration} * * ************************************************************************ -} -- | Located Deriving Declaration type LDerivDecl name = Located (DerivDecl name) -- | Deriving Declaration data DerivDecl name = DerivDecl { deriv_type :: LHsSigType name , deriv_strategy :: Maybe (Located DerivStrategy) , deriv_overlap_mode :: Maybe (Located OverlapMode) -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDeriving', -- 'ApiAnnotation.AnnInstance', 'ApiAnnotation.AnnStock', -- 'ApiAnnotation.AnnAnyClass', 'Api.AnnNewtype', -- 'ApiAnnotation.AnnOpen','ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation } deriving instance (DataId name) => Data (DerivDecl name) instance (OutputableBndrId name) => Outputable (DerivDecl name) where ppr (DerivDecl { deriv_type = ty , deriv_strategy = ds , deriv_overlap_mode = o }) = hsep [ text "deriving" , ppDerivStrategy ds , text "instance" , ppOverlapPragma o , ppr ty ] {- ************************************************************************ * * \subsection[DefaultDecl]{A @default@ declaration} * * ************************************************************************ There can only be one default declaration per module, but it is hard for the parser to check that; we pass them all through in the abstract syntax, and that restriction must be checked in the front end. -} -- | Located Default Declaration type LDefaultDecl name = Located (DefaultDecl name) -- | Default Declaration data DefaultDecl name = DefaultDecl [LHsType name] -- ^ - 'ApiAnnotation.AnnKeywordId's : 'ApiAnnotation.AnnDefault', -- 'ApiAnnotation.AnnOpen','ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (DefaultDecl name) instance (OutputableBndrId name) => Outputable (DefaultDecl name) where ppr (DefaultDecl tys) = text "default" <+> parens (interpp'SP tys) {- ************************************************************************ * * \subsection{Foreign function interface declaration} * * ************************************************************************ -} -- foreign declarations are distinguished as to whether they define or use a -- Haskell name -- -- * the Boolean value indicates whether the pre-standard deprecated syntax -- has been used -- | Located Foreign Declaration type LForeignDecl name = Located (ForeignDecl name) -- | Foreign Declaration data ForeignDecl name = ForeignImport { fd_name :: Located name -- defines this name , fd_sig_ty :: LHsSigType name -- sig_ty , fd_co :: PostTc name Coercion -- rep_ty ~ sig_ty , fd_fi :: ForeignImport } | ForeignExport { fd_name :: Located name -- uses this name , fd_sig_ty :: LHsSigType name -- sig_ty , fd_co :: PostTc name Coercion -- rep_ty ~ sig_ty , fd_fe :: ForeignExport } -- ^ -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnForeign', -- 'ApiAnnotation.AnnImport','ApiAnnotation.AnnExport', -- 'ApiAnnotation.AnnDcolon' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (ForeignDecl name) {- In both ForeignImport and ForeignExport: sig_ty is the type given in the Haskell code rep_ty is the representation for this type, i.e. with newtypes coerced away and type functions evaluated. Thus if the declaration is valid, then rep_ty will only use types such as Int and IO that we know how to make foreign calls with. -} noForeignImportCoercionYet :: PlaceHolder noForeignImportCoercionYet = PlaceHolder noForeignExportCoercionYet :: PlaceHolder noForeignExportCoercionYet = PlaceHolder -- Specification Of an imported external entity in dependence on the calling -- convention -- data ForeignImport = -- import of a C entity -- -- * the two strings specifying a header file or library -- may be empty, which indicates the absence of a -- header or object specification (both are not used -- in the case of `CWrapper' and when `CFunction' -- has a dynamic target) -- -- * the calling convention is irrelevant for code -- generation in the case of `CLabel', but is needed -- for pretty printing -- -- * `Safety' is irrelevant for `CLabel' and `CWrapper' -- CImport (Located CCallConv) -- ccall or stdcall (Located Safety) -- interruptible, safe or unsafe (Maybe Header) -- name of C header CImportSpec -- details of the C entity (Located SourceText) -- original source text for -- the C entity deriving Data -- details of an external C entity -- data CImportSpec = CLabel CLabelString -- import address of a C label | CFunction