{- (c) The University of Glasgow 2006-2008 (c) The GRASP/AQUA Project, Glasgow University, 1993-1998 -} {-# LANGUAGE CPP, NondecreasingIndentation #-} -- | Module for constructing @ModIface@ values (interface files), -- writing them to disk and comparing two versions to see if -- recompilation is required. module MkIface ( mkIface, -- Build a ModIface from a ModGuts, -- including computing version information mkIfaceTc, writeIfaceFile, -- Write the interface file checkOldIface, -- See if recompilation is required, by -- comparing version information RecompileRequired(..), recompileRequired, mkIfaceExports, tyThingToIfaceDecl -- Converting things to their Iface equivalents ) where {- ----------------------------------------------- Recompilation checking ----------------------------------------------- A complete description of how recompilation checking works can be found in the wiki commentary: http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance Please read the above page for a top-down description of how this all works. Notes below cover specific issues related to the implementation. Basic idea: * In the mi_usages information in an interface, we record the fingerprint of each free variable of the module * In mkIface, we compute the fingerprint of each exported thing A.f. For each external thing that A.f refers to, we include the fingerprint of the external reference when computing the fingerprint of A.f. So if anything that A.f depends on changes, then A.f's fingerprint will change. Also record any dependent files added with * addDependentFile * #include * -optP-include * In checkOldIface we compare the mi_usages for the module with the actual fingerprint for all each thing recorded in mi_usages -} #include "HsVersions.h" import IfaceSyn import BinFingerprint import LoadIface import ToIface import FlagChecker import DsUsage ( mkUsageInfo, mkUsedNames, mkDependencies ) import Id import Annotations import CoreSyn import Class import TyCon import CoAxiom import ConLike import DataCon import Type import TcType import InstEnv import FamInstEnv import TcRnMonad import HsSyn import HscTypes import Finder import DynFlags import VarEnv import VarSet import Var import Name import Avail import RdrName import NameEnv import NameSet import Module import BinIface import ErrUtils import Digraph import SrcLoc import Outputable import BasicTypes hiding ( SuccessFlag(..) ) import Unique import Util hiding ( eqListBy ) import FastString import Maybes import Binary import Fingerprint import Exception import UniqSet import Packages import Control.Monad import Data.Function import Data.List import qualified Data.Map as Map import Data.Ord import Data.IORef import System.Directory import System.FilePath {- ************************************************************************ * * \subsection{Completing an interface} * * ************************************************************************ -} mkIface :: HscEnv -> Maybe Fingerprint -- The old fingerprint, if we have it -> ModDetails -- The trimmed, tidied interface -> ModGuts -- Usages, deprecations, etc -> IO (ModIface, -- The new one Bool) -- True <=> there was an old Iface, and the -- new one is identical, so no need -- to write it mkIface hsc_env maybe_old_fingerprint mod_details ModGuts{ mg_module = this_mod, mg_hsc_src = hsc_src, mg_usages = usages, mg_used_th = used_th, mg_deps = deps, mg_rdr_env = rdr_env, mg_fix_env = fix_env, mg_warns = warns, mg_hpc_info = hpc_info, mg_safe_haskell = safe_mode, mg_trust_pkg = self_trust } = mkIface_ hsc_env maybe_old_fingerprint this_mod hsc_src used_th deps rdr_env fix_env warns hpc_info self_trust safe_mode usages mod_details -- | make an interface from the results of typechecking only. Useful -- for non-optimising compilation, or where we aren't generating any -- object code at all ('HscNothing'). mkIfaceTc :: HscEnv -> Maybe Fingerprint -- The old fingerprint, if we have it -> SafeHaskellMode -- The safe haskell mode -> ModDetails -- gotten from mkBootModDetails, probably -> TcGblEnv -- Usages, deprecations, etc -> IO (ModIface, Bool) mkIfaceTc hsc_env maybe_old_fingerprint safe_mode mod_details tc_result@TcGblEnv{ tcg_mod = this_mod, tcg_src = hsc_src, tcg_imports = imports, tcg_rdr_env = rdr_env, tcg_fix_env = fix_env, tcg_merged = merged, tcg_warns = warns, tcg_hpc = other_hpc_info, tcg_th_splice_used = tc_splice_used, tcg_dependent_files = dependent_files } = do let used_names = mkUsedNames tc_result deps <- mkDependencies tc_result let hpc_info = emptyHpcInfo other_hpc_info used_th <- readIORef tc_splice_used dep_files <- (readIORef dependent_files) -- Do NOT use semantic module here; this_mod in mkUsageInfo -- is used solely to decide if we should record a dependency -- or not. When we instantiate a signature, the semantic -- module is something we want to record dependencies for, -- but if you pass that in here, we'll decide it's the local -- module and does not need to be recorded as a dependency. -- See Note [Identity versus semantic module] usages <- mkUsageInfo hsc_env this_mod (imp_mods imports) used_names dep_files merged mkIface_ hsc_env maybe_old_fingerprint this_mod hsc_src used_th deps rdr_env fix_env warns hpc_info (imp_trust_own_pkg imports) safe_mode usages mod_details mkIface_ :: HscEnv -> Maybe Fingerprint -> Module -> HscSource -> Bool -> Dependencies -> GlobalRdrEnv -> NameEnv FixItem -> Warnings -> HpcInfo -> Bool -> SafeHaskellMode -> [Usage] -> ModDetails -> IO (ModIface, Bool) mkIface_ hsc_env maybe_old_fingerprint this_mod hsc_src used_th deps rdr_env fix_env src_warns hpc_info pkg_trust_req safe_mode usages ModDetails{ md_insts = insts, md_fam_insts = fam_insts, md_rules = rules, md_anns = anns, md_vect_info = vect_info, md_types = type_env, md_exports = exports, md_complete_sigs = complete_sigs } -- NB: notice that mkIface does not look at the bindings -- only at the TypeEnv. The previous Tidy phase has -- put exactly the info into the TypeEnv that we want -- to expose in the interface = do let semantic_mod = canonicalizeHomeModule (hsc_dflags hsc_env) (moduleName this_mod) entities = typeEnvElts type_env decls = [ tyThingToIfaceDecl entity | entity <- entities, let name = getName entity, not (isImplicitTyThing entity), -- No implicit Ids and class tycons in the interface file not (isWiredInName name), -- Nor wired-in things; the compiler knows about them anyhow nameIsLocalOrFrom semantic_mod name ] -- Sigh: see Note [Root-main Id] in TcRnDriver -- NB: ABSOLUTELY need to check against semantic_mod, -- because all of the names in an hsig p[H=]:H -- are going to be for , not the former id! -- See Note [Identity versus semantic module] fixities = sortBy (comparing fst) [(occ,fix) | FixItem occ fix <- nameEnvElts fix_env] -- The order of fixities returned from nameEnvElts is not -- deterministic, so we sort by OccName to canonicalize it. -- See Note [Deterministic UniqFM] in UniqDFM for more details. warns = src_warns iface_rules = map coreRuleToIfaceRule rules iface_insts = map instanceToIfaceInst $ fixSafeInstances safe_mode insts iface_fam_insts = map famInstToIfaceFamInst fam_insts iface_vect_info = flattenVectInfo vect_info trust_info = setSafeMode safe_mode annotations = map mkIfaceAnnotation anns icomplete_sigs = map mkIfaceCompleteSig