CCallTarget -- static or dynamic function | CWrapper -- wrapper to expose closures -- (former f.e.d.) deriving Data -- specification of an externally exported entity in dependence on the calling -- convention -- data ForeignExport = CExport (Located CExportSpec) -- contains the calling -- convention (Located SourceText) -- original source text for -- the C entity deriving Data -- pretty printing of foreign declarations -- instance (OutputableBndrId name) => Outputable (ForeignDecl name) where ppr (ForeignImport { fd_name = n, fd_sig_ty = ty, fd_fi = fimport }) = hang (text "foreign import" <+> ppr fimport <+> ppr n) 2 (dcolon <+> ppr ty) ppr (ForeignExport { fd_name = n, fd_sig_ty = ty, fd_fe = fexport }) = hang (text "foreign export" <+> ppr fexport <+> ppr n) 2 (dcolon <+> ppr ty) instance Outputable ForeignImport where ppr (CImport cconv safety mHeader spec (L _ srcText)) = ppr cconv <+> ppr safety <+> pprWithSourceText srcText (pprCEntity spec "") where pp_hdr = case mHeader of Nothing -> empty Just (Header _ header) -> ftext header pprCEntity (CLabel lbl) _ = doubleQuotes $ text "static" <+> pp_hdr <+> char '&' <> ppr lbl pprCEntity (CFunction (StaticTarget st _lbl _ isFun)) src = if dqNeeded then doubleQuotes ce else empty where dqNeeded = (take 6 src == "static") || isJust mHeader || not isFun || st /= NoSourceText ce = -- We may need to drop leading spaces first (if take 6 src == "static" then text "static" else empty) <+> pp_hdr <+> (if isFun then empty else text "value") <+> (pprWithSourceText st empty) pprCEntity (CFunction DynamicTarget) _ = doubleQuotes $ text "dynamic" pprCEntity CWrapper _ = doubleQuotes $ text "wrapper" instance Outputable ForeignExport where ppr (CExport (L _ (CExportStatic _ lbl cconv)) _) = ppr cconv <+> char '"' <> ppr lbl <> char '"' {- ************************************************************************ * * \subsection{Transformation rules} * * ************************************************************************ -} -- | Located Rule Declarations type LRuleDecls name = Located (RuleDecls name) -- Note [Pragma source text] in BasicTypes -- | Rule Declarations data RuleDecls name = HsRules { rds_src :: SourceText , rds_rules :: [LRuleDecl name] } deriving instance (DataId name) => Data (RuleDecls name) -- | Located Rule Declaration type LRuleDecl name = Located (RuleDecl name) -- | Rule Declaration data RuleDecl name = HsRule -- Source rule (Located (SourceText,RuleName)) -- Rule name -- Note [Pragma source text] in BasicTypes Activation [LRuleBndr name] -- Forall'd vars; after typechecking this -- includes tyvars (Located (HsExpr name)) -- LHS (PostRn name NameSet) -- Free-vars from the LHS (Located (HsExpr name)) -- RHS (PostRn name NameSet) -- Free-vars from the RHS -- ^ -- - 'ApiAnnotation.AnnKeywordId' : -- 'ApiAnnotation.AnnOpen','ApiAnnotation.AnnTilde', -- 'ApiAnnotation.AnnVal', -- 'ApiAnnotation.AnnClose', -- 'ApiAnnotation.AnnForall','ApiAnnotation.AnnDot', -- 'ApiAnnotation.AnnEqual', -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (RuleDecl name) flattenRuleDecls :: [LRuleDecls name] -> [LRuleDecl name] flattenRuleDecls decls = concatMap (rds_rules . unLoc) decls -- | Located Rule Binder type LRuleBndr name = Located (RuleBndr name) -- | Rule Binder data RuleBndr name = RuleBndr (Located name) | RuleBndrSig (Located name) (LHsSigWcType name) -- ^ -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnDcolon','ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (RuleBndr name) collectRuleBndrSigTys :: [RuleBndr name] -> [LHsSigWcType name] collectRuleBndrSigTys bndrs = [ty | RuleBndrSig _ ty <- bndrs] pprFullRuleName :: Located (SourceText, RuleName) -> SDoc pprFullRuleName (L _ (st, n)) = pprWithSourceText st (doubleQuotes $ ftext n) instance (OutputableBndrId name) => Outputable (RuleDecls name) where ppr (HsRules st rules) = pprWithSourceText st (text "{-# RULES") <+> vcat (punctuate semi (map ppr rules)) <+> text "#-}" instance (OutputableBndrId name) => Outputable (RuleDecl name) where ppr (HsRule name act ns lhs _fv_lhs rhs _fv_rhs) = sep [pprFullRuleName name <+> ppr act, nest 4 (pp_forall <+> pprExpr (unLoc lhs)), nest 6 (equals <+> pprExpr (unLoc rhs)) ] where pp_forall | null ns = empty | otherwise = forAllLit <+> fsep (map ppr ns) <> dot instance (OutputableBndrId name) => Outputable (RuleBndr name) where ppr (RuleBndr name) = ppr name ppr (RuleBndrSig name ty) = parens (ppr name <> dcolon <> ppr ty) {- ************************************************************************ * * \subsection{Vectorisation declarations} * * ************************************************************************ A vectorisation pragma, one of {-# VECTORISE f = closure1 g (scalar_map g) #-} {-# VECTORISE SCALAR f #-} {-# NOVECTORISE f #-} {-# VECTORISE type T = ty #-} {-# VECTORISE SCALAR type T #-} -} -- | Located Vectorise Declaration type LVectDecl name = Located (VectDecl name) -- | Vectorise Declaration data VectDecl name = HsVect SourceText -- Note [Pragma source text] in BasicTypes (Located name) (LHsExpr name) -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnEqual','ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation | HsNoVect SourceText -- Note [Pragma source text] in BasicTypes (Located name) -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation | HsVectTypeIn -- pre type-checking SourceText -- Note [Pragma source text] in BasicTypes Bool -- 'TRUE' => SCALAR declaration (Located name) (Maybe (Located name)) -- 'Nothing' => no right-hand side -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnType','ApiAnnotation.AnnClose', -- 'ApiAnnotation.AnnEqual' -- For details on above see note [Api annotations] in ApiAnnotation | HsVectTypeOut -- post type-checking Bool -- 'TRUE' => SCALAR declaration TyCon (Maybe TyCon) -- 'Nothing' => no right-hand side | HsVectClassIn -- pre type-checking SourceText -- Note [Pragma source text] in BasicTypes (Located name) -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnClass','ApiAnnotation.AnnClose', -- For details on above see note [Api annotations] in ApiAnnotation | HsVectClassOut -- post type-checking Class | HsVectInstIn -- pre type-checking (always SCALAR) !!!FIXME: should be superfluous now (LHsSigType name) | HsVectInstOut -- post type-checking (always SCALAR) !!!FIXME: should be superfluous now ClsInst deriving instance (DataId name) => Data (VectDecl name) lvectDeclName :: NamedThing name => LVectDecl name -> Name lvectDeclName (L _ (HsVect _ (L _ name) _)) = getName name lvectDeclName (L _ (HsNoVect _ (L _ name))) = getName name lvectDeclName (L _ (HsVectTypeIn _ _ (L _ name) _)) = getName name lvectDeclName (L _ (HsVectTypeOut _ tycon _)) = getName tycon lvectDeclName (L _ (HsVectClassIn _ (L _ name))) = getName name lvectDeclName (L _ (HsVectClassOut cls)) = getName cls lvectDeclName (L _ (HsVectInstIn _)) = panic "HsDecls.lvectDeclName: HsVectInstIn" lvectDeclName (L _ (HsVectInstOut _)) = panic "HsDecls.lvectDeclName: HsVectInstOut" lvectInstDecl :: LVectDecl name -> Bool lvectInstDecl (L _ (HsVectInstIn _)) = True lvectInstDecl (L _ (HsVectInstOut _)) = True lvectInstDecl _ = False instance (OutputableBndrId name) => Outputable (VectDecl name) where ppr (HsVect _ v rhs) = sep [text "{-# VECTORISE" <+> ppr v, nest 4 $ pprExpr (unLoc rhs) <+> text "#-}" ] ppr (HsNoVect _ v) = sep [text "{-# NOVECTORISE" <+> ppr v <+> text "#-}" ] ppr (HsVectTypeIn _ False t Nothing) = sep [text "{-# VECTORISE type" <+> ppr t <+> text "#-}" ] ppr (HsVectTypeIn _ False t (Just t')) = sep [text "{-# VECTORISE type" <+> ppr t, text "=", ppr t', text "#-}" ] ppr (HsVectTypeIn _ True t Nothing) = sep [text "{-# VECTORISE SCALAR type" <+> ppr t <+> text "#-}" ] ppr (HsVectTypeIn _ True t (Just t')) = sep [text "{-# VECTORISE SCALAR type" <+> ppr t, text "=", ppr t', text "#-}" ] ppr (HsVectTypeOut False t Nothing) = sep [text "{-# VECTORISE type" <+> ppr t <+> text "#-}" ] ppr (HsVectTypeOut False t (Just t')) = sep [text "{-# VECTORISE type" <+> ppr t, text "=", ppr t', text "#-}" ] ppr (HsVectTypeOut True t Nothing) = sep [text "{-# VECTORISE SCALAR type" <+> ppr t <+> text "#-}" ] ppr (HsVectTypeOut True t (Just t')) = sep [text "{-# VECTORISE SCALAR type" <+> ppr t, text "=", ppr t', text "#-}" ] ppr (HsVectClassIn _ c) = sep [text "{-# VECTORISE class" <+> ppr c <+> text "#-}" ] ppr (HsVectClassOut c) = sep [text "{-# VECTORISE class" <+> ppr c <+> text "#-}" ] ppr (HsVectInstIn ty) = sep [text "{-# VECTORISE SCALAR instance" <+> ppr ty <+> text "#-}" ] ppr (HsVectInstOut i) = sep [text "{-# VECTORISE SCALAR instance" <+> ppr i <+> text "#-}" ] {- ************************************************************************ * * \subsection[DocDecl]{Document