complete_sigs intermediate_iface = ModIface { mi_module = this_mod, -- Need to record this because it depends on the -instantiated-with flag -- which could change mi_sig_of = if semantic_mod == this_mod then Nothing else Just semantic_mod, mi_hsc_src = hsc_src, mi_deps = deps, mi_usages = usages, mi_exports = mkIfaceExports exports, -- Sort these lexicographically, so that -- the result is stable across compilations mi_insts = sortBy cmp_inst iface_insts, mi_fam_insts = sortBy cmp_fam_inst iface_fam_insts, mi_rules = sortBy cmp_rule iface_rules, mi_vect_info = iface_vect_info, mi_fixities = fixities, mi_warns = warns, mi_anns = annotations, mi_globals = maybeGlobalRdrEnv rdr_env, -- Left out deliberately: filled in by addFingerprints mi_iface_hash = fingerprint0, mi_mod_hash = fingerprint0, mi_flag_hash = fingerprint0, mi_exp_hash = fingerprint0, mi_used_th = used_th, mi_orphan_hash = fingerprint0, mi_orphan = False, -- Always set by addFingerprints, but -- it's a strict field, so we can't omit it. mi_finsts = False, -- Ditto mi_decls = deliberatelyOmitted "decls", mi_hash_fn = deliberatelyOmitted "hash_fn", mi_hpc = isHpcUsed hpc_info, mi_trust = trust_info, mi_trust_pkg = pkg_trust_req, -- And build the cached values mi_warn_fn = mkIfaceWarnCache warns, mi_fix_fn = mkIfaceFixCache fixities, mi_complete_sigs = icomplete_sigs } (new_iface, no_change_at_all) <- {-# SCC "versioninfo" #-} addFingerprints hsc_env maybe_old_fingerprint intermediate_iface decls -- Debug printing dumpIfSet_dyn dflags Opt_D_dump_hi "FINAL INTERFACE" (pprModIface new_iface) -- bug #1617: on reload we weren't updating the PrintUnqualified -- correctly. This stems from the fact that the interface had -- not changed, so addFingerprints returns the old ModIface -- with the old GlobalRdrEnv (mi_globals). let final_iface = new_iface{ mi_globals = maybeGlobalRdrEnv rdr_env } return (final_iface, no_change_at_all) where cmp_rule = comparing ifRuleName -- Compare these lexicographically by OccName, *not* by unique, -- because the latter is not stable across compilations: cmp_inst = comparing (nameOccName . ifDFun) cmp_fam_inst = comparing (nameOccName . ifFamInstTcName) dflags = hsc_dflags hsc_env -- We only fill in mi_globals if the module was compiled to byte -- code. Otherwise, the compiler may not have retained all the -- top-level bindings and they won't be in the TypeEnv (see -- Desugar.addExportFlagsAndRules). The mi_globals field is used -- by GHCi to decide whether the module has its full top-level -- scope available. (#5534) maybeGlobalRdrEnv :: GlobalRdrEnv -> Maybe GlobalRdrEnv maybeGlobalRdrEnv rdr_env | targetRetainsAllBindings (hscTarget dflags) = Just rdr_env | otherwise = Nothing deliberatelyOmitted :: String -> a deliberatelyOmitted x = panic ("Deliberately omitted: " ++ x) ifFamInstTcName = ifFamInstFam flattenVectInfo (VectInfo { vectInfoVar = vVar , vectInfoTyCon = vTyCon , vectInfoParallelVars = vParallelVars , vectInfoParallelTyCons = vParallelTyCons }) = IfaceVectInfo { ifaceVectInfoVar = [Var.varName v | (v, _ ) <- dVarEnvElts vVar] , ifaceVectInfoTyCon = [tyConName t | (t, t_v) <- nameEnvElts vTyCon, t /= t_v] , ifaceVectInfoTyConReuse = [tyConName t | (t, t_v) <- nameEnvElts vTyCon, t == t_v] , ifaceVectInfoParallelVars = [Var.varName v | v <- dVarSetElems vParallelVars] , ifaceVectInfoParallelTyCons = nameSetElemsStable vParallelTyCons } ----------------------------- writeIfaceFile :: DynFlags -> FilePath -> ModIface -> IO () writeIfaceFile dflags hi_file_path new_iface = do createDirectoryIfMissing True (takeDirectory hi_file_path) writeBinIface dflags hi_file_path new_iface -- ----------------------------------------------------------------------------- -- Look up parents and versions of Names -- This is like a global version of the mi_hash_fn field in each ModIface. -- Given a Name, it finds the ModIface, and then uses mi_hash_fn to get -- the parent and version info. mkHashFun :: HscEnv -- needed to look up versions -> ExternalPackageState -- ditto -> (Name -> IO Fingerprint) mkHashFun hsc_env eps name | isHoleModule orig_mod = lookup (mkModule (thisPackage dflags) (moduleName orig_mod)) | otherwise = lookup orig_mod where dflags = hsc_dflags hsc_env hpt = hsc_HPT hsc_env pit = eps_PIT eps occ = nameOccName name orig_mod = nameModule name lookup mod = do MASSERT2( isExternalName name, ppr name ) iface <- case lookupIfaceByModule dflags hpt pit mod of Just iface -> return iface Nothing -> do -- This can occur when we're writing out ifaces for -- requirements; we didn't do any /real/ typechecking -- so there's no guarantee everything is loaded. -- Kind of a heinous hack. iface <- initIfaceLoad hsc_env . withException $ loadInterface (text "lookupVers2") mod ImportBySystem return iface return $ snd (mi_hash_fn iface occ `orElse` pprPanic "lookupVers1" (ppr mod <+> ppr occ)) -- --------------------------------------------------------------------------- -- Compute fingerprints for the interface {- Note [Fingerprinting IfaceDecls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The general idea here is that we first examine the 'IfaceDecl's and determine the recursive groups of them. We then walk these groups in dependency order, serializing each contained 'IfaceDecl' to a "Binary" buffer which we then hash using MD5 to produce a fingerprint for the group. However, the serialization that we use is a bit funny: we override the @putName@ operation with our own which serializes the hash of a 'Name' instead of the 'Name' itself. This ensures that the fingerprint of a decl changes if anything in its transitive closure changes. This trick is why we must be careful about traversing in dependency order: we need to ensure that we have hashes for everything referenced by the decl which we are fingerprinting. Moreover, we need to be careful to distinguish between serialization of binding Names (e.g. the ifName field of a IfaceDecl) and non-binding (e.g. the ifInstCls field of a IfaceClsInst): only in the non-binding case should we include the fingerprint; in the binding case we shouldn't since it is merely the name of the thing that we are currently fingerprinting. -} -- | Add fingerprints for top-level declarations to a 'ModIface'. -- -- See Note [Fingerprinting IfaceDecls] addFingerprints :: HscEnv -> Maybe Fingerprint -- the old fingerprint, if any -> ModIface -- The new interface (lacking decls) -> [IfaceDecl] -- The new decls -> IO (ModIface, -- Updated interface Bool) -- True <=> no changes at all; -- no need to write Iface addFingerprints hsc_env mb_old_fingerprint iface0 new_decls = do eps <- hscEPS hsc_env let -- The ABI of a declaration represents everything that is made -- visible about the declaration that a client can depend on. -- see IfaceDeclABI below. declABI :: IfaceDecl -> IfaceDeclABI -- TODO: I'm not sure if this should be semantic_mod or this_mod. -- See also Note [Identity versus semantic module] declABI decl = (this_mod, decl, extras) where extras = declExtras fix_fn ann_fn non_orph_rules non_orph_insts non_orph_fis decl edges :: [(IfaceDeclABI, Unique, [Unique])] edges = [ (abi, getUnique (getOccName decl), out) | decl <- new_decls , let abi = declABI decl , let out = localOccs $ freeNamesDeclABI abi ] name_module n = ASSERT2( isExternalName n, ppr n ) nameModule n localOccs = map (getUnique . getParent . getOccName) -- NB: names always use semantic module, so -- filtering must be on the semantic module! -- See Note [Identity versus semantic module] . filter ((== semantic_mod) . name_module) . nonDetEltsUniqSet -- It's OK to use nonDetEltsUFM as localOccs is only -- used to construct the edges and -- stronglyConnCompFromEdgedVertices is deterministic -- even with non-deterministic order of edges as -- explained in Note [Deterministic SCC] in Digraph. where getParent :: OccName -> OccName getParent occ = lookupOccEnv parent_map occ `orElse` occ -- maps OccNames to their parents in the current module. -- e.g. a reference to a constructor must be turned into a reference -- to the TyCon for the purposes of calculating dependencies. parent_map :: OccEnv OccName parent_map = foldl' extend emptyOccEnv new_decls where extend env d = extendOccEnvList env [ (b,n) | b <- ifaceDeclImplicitBndrs d ] where n = getOccName d -- strongly-connected groups of declarations, in dependency order groups :: [SCC IfaceDeclABI] groups = stronglyConnCompFromEdgedVerticesUniq edges global_hash_fn = mkHashFun hsc_env eps -- How to output Names when generating the data to fingerprint. -- Here we want to output the fingerprint for each top-level -- Name, whether it comes from the current module or another -- module. In this way, the fingerprint for a declaration will -- change if the fingerprint for anything it refers to (transitively) -- changes. mk_put_name :: OccEnv (OccName,Fingerprint) -> BinHandle -> Name -> IO () mk_put_name local_env bh name | isWiredInName name = putNameLiterally bh name -- wired-in names don't have fingerprints | otherwise = ASSERT2( isExternalName name, ppr name ) let hash | nameModule name /= semantic_mod = global_hash_fn name -- Get it from the REAL interface!! -- This will trigger when we compile an hsig file -- and we know a backing impl for it. -- See Note [Identity versus semantic module] | semantic_mod /= this_mod , not (isHoleModule semantic_mod) = global_hash_fn name | otherwise = return (snd (lookupOccEnv local_env (getOccName name) `orElse` pprPanic "urk! lookup local fingerprint" (ppr name $$ ppr local_env))) -- This panic indicates that we got the dependency -- analysis wrong, because we needed a fingerprint for -- an entity that wasn't in the environment. To debug -- it, turn the panic into a trace, uncomment the -- pprTraces below, run the compile again, and inspect -- the output and the generated .hi file with -- --show-iface. in hash >>= put_ bh -- take a strongly-connected group of declarations and compute -- its fingerprint. fingerprint_group :: (OccEnv (OccName,Fingerprint), [(Fingerprint,IfaceDecl)]) -> SCC IfaceDeclABI -> IO (OccEnv (OccName,Fingerprint), [(Fingerprint,IfaceDecl)]) fingerprint_group (local_env, decls_w_hashes) (AcyclicSCC abi) = do let hash_fn = mk_put_name local_env decl = abiDecl abi --pprTrace "fingerprinting" (ppr (ifName decl) ) $ do hash <- computeFingerprint hash_fn abi env' <- extend_hash_env local_env (hash,decl) return (env', (hash,decl) : decls_w_hashes) fingerprint_group (local_env, decls_w_hashes) (CyclicSCC abis) = do let decls = map abiDecl abis local_env1 <- foldM extend_hash_env local_env (zip (repeat fingerprint0) decls) let hash_fn = mk_put_name local_env1 -- pprTrace "fingerprinting" (ppr (map ifName decls) ) $ do let stable_abis = sortBy cmp_abiNames abis -- put the cycle in a canonical order hash <- computeFingerprint hash_fn stable_abis let pairs = zip (repeat hash) decls local_env2 <- foldM extend_hash_env local_env pairs return (local_env2, pairs ++ decls_w_hashes) -- we have fingerprinted the whole declaration, but we now need -- to assign fingerprints to all the OccNames that it binds, to -- use when referencing those OccNames in later declarations. -- extend_hash_env :: OccEnv (OccName,Fingerprint) -> (Fingerprint,IfaceDecl) -> IO (OccEnv (OccName,Fingerprint)) extend_hash_env env0 (hash,d) = do return (foldr (\(b,fp) env -> extendOccEnv env b (b,fp)) env0 (ifaceDeclFingerprints hash d)) -- (local_env, decls_w_hashes) <- foldM fingerprint_group (emptyOccEnv, []) groups -- when calculating fingerprints, we always need to use canonical -- ordering for lists of things. In particular, the mi_deps has various -- lists of modules and suchlike, so put these all in canonical order: let sorted_deps = sortDependencies (mi_deps iface0) -- The export hash of a module depends on the orphan hashes of the -- orphan modules below us in the dependency tree. This is the way -- that changes in orphans get propagated all the way up the -- dependency tree. -- -- Note [A bad dep_orphs optimization] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- In a previous version of this code, we filtered out orphan modules which -- were not from the home package, justifying it by saying that "we'd -- pick up the ABI hashes of the external module instead". This is wrong. -- Suppose that we have: -- -- module External where -- instance Show (a -> b) -- -- module Home1 where -- import External -- -- module Home2 where -- import Home1 -- -- The export hash of Home1 needs to reflect the orphan instances of -- External. It's true that Home1 will get rebuilt if the orphans -- of External, but we also need to make sure Home2 gets rebuilt -- as well. See #12733 for more details. let orph_mods = filter (/= this_mod) -- Note [Do not update EPS with your own hi-boot] $ dep_orphs sorted_deps dep_orphan_hashes <- getOrphanHashes hsc_env orph_mods -- Note [Do not update EPS with your own hi-boot] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- (See also Trac #10182). When your hs-boot file includes an orphan -- instance declaration, you may find that the dep_orphs of a module you -- import contains reference to yourself. DO NOT actually load this module -- or add it to the orphan hashes: you're going to provide the orphan -- instances yourself, no need to consult hs-boot; if you do load the -- interface into EPS, you will see a duplicate orphan instance. orphan_hash <- computeFingerprint (mk_put_name local_env) (map ifDFun orph_insts, orph_rules, orph_fis) -- the export list hash doesn't depend on the fingerprints of -- the Names it mentions, only the Names themselves, hence putNameLiterally. export_hash <- computeFingerprint putNameLiterally (mi_exports iface0, orphan_hash, dep_orphan_hashes, dep_pkgs (mi_deps iface0), -- See Note [Export hash depends on non-orphan family instances] dep_finsts (mi_deps iface0), -- dep_pkgs: see "Package Version Changes" on -- wiki/Commentary/Compiler/RecompilationAvoidance mi_trust iface0) -- Make sure change of Safe Haskell mode causes recomp. -- Note [Export hash depends on non-orphan family instances] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Suppose we have: -- -- module A where -- type instance F Int = Bool -- -- module B where -- import A -- -- module C where -- import B -- -- The family instance consistency check for C depends on the dep_finsts of -- B. If we rename module A to A2, when the dep_finsts of B changes, we need -- to make sure that C gets rebuilt. Effectively, the dep_finsts are part of -- the exports of B, because C always considers them when checking -- consistency. -- -- A full discussion is in #12723. -- -- We do NOT need to hash dep_orphs, because this is implied by -- dep_orphan_hashes, and we do not need to hash ordinary class instances, -- because there is no eager consistency check as there is with type families -- (also we didn't store it anywhere!) -- -- put the declarations in a canonical order, sorted by OccName let sorted_decls = Map.elems $ Map.fromList $ [(getOccName d, e) | e@(_, d) <- decls_w_hashes] -- the flag hash depends on: -- - (some of) dflags -- it returns two hashes, one that shouldn't change -- the abi hash and one that should flag_hash <- fingerprintDynFlags dflags this_mod putNameLiterally -- the ABI hash depends on: -- - decls -- - export list -- - orphans -- - deprecations -- - vect info -- - flag abi hash mod_hash <- computeFingerprint putNameLiterally (map fst sorted_decls, export_hash, -- includes orphan_hash mi_warns iface0, mi_vect_info iface0) -- The interface hash depends on: -- - the ABI hash, plus -- - the module level annotations, -- - usages -- - deps (home and external packages, dependent files) -- - hpc iface_hash <- computeFingerprint putNameLiterally (mod_hash, ann_fn (mkVarOcc "module"), -- See mkIfaceAnnCache mi_usages iface0, sorted_deps, mi_hpc iface0) let no_change_at_all = Just iface_hash == mb_old_fingerprint final_iface = iface0 { mi_mod_hash = mod_hash, mi_iface_hash = iface_hash, mi_exp_hash = export_hash, mi_orphan_hash = orphan_hash, mi_flag_hash = flag_hash, mi_orphan = not ( all ifRuleAuto orph_rules -- See Note [Orphans and auto-generated rules] && null orph_insts && null orph_fis && isNoIfaceVectInfo (mi_vect_info iface0)), mi_finsts = not . null $ mi_fam_insts iface0, mi_decls = sorted_decls, mi_hash_fn = lookupOccEnv local_env } -- return (final_iface, no_change_at_all) where this_mod = mi_module iface0 semantic_mod = mi_semantic_module iface0 dflags = hsc_dflags hsc_env (non_orph_insts, orph_insts) = mkOrphMap ifInstOrph (mi_insts iface0) (non_orph_rules, orph_rules) = mkOrphMap ifRuleOrph (mi_rules iface0) (non_orph_fis, orph_fis) = mkOrphMap ifFamInstOrph (mi_fam_insts iface0) fix_fn = mi_fix_fn iface0 ann_fn = mkIfaceAnnCache (mi_anns iface0) -- | Retrieve the orphan hashes 'mi_orphan_hash' for a list of modules -- (in particular, the orphan modules which are transitively imported by the -- current module). -- -- Q: Why do we need the hash at all, doesn't the list of transitively -- imported orphan modules suffice? -- -- A: If one of our transitive imports adds a new orphan instance, our -- export hash must change so that modules which import us rebuild. If we just -- hashed the [Module], the hash would not change even when a new instance was -- added to a module that already had an orphan instance. -- -- Q: Why don't we just hash the orphan hashes of our direct dependencies? -- Why the full transitive closure? -- -- A: Suppose we have these modules: -- -- module A where -- instance Show (a -> b) where -- module B where -- import A -- ** -- module C where -- import A -- import B -- -- Whether or not we add or remove the import to A in B affects the -- orphan hash of B. But it shouldn't really affect the orphan hash -- of C. If we hashed only direct dependencies, there would be no -- way to tell that the net effect was a wash, and we'd be forced -- to recompile C and everything else. getOrphanHashes :: HscEnv -> [Module] -> IO [Fingerprint] getOrphanHashes hsc_env mods = do eps <- hscEPS hsc_env let hpt = hsc_HPT hsc_env pit = eps_PIT eps dflags = hsc_dflags hsc_env get_orph_hash mod = case lookupIfaceByModule dflags hpt pit mod of Just iface -> return (mi_orphan_hash iface) Nothing -> do -- similar to 'mkHashFun' iface <- initIfaceLoad hsc_env . withException $ loadInterface (text "getOrphanHashes") mod ImportBySystem return (mi_orphan_hash iface) -- mapM get_orph_hash mods sortDependencies :: Dependencies -> Dependencies sortDependencies d = Deps { dep_mods = sortBy (compare `on` (moduleNameFS.fst)) (dep_mods d), dep_pkgs = sortBy (compare `on` fst) (dep_pkgs d), dep_orphs = sortBy stableModuleCmp (dep_orphs d), dep_finsts = sortBy stableModuleCmp (dep_finsts d) } -- | Creates cached lookup for the 'mi_anns' field of ModIface -- Hackily, we use "module" as the OccName for any module-level annotations mkIfaceAnnCache :: [IfaceAnnotation] -> OccName -> [AnnPayload] mkIfaceAnnCache anns = \n -> lookupOccEnv env n `orElse` [] where pair (IfaceAnnotation target value) = (case target of NamedTarget occn -> occn ModuleTarget _ -> mkVarOcc "module" , [value]) -- flipping (++), so the first argument is always short env = mkOccEnv_C (flip (++)) (map pair anns) {- ************************************************************************ * * The ABI of an IfaceDecl * * ************************************************************************ Note [The ABI of an IfaceDecl] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ABI of a declaration consists of: (a) the full name of the identifier (inc. module and package, because these are used to construct the symbol name by which the identifier is known externally). (b) the declaration itself, as exposed to clients. That is, the definition of an Id is included in the fingerprint only if it is made available as an unfolding in the interface. (c) the fixity of the identifier (if it exists) (d) for Ids: rules (e) for classes: instances, fixity & rules for methods (f) for datatypes: instances, fixity & rules for constrs Items (c)-(f) are not stored in the IfaceDecl, but instead appear elsewhere in the interface file. But they are *fingerprinted* with the declaration itself. This is done by grouping (c)-(f) in IfaceDeclExtras, and fingerprinting that as part of the declaration. -} type IfaceDeclABI = (Module, IfaceDecl, IfaceDeclExtras) data IfaceDeclExtras = IfaceIdExtras IfaceIdExtras | IfaceDataExtras (Maybe Fixity) -- Fixity of the tycon itself (if it exists) [IfaceInstABI] -- Local class and family instances of this tycon -- See Note [Orphans] in InstEnv [AnnPayload] -- Annotations of the type itself [IfaceIdExtras] -- For each constructor: fixity, RULES and annotations | IfaceClassExtras (Maybe Fixity) -- Fixity of the class itself (if it exists) [IfaceInstABI] -- Local instances of this class *or* -- of its associated data types -- See Note [Orphans] in InstEnv [AnnPayload] -- Annotations of the type itself [IfaceIdExtras] -- For each class method: fixity, RULES and annotations | IfaceSynonymExtras (Maybe Fixity) [AnnPayload] | IfaceFamilyExtras (Maybe Fixity) [IfaceInstABI] [AnnPayload] | IfaceOtherDeclExtras data IfaceIdExtras = IdExtras (Maybe Fixity) -- Fixity of the Id (if it exists) [IfaceRule] -- Rules for the Id [AnnPayload] -- Annotations for the Id -- When hashing a class or family instance, we hash only the -- DFunId or CoAxiom, because that depends on all the -- information about the instance. -- type IfaceInstABI = IfExtName -- Name of DFunId or CoAxiom that is evidence for the instance abiDecl :: IfaceDeclABI -> IfaceDecl abiDecl (_, decl, _) = decl cmp_abiNames :: IfaceDeclABI -> IfaceDeclABI -> Ordering cmp_abiNames abi1 abi2 = getOccName (abiDecl abi1) `compare` getOccName (abiDecl abi2) freeNamesDeclABI :: IfaceDeclABI -> NameSet freeNamesDeclABI (_mod, decl, extras) = freeNamesIfDecl decl `unionNameSet` freeNamesDeclExtras extras freeNamesDeclExtras :: IfaceDeclExtras -> NameSet freeNamesDeclExtras (IfaceIdExtras id_extras) = freeNamesIdExtras id_extras freeNamesDeclExtras (IfaceDataExtras _ insts _ subs) = unionNameSets (mkNameSet insts : map freeNamesIdExtras subs) freeNamesDeclExtras (IfaceClassExtras _ insts _ subs) = unionNameSets (mkNameSet insts : map freeNamesIdExtras subs) freeNamesDeclExtras (IfaceSynonymExtras _ _) = emptyNameSet freeNamesDeclExtras (IfaceFamilyExtras _ insts _) = mkNameSet insts freeNamesDeclExtras IfaceOtherDeclExtras = emptyNameSet freeNamesIdExtras :: IfaceIdExtras -> NameSet freeNamesIdExtras (IdExtras _ rules _) = unionNameSets (map freeNamesIfRule rules) instance Outputable IfaceDeclExtras where ppr IfaceOtherDeclExtras = Outputable.empty ppr (IfaceIdExtras extras) = ppr_id_extras extras ppr (IfaceSynonymExtras fix anns) = vcat [ppr fix, ppr anns] ppr (IfaceFamilyExtras fix finsts anns) = vcat [ppr fix, ppr finsts, ppr anns] ppr (IfaceDataExtras fix insts anns stuff) = vcat [ppr fix, ppr_insts insts, ppr anns, ppr_id_extras_s stuff] ppr (IfaceClassExtras fix insts anns stuff) = vcat [ppr fix, ppr_insts insts, ppr anns, ppr_id_extras_s stuff] ppr_insts :: [IfaceInstABI] -> SDoc ppr_insts _ = text "" ppr_id_extras_s :: [IfaceIdExtras] -> SDoc ppr_id_extras_s stuff = vcat (map ppr_id_extras stuff) ppr_id_extras :: IfaceIdExtras -> SDoc ppr_id_extras (IdExtras fix rules anns) = ppr fix $$ vcat (map ppr rules) $$ vcat (map ppr anns) -- This instance is used only to compute fingerprints instance Binary IfaceDeclExtras where get _bh = panic "no get for IfaceDeclExtras" put_ bh (IfaceIdExtras extras) = do putByte bh 1; put_ bh extras put_ bh (IfaceDataExtras fix insts anns cons) = do putByte bh 2; put_ bh fix; put_ bh insts; put_ bh anns; put_ bh cons put_ bh (IfaceClassExtras fix insts anns methods) = do putByte bh 3; put_ bh fix; put_ bh insts; put_ bh anns; put_ bh methods put_ bh (IfaceSynonymExtras fix anns) = do putByte bh 4; put_ bh fix; put_ bh anns put_ bh (IfaceFamilyExtras fix finsts anns) = do putByte bh 5; put_ bh fix; put_ bh finsts; put_ bh anns put_ bh IfaceOtherDeclExtras = putByte bh 6 instance Binary IfaceIdExtras where get _bh = panic "no get for IfaceIdExtras" put_ bh (IdExtras fix rules anns)= do { put_ bh fix; put_ bh rules; put_ bh anns } declExtras :: (OccName -> Maybe Fixity) -> (OccName -> [AnnPayload]) -> OccEnv [IfaceRule] -> OccEnv [IfaceClsInst] -> OccEnv [IfaceFamInst] -> IfaceDecl -> IfaceDeclExtras declExtras fix_fn ann_fn rule_env inst_env fi_env decl = case decl of IfaceId{} -> IfaceIdExtras (id_extras n) IfaceData{ifCons=cons} -> IfaceDataExtras (fix_fn n) (map ifFamInstAxiom (lookupOccEnvL fi_env n) ++ map ifDFun (lookupOccEnvL inst_env n)) (ann_fn n) (map (id_extras . occName . ifConName) (visibleIfConDecls cons)) IfaceClass{ifBody = IfConcreteClass { ifSigs=sigs, ifATs=ats }} -> IfaceClassExtras (fix_fn n) (map ifDFun $ (concatMap at_extras ats) ++ lookupOccEnvL inst_env n) -- Include instances of the associated types -- as well as instances of the class (Trac #5147) (ann_fn n) [id_extras (getOccName op) | IfaceClassOp op _ _ <- sigs] IfaceSynonym{} -> IfaceSynonymExtras (fix_fn n) (ann_fn n) IfaceFamily{} -> IfaceFamilyExtras (fix_fn n) (map ifFamInstAxiom (lookupOccEnvL fi_env n)) (ann_fn n) _other -> IfaceOtherDeclExtras where n = getOccName decl id_extras occ = IdExtras (fix_fn occ) (lookupOccEnvL rule_env occ) (ann_fn occ) at_extras (IfaceAT decl _) = lookupOccEnvL inst_env (getOccName decl) lookupOccEnvL :: OccEnv [v] -> OccName -> [v] lookupOccEnvL env k = lookupOccEnv env k `orElse` [] {- -- for testing: use the md5sum command to generate fingerprints and -- compare the results against our built-in version. fp' <- oldMD5 dflags bh if fp /= fp' then pprPanic "computeFingerprint" (ppr fp <+> ppr fp') else return fp oldMD5 dflags bh = do tmp <- newTempName dflags "bin" writeBinMem bh tmp tmp2 <- newTempName dflags "md5" let cmd = "md5sum " ++ tmp ++ " >" ++ tmp2 r <- system cmd case r of ExitFailure _ -> throwGhcExceptionIO (PhaseFailed cmd r) ExitSuccess -> do hash_str <- readFile tmp2 return $! readHexFingerprint hash_str -} ---------------------- -- mkOrphMap partitions instance decls or rules into -- (a) an OccEnv for ones that are not orphans, -- mapping the local OccName to a list of its decls -- (b) a list of orphan decls mkOrphMap :: (decl -> IsOrphan) -- Extract orphan status from decl -> [decl] -- Sorted into canonical order -> (OccEnv [decl], -- Non-orphan decls associated with their key; -- each sublist in canonical order [decl]) -- Orphan decls; in canonical order mkOrphMap get_key decls = foldl go (emptyOccEnv, []) decls where go (non_orphs, orphs) d | NotOrphan occ <- get_key d = (extendOccEnv_Acc (:) singleton non_orphs occ d, orphs) | otherwise = (non_orphs, d:orphs) {- ************************************************************************ * * COMPLETE Pragmas * * ************************************************************************ -} mkIfaceCompleteSig :: CompleteMatch -> IfaceCompleteMatch mkIfaceCompleteSig (CompleteMatch cls tc) = IfaceCompleteMatch cls tc {- ************************************************************************ * * Keeping track of what we've slurped, and fingerprints * * ************************************************************************ -} mkIfaceAnnotation :: Annotation -> IfaceAnnotation mkIfaceAnnotation (Annotation { ann_target = target, ann_value = payload }) = IfaceAnnotation { ifAnnotatedTarget = fmap nameOccName target, ifAnnotatedValue = payload } mkIfaceExports :: [AvailInfo] -> [IfaceExport] -- Sort to make canonical mkIfaceExports exports = sortBy stableAvailCmp (map sort_subs exports) where sort_subs :: AvailInfo -> AvailInfo sort_subs (Avail n) = Avail n sort_subs (AvailTC n [] fs) = AvailTC n [] (sort_flds fs) sort_subs (AvailTC n (m:ms) fs) | n==m = AvailTC n (m:sortBy stableNameCmp ms) (sort_flds fs) | otherwise = AvailTC n (sortBy stableNameCmp (m:ms)) (sort_flds fs) -- Maintain the AvailTC Invariant sort_flds = sortBy (stableNameCmp `on` flSelector) {- Note [Original module] ~~~~~~~~~~~~~~~~~~~~~ Consider this: module X where { data family T } module Y( T(..) ) where { import X; data instance T Int = MkT Int } The exported Avail from Y will look like X.T{X.T, Y.MkT} That is, in Y, - only MkT is brought into scope by the data instance; - but the parent (used for grouping and naming in T(..) exports) is X.T - and in this case we export X.T too In the result of MkIfaceExports, the names are grouped by defining module, so we may need to split up a single Avail into multiple ones. Note [Internal used_names] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Most of the used_names are External Names, but we can have Internal Names too: see Note [Binders in Template Haskell] in Convert, and Trac #5362 for an example. Such Names are always - Such Names are always for locally-defined things, for which we don't gather usage info, so we can just ignore them in ent_map - They are always System Names, hence the assert, just as a double check. ************************************************************************ * * Load the old interface file for this module (unless we have it already), and check whether it is up to date * * ************************************************************************ -} data RecompileRequired = UpToDate -- ^ everything is up to date, recompilation is not required | MustCompile -- ^ The .hs file has been touched, or the .o/.hi file does not exist | RecompBecause String -- ^ The .o/.hi files are up to date, but something else has changed -- to force recompilation; the String says what (one-line summary) deriving Eq recompileRequired :: RecompileRequired -> Bool recompileRequired UpToDate = False recompileRequired _ = True -- | Top level function to check if the version of an old interface file -- is equivalent to the current source file the user asked us to compile. -- If the same, we can avoid recompilation. We return a tuple where the -- first element is a bool saying if we should recompile the object file -- and the second is maybe the interface file, where Nothng means to -- rebuild the interface file not use the exisitng one. checkOldIface :: HscEnv -> ModSummary -> SourceModified -> Maybe ModIface -- Old interface from compilation manager, if any -> IO (RecompileRequired, Maybe ModIface) checkOldIface hsc_env mod_summary source_modified maybe_iface = do let dflags = hsc_dflags hsc_env showPass dflags $ "Checking old interface for " ++ (showPpr dflags $ ms_mod mod_summary) ++ " (use -ddump-hi-diffs for more details)" initIfaceCheck (text "checkOldIface") hsc_env $ check_old_iface hsc_env mod_summary source_modified maybe_iface check_old_iface :: HscEnv -> ModSummary -> SourceModified -> Maybe ModIface -> IfG (RecompileRequired, Maybe ModIface) check_old_iface hsc_env mod_summary src_modified maybe_iface = let dflags = hsc_dflags hsc_env getIface = case maybe_iface of Just _ -> do traceIf (text "We already have the old interface for" <+> ppr (ms_mod mod_summary)) return maybe_iface Nothing -> loadIface loadIface = do let iface_path = msHiFilePath mod_summary read_result <- readIface (ms_mod mod_summary) iface_path case read_result of Failed err -> do traceIf (text "FYI: cannot read old interface file:" $$ nest 4 err) traceHiDiffs (text "Old interface file was invalid:" $$ nest 4 err) return Nothing Succeeded iface -> do traceIf (text "Read the interface file" <+> text iface_path) return $ Just iface src_changed | gopt Opt_ForceRecomp (hsc_dflags hsc_env) = True | SourceModified <- src_modified = True | otherwise = False in do when src_changed $ traceHiDiffs (nest 4 $ text "Source file changed or recompilation check turned off") case src_changed of -- If the source has changed and we're in interactive mode, -- avoid reading an interface; just return the one we might -- have been supplied with. True | not (isObjectTarget $ hscTarget dflags) -> return (MustCompile, maybe_iface) -- Try and read the old interface for the current module -- from the .hi file left from the last time we compiled it True -> do maybe_iface' <- getIface return (MustCompile, maybe_iface') False -> do maybe_iface' <- getIface case maybe_iface' of -- We can't retrieve the iface Nothing -> return (MustCompile, Nothing) -- We have got the old iface; check its versions -- even in the SourceUnmodifiedAndStable case we -- should check versions because some packages -- might have changed or gone away. Just iface -> checkVersions hsc_env mod_summary iface -- | Check if a module is still the same 'version'. -- -- This function is called in the recompilation checker after we have -- determined that the module M being checked hasn't had any changes -- to its source file since we last compiled M. So at this point in general -- two things may have changed that mean we should recompile M: -- * The interface export by a dependency of M has changed. -- * The compiler flags specified this time for M have changed -- in a manner that is significant for recompilation. -- We return not just if we should recompile the object file but also -- if we should rebuild the interface file. checkVersions :: HscEnv -> ModSummary -> ModIface -- Old interface -> IfG (RecompileRequired, Maybe ModIface) checkVersions hsc_env mod_summary iface = do { traceHiDiffs (text "Considering whether compilation is required for" <+> ppr (mi_module iface) <> colon) -- readIface will have verified that the InstalledUnitId matches, -- but we ALSO must make sure the instantiation matches up. See -- test case bkpcabal04! ; if moduleUnitId (mi_module iface) /= thisPackage (hsc_dflags hsc_env) then return (RecompBecause "-this-unit-id changed", Nothing) else do { ; recomp <- checkFlagHash hsc_env iface ; if recompileRequired recomp then return (recomp, Nothing) else do { ; recomp <- checkMergedSignatures mod_summary iface ; if recompileRequired recomp then return (recomp, Nothing) else do { ; recomp <- checkHsig mod_summary iface ; if recompileRequired recomp then return (recomp, Nothing) else do { ; recomp <- checkDependencies hsc_env mod_summary iface ; if recompileRequired recomp then return (recomp, Just iface) else do { -- Source code unchanged and no errors yet... carry on -- -- First put the dependent-module info, read from the old -- interface, into the envt, so that when we look for -- interfaces we look for the right one (.hi or .hi-boot) -- -- It's just temporary because either the usage check will succeed -- (in which case we are done with this module) or it'll fail (in which -- case we'll compile the module from scratch anyhow). -- -- We do this regardless of compilation mode, although in --make mode -- all the dependent modules should be in the HPT already, so it's -- quite redundant ; updateEps_ $ \eps -> eps { eps_is_boot = mod_deps } ; recomp <- checkList [checkModUsage this_pkg u | u <- mi_usages iface] ; return (recomp, Just iface) }}}}}} where this_pkg = thisPackage (hsc_dflags hsc_env) -- This is a bit of a hack really mod_deps :: ModuleNameEnv (ModuleName, IsBootInterface) mod_deps = mkModDeps (dep_mods (mi_deps iface)) -- | Check if an hsig file needs recompilation because its -- implementing module has changed. checkHsig :: ModSummary -> ModIface -> IfG RecompileRequired checkHsig mod_summary iface = do dflags <- getDynFlags let outer_mod = ms_mod mod_summary inner_mod = canonicalizeHomeModule dflags (moduleName outer_mod) MASSERT( moduleUnitId outer_mod == thisPackage dflags ) case inner_mod == mi_semantic_module iface of True -> up_to_date (text "implementing module unchanged") False -> return (RecompBecause "implementing module changed") -- | Check the flags haven't changed checkFlagHash :: HscEnv -> ModIface -> IfG RecompileRequired checkFlagHash hsc_env iface = do let old_hash = mi_flag_hash iface new_hash <- liftIO $ fingerprintDynFlags (hsc_dflags hsc_env) (mi_module iface) putNameLiterally case old_hash == new_hash of True -> up_to_date (text "Module flags unchanged") False -> out_of_date_hash "flags changed" (text " Module flags have changed") old_hash new_hash -- Check that the set of signatures we are merging in match. -- If the -unit-id flags change, this can change too. checkMergedSignatures :: ModSummary -> ModIface -> IfG RecompileRequired checkMergedSignatures mod_summary iface = do dflags <- getDynFlags let old_merged = sort [ mod | UsageMergedRequirement{ usg_mod = mod } <- mi_usages iface ] new_merged = case Map.lookup (ms_mod_name mod_summary) (requirementContext (pkgState dflags)) of Nothing -> [] Just r -> sort $ map (indefModuleToModule dflags) r if old_merged == new_merged then up_to_date (text "signatures to merge in unchanged" $$ ppr new_merged) else return (RecompBecause "signatures to merge in changed") -- If the direct imports of this module are resolved to targets that -- are not among the dependencies of the previous interface file, -- then we definitely need to recompile. This catches cases like -- - an exposed package has been upgraded -- - we are compiling with different package flags -- - a home module that was shadowing a package module has been removed -- - a new home module has been added that shadows a package module -- See bug #1372. -- -- Returns (RecompBecause ) if recompilation is required. checkDependencies :: HscEnv -> ModSummary -> ModIface -> IfG RecompileRequired checkDependencies hsc_env summary iface = checkList (map dep_missing (ms_imps summary ++ ms_srcimps summary)) where prev_dep_mods = dep_mods (mi_deps iface) prev_dep_pkgs = dep_pkgs (mi_deps iface) this_pkg = thisPackage (hsc_dflags hsc_env) dep_missing (mb_pkg, L _ mod) = do find_res <- liftIO $ findImportedModule hsc_env mod (mb_pkg) let reason = moduleNameString mod ++ " changed" case find_res of Found _ mod | pkg == this_pkg -> if moduleName mod `notElem` map fst prev_dep_mods then do traceHiDiffs $ text "imported module " <> quotes (ppr mod) <> text " not among previous dependencies" return (RecompBecause reason) else return UpToDate | otherwise -> if toInstalledUnitId pkg `notElem` (map fst prev_dep_pkgs) then do traceHiDiffs $ text "imported module " <> quotes (ppr mod) <> text " is from package " <> quotes (ppr pkg) <> text ", which is not among previous dependencies" return (RecompBecause reason) else return UpToDate where pkg = moduleUnitId mod _otherwise -> return (RecompBecause reason) needInterface :: Module -> (ModIface -> IfG RecompileRequired) -> IfG RecompileRequired needInterface mod continue = do -- Load the imported interface if possible let doc_str = sep [text "need version info for", ppr mod] traceHiDiffs (text "Checking usages for module" <+> ppr mod) mb_iface <- loadInterface doc_str mod ImportBySystem -- Load the interface, but don't complain on failure; -- Instead, get an Either back which we can test case mb_iface of Failed _ -> do traceHiDiffs (sep [text "Couldn't load interface for module", ppr mod]) return MustCompile -- Couldn't find or parse a module mentioned in the -- old interface file. Don't complain: it might -- just be that the current module doesn't need that -- import and it's been deleted Succeeded iface -> continue iface -- | Given the usage information extracted from the old -- M.hi file for the module being compiled, figure out -- whether M needs to be recompiled. checkModUsage :: UnitId -> Usage -> IfG RecompileRequired checkModUsage _this_pkg UsagePackageModule{ usg_mod = mod, usg_mod_hash = old_mod_hash } = needInterface mod $ \iface -> do let reason = moduleNameString (moduleName mod) ++ " changed" checkModuleFingerprint reason old_mod_hash (mi_mod_hash iface) -- We only track the ABI hash of package modules, rather than -- individual entity usages, so if the ABI hash changes we must -- recompile. This is safe but may entail more recompilation when -- a dependent package has changed. checkModUsage _ UsageMergedRequirement{ usg_mod = mod, usg_mod_hash = old_mod_hash } = needInterface mod $ \iface -> do let reason = moduleNameString (moduleName mod) ++ " changed (raw)" checkModuleFingerprint reason old_mod_hash (mi_mod_hash iface) checkModUsage this_pkg UsageHomeModule{ usg_mod_name = mod_name, usg_mod_hash = old_mod_hash, usg_exports = maybe_old_export_hash, usg_entities = old_decl_hash } = do let mod = mkModule this_pkg mod_name needInterface mod $ \iface -> do let new_mod_hash = mi_mod_hash iface new_decl_hash = mi_hash_fn iface new_export_hash = mi_exp_hash iface reason = moduleNameString mod_name ++ " changed" -- CHECK MODULE recompile <- checkModuleFingerprint reason old_mod_hash new_mod_hash if not (recompileRequired recompile) then return UpToDate else do -- CHECK EXPORT LIST checkMaybeHash reason maybe_old_export_hash new_export_hash (text " Export list changed") $ do -- CHECK ITEMS ONE BY ONE recompile <- checkList [ checkEntityUsage reason new_decl_hash u | u <- old_decl_hash] if recompileRequired recompile then return recompile -- This one failed, so just bail out now else up_to_date (text " Great! The bits I use are up to date") checkModUsage _this_pkg UsageFile{ usg_file_path = file, usg_file_hash = old_hash } = liftIO $ handleIO handle $ do new_hash <- getFileHash file if (old_hash /= new_hash) then return recomp else return UpToDate where recomp = RecompBecause (file ++ " changed") handle = #ifdef DEBUG \e -> pprTrace "UsageFile" (text (show e)) $ return recomp #else \_ -> return recomp -- if we can't find the file, just recompile, don't fail #endif ------------------------ checkModuleFingerprint :: String -> Fingerprint -> Fingerprint -> IfG RecompileRequired checkModuleFingerprint reason old_mod_hash new_mod_hash | new_mod_hash == old_mod_hash = up_to_date (text "Module fingerprint unchanged") | otherwise = out_of_date_hash reason (text " Module fingerprint has changed") old_mod_hash new_mod_hash ------------------------ checkMaybeHash :: String -> Maybe Fingerprint -> Fingerprint -> SDoc -> IfG RecompileRequired -> IfG RecompileRequired checkMaybeHash reason maybe_old_hash new_hash doc continue | Just hash <- maybe_old_hash, hash /= new_hash = out_of_date_hash reason doc hash new_hash | otherwise = continue ------------------------ checkEntityUsage :: String -> (OccName -> Maybe (OccName, Fingerprint)) -> (OccName, Fingerprint) -> IfG RecompileRequired checkEntityUsage reason new_hash (name,old_hash) = case new_hash name of Nothing -> -- We used it before, but it ain't there now out_of_date reason (sep [text "No longer exported:", ppr name]) Just (_, new_hash) -- It's there, but is it up to date? | new_hash == old_hash -> do traceHiDiffs (text " Up to date" <+> ppr name <+> parens (ppr new_hash)) return UpToDate | otherwise -> out_of_date_hash reason (text " Out of date:" <+> ppr name) old_hash new_hash up_to_date :: SDoc -> IfG RecompileRequired up_to_date msg = traceHiDiffs msg >> return UpToDate out_of_date :: String -> SDoc -> IfG RecompileRequired out_of_date reason msg = traceHiDiffs msg >> return (RecompBecause reason) out_of_date_hash :: String -> SDoc -> Fingerprint -> Fingerprint -> IfG RecompileRequired out_of_date_hash reason msg old_hash new_hash = out_of_date reason (hsep [msg, ppr old_hash, text "->", ppr new_hash]) ---------------------- checkList :: [IfG RecompileRequired] -> IfG RecompileRequired -- This helper is used in two places checkList [] = return UpToDate checkList (check:checks) = do recompile <- check if recompileRequired recompile then return recompile else checkList checks {- ************************************************************************ * * Converting things to their Iface equivalents * * ************************************************************************ -} tyThingToIfaceDecl :: TyThing -> IfaceDecl tyThingToIfaceDecl (AnId id) = idToIfaceDecl id tyThingToIfaceDecl (ATyCon tycon) = snd (tyConToIfaceDecl emptyTidyEnv tycon) tyThingToIfaceDecl (ACoAxiom ax) = coAxiomToIfaceDecl ax tyThingToIfaceDecl (AConLike cl) = case cl of RealDataCon dc -> dataConToIfaceDecl dc -- for ppr purposes only PatSynCon ps -> patSynToIfaceDecl ps -------------------------- idToIfaceDecl :: Id -> IfaceDecl -- The Id is already tidied, so that locally-bound names -- (lambdas, for-alls) already have non-clashing OccNames -- We can't tidy it here, locally, because it may have -- free variables in its type or IdInfo idToIfaceDecl id = IfaceId { ifName = getName id, ifType = toIfaceType (idType id), ifIdDetails = toIfaceIdDetails (idDetails id), ifIdInfo = toIfaceIdInfo (idInfo id) } -------------------------- dataConToIfaceDecl :: DataCon -> IfaceDecl dataConToIfaceDecl dataCon = IfaceId { ifName = getName dataCon, ifType = toIfaceType (dataConUserType dataCon), ifIdDetails = IfVanillaId, ifIdInfo = NoInfo } -------------------------- coAxiomToIfaceDecl :: CoAxiom br -> IfaceDecl -- We *do* tidy Axioms, because they are not (and cannot -- conveniently be) built in tidy form coAxiomToIfaceDecl ax@(CoAxiom { co_ax_tc = tycon, co_ax_branches = branches , co_ax_role = role }) = IfaceAxiom { ifName = getName ax , ifTyCon = toIfaceTyCon tycon , ifRole = role , ifAxBranches = map (coAxBranchToIfaceBranch tycon (map coAxBranchLHS branch_list)) branch_list } where branch_list = fromBranches branches -- 2nd parameter is the list of branch LHSs, for conversion from incompatible branches -- to incompatible indices -- See Note [Storing compatibility] in CoAxiom coAxBranchToIfaceBranch :: TyCon -> [[Type]] -> CoAxBranch -> IfaceAxBranch coAxBranchToIfaceBranch tc lhs_s branch@(CoAxBranch { cab_incomps = incomps }) = (coAxBranchToIfaceBranch' tc branch) { ifaxbIncomps = iface_incomps } where iface_incomps = map (expectJust "iface_incomps" . (flip findIndex lhs_s . eqTypes) . coAxBranchLHS) incomps -- use this one for standalone branches without incompatibles coAxBranchToIfaceBranch' :: TyCon -> CoAxBranch -> IfaceAxBranch coAxBranchToIfaceBranch' tc (CoAxBranch { cab_tvs = tvs, cab_cvs = cvs , cab_lhs = lhs , cab_roles = roles, cab_rhs = rhs }) = IfaceAxBranch { ifaxbTyVars = toIfaceTvBndrs tidy_tvs , ifaxbCoVars = map toIfaceIdBndr cvs , ifaxbLHS = tidyToIfaceTcArgs env1 tc lhs , ifaxbRoles = roles , ifaxbRHS = tidyToIfaceType env1 rhs , ifaxbIncomps = [] } where (env1, tidy_tvs) = tidyTyCoVarBndrs emptyTidyEnv tvs -- Don't re-bind in-scope tyvars -- See Note [CoAxBranch type variables] in CoAxiom ----------------- tyConToIfaceDecl :: TidyEnv -> TyCon -> (TidyEnv, IfaceDecl) -- We *do* tidy TyCons, because they are not (and cannot -- conveniently be) built in tidy form -- The returned TidyEnv is the one after tidying the tyConTyVars tyConToIfaceDecl env tycon | Just clas <- tyConClass_maybe tycon = classToIfaceDecl env clas | Just syn_rhs <- synTyConRhs_maybe tycon = ( tc_env1 , IfaceSynonym { ifName = getName tycon, ifRoles = tyConRoles tycon, ifSynRhs = if_syn_type syn_rhs, ifBinders = if_binders, ifResKind = if_res_kind }) | Just fam_flav <- famTyConFlav_maybe tycon = ( tc_env1 , IfaceFamily { ifName = getName tycon, ifResVar = if_res_var, ifFamFlav = to_if_fam_flav fam_flav, ifBinders = if_binders, ifResKind = if_res_kind, ifFamInj = familyTyConInjectivityInfo tycon }) | isAlgTyCon tycon = ( tc_env1 , IfaceData { ifName = getName tycon, ifBinders = if_binders, ifResKind = if_res_kind, ifCType = tyConCType tycon, ifRoles = tyConRoles tycon, ifCtxt = tidyToIfaceContext tc_env1 (tyConStupidTheta tycon), ifCons = ifaceConDecls (algTyConRhs tycon), ifGadtSyntax = isGadtSyntaxTyCon tycon, ifParent = parent }) | otherwise -- FunTyCon, PrimTyCon, promoted TyCon/DataCon -- We only convert these TyCons to IfaceTyCons when we are -- just about to pretty-print them, not because we are going -- to put them into interface files = ( env , IfaceData { ifName = getName tycon, ifBinders = if_binders, ifResKind = if_res_kind, ifCType = Nothing, ifRoles = tyConRoles tycon, ifCtxt = [], ifCons = IfDataTyCon [], ifGadtSyntax = False, ifParent = IfNoParent }) where -- NOTE: Not all TyCons have `tyConTyVars` field. Forcing this when `tycon` -- is one of these TyCons (FunTyCon, PrimTyCon, PromotedDataCon) will cause -- an error. (tc_env1, tc_binders) = tidyTyConBinders env (tyConBinders tycon) tc_tyvars = binderVars tc_binders if_binders = toIfaceTyVarBinders tc_binders if_res_kind = tidyToIfaceType tc_env1 (tyConResKind tycon) if_syn_type ty = tidyToIfaceType tc_env1 ty if_res_var = getOccFS `fmap` tyConFamilyResVar_maybe tycon parent = case tyConFamInstSig_maybe tycon of Just (tc, ty, ax) -> IfDataInstance (coAxiomName ax) (toIfaceTyCon tc) (tidyToIfaceTcArgs tc_env1 tc ty) Nothing -> IfNoParent to_if_fam_flav OpenSynFamilyTyCon = IfaceOpenSynFamilyTyCon to_if_fam_flav (ClosedSynFamilyTyCon (Just ax)) = IfaceClosedSynFamilyTyCon (Just (axn, ibr)) where defs = fromBranches $ coAxiomBranches ax ibr = map (coAxBranchToIfaceBranch' tycon) defs axn = coAxiomName ax to_if_fam_flav (ClosedSynFamilyTyCon Nothing) = IfaceClosedSynFamilyTyCon Nothing to_if_fam_flav AbstractClosedSynFamilyTyCon = IfaceAbstractClosedSynFamilyTyCon to_if_fam_flav (DataFamilyTyCon {}) = IfaceDataFamilyTyCon to_if_fam_flav (BuiltInSynFamTyCon {}) = IfaceBuiltInSynFamTyCon ifaceConDecls (NewTyCon { data_con = con }) = IfNewTyCon (ifaceConDecl con) ifaceConDecls (DataTyCon { data_cons = cons }) = IfDataTyCon (map ifaceConDecl cons) ifaceConDecls (TupleTyCon { data_con = con }) = IfDataTyCon [ifaceConDecl con] ifaceConDecls (SumTyCon { data_cons = cons }) = IfDataTyCon (map ifaceConDecl cons) ifaceConDecls AbstractTyCon = IfAbstractTyCon -- The AbstractTyCon case happens when a TyCon has been trimmed -- during tidying. -- Furthermore, tyThingToIfaceDecl is also used in TcRnDriver -- for GHCi, when browsing a module, in which case the -- AbstractTyCon and TupleTyCon cases are perfectly sensible. -- (Tuple declarations are not serialised into interface files.) ifaceConDecl data_con = IfCon { ifConName = dataConName data_con, ifConInfix = dataConIsInfix data_con, ifConWrapper = isJust (dataConWrapId_maybe data_con), ifConExTvs = map toIfaceForAllBndr ex_bndrs', ifConEqSpec = map (to_eq_spec . eqSpecPair) eq_spec, ifConCtxt = tidyToIfaceContext con_env2 theta, ifConArgTys = map (tidyToIfaceType con_env2) arg_tys, ifConFields = dataConFieldLabels data_con, ifConStricts = map (toIfaceBang con_env2) (dataConImplBangs data_con), ifConSrcStricts = map toIfaceSrcBang (dataConSrcBangs data_con)} where (univ_tvs, _ex_tvs, eq_spec, theta, arg_tys, _) = dataConFullSig data_con ex_bndrs = dataConExTyVarBinders data_con -- Tidy the univ_tvs of the data constructor to be identical -- to the tyConTyVars of the type constructor. This means -- (a) we don't need to redundantly put them into the interface file -- (b) when pretty-printing an Iface data declaration in H98-style syntax, -- we know that the type variables will line up -- The latter (b) is important because we pretty-print type constructors -- by converting to IfaceSyn and pretty-printing that con_env1 = (fst tc_env1, mkVarEnv (zipEqual "ifaceConDecl" univ_tvs tc_tyvars)) -- A bit grimy, perhaps, but it's simple! (con_env2, ex_bndrs') = tidyTyVarBinders con_env1 ex_bndrs to_eq_spec (tv,ty) = (tidyTyVar con_env2 tv, tidyToIfaceType