comments} * * ************************************************************************ -} -- | Located Documentation comment Declaration type LDocDecl = Located (DocDecl) -- | Documentation comment Declaration data DocDecl = DocCommentNext HsDocString | DocCommentPrev HsDocString | DocCommentNamed String HsDocString | DocGroup Int HsDocString deriving Data -- Okay, I need to reconstruct the document comments, but for now: instance Outputable DocDecl where ppr _ = text "" docDeclDoc :: DocDecl -> HsDocString docDeclDoc (DocCommentNext d) = d docDeclDoc (DocCommentPrev d) = d docDeclDoc (DocCommentNamed _ d) = d docDeclDoc (DocGroup _ d) = d {- ************************************************************************ * * \subsection[DeprecDecl]{Deprecations} * * ************************************************************************ We use exported entities for things to deprecate. -} -- | Located Warning Declarations type LWarnDecls name = Located (WarnDecls name) -- Note [Pragma source text] in BasicTypes -- | Warning pragma Declarations data WarnDecls name = Warnings { wd_src :: SourceText , wd_warnings :: [LWarnDecl name] } deriving Data -- | Located Warning pragma Declaration type LWarnDecl name = Located (WarnDecl name) -- | Warning pragma Declaration data WarnDecl name = Warning [Located name] WarningTxt deriving Data instance OutputableBndr name => Outputable (WarnDecls name) where ppr (Warnings (SourceText src) decls) = text src <+> vcat (punctuate comma (map ppr decls)) <+> text "#-}" ppr (Warnings NoSourceText _decls) = panic "WarnDecls" instance OutputableBndr name => Outputable (WarnDecl name) where ppr (Warning thing txt) = hsep ( punctuate comma (map ppr thing)) <+> ppr txt {- ************************************************************************ * * \subsection[AnnDecl]{Annotations} * * ************************************************************************ -} -- | Located Annotation Declaration type LAnnDecl name = Located (AnnDecl name) -- | Annotation Declaration data AnnDecl name = HsAnnotation SourceText -- Note [Pragma source text] in BasicTypes (AnnProvenance name) (Located (HsExpr name)) -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnType' -- 'ApiAnnotation.AnnModule' -- 'ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId name) => Data (AnnDecl name) instance (OutputableBndrId name) => Outputable (AnnDecl name) where ppr (HsAnnotation _ provenance expr) = hsep [text "{-#", pprAnnProvenance provenance, pprExpr (unLoc expr), text "#-}"] -- | Annotation Provenance data AnnProvenance name = ValueAnnProvenance (Located name) | TypeAnnProvenance (Located name) | ModuleAnnProvenance deriving (Data, Functor) deriving instance Foldable AnnProvenance deriving instance Traversable AnnProvenance annProvenanceName_maybe :: AnnProvenance name -> Maybe name annProvenanceName_maybe (ValueAnnProvenance (L _ name)) = Just name annProvenanceName_maybe (TypeAnnProvenance (L _ name)) = Just name annProvenanceName_maybe ModuleAnnProvenance = Nothing pprAnnProvenance :: OutputableBndr name => AnnProvenance name -> SDoc pprAnnProvenance ModuleAnnProvenance = text "ANN module" pprAnnProvenance (ValueAnnProvenance (L _ name)) = text "ANN" <+> ppr name pprAnnProvenance (TypeAnnProvenance (L _ name)) = text "ANN type" <+> ppr name {- ************************************************************************ * * \subsection[RoleAnnot]{Role annotations} * * ************************************************************************ -} -- | Located Role Annotation Declaration type LRoleAnnotDecl name = Located (RoleAnnotDecl name) -- See #8185 for more info about why role annotations are -- top-level declarations -- | Role Annotation Declaration data RoleAnnotDecl name = RoleAnnotDecl (Located name) -- type constructor [Located (Maybe Role)] -- optional annotations -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnType', -- 'ApiAnnotation.AnnRole' -- For details on above see note [Api annotations] in ApiAnnotation deriving Data instance OutputableBndr name => Outputable (RoleAnnotDecl name) where ppr (RoleAnnotDecl ltycon roles) = text "type role" <+> ppr ltycon <+> hsep (map (pp_role . unLoc) roles) where pp_role Nothing = underscore pp_role (Just r) = ppr r roleAnnotDeclName :: RoleAnnotDecl name -> name roleAnnotDeclName (RoleAnnotDecl (L _ name) _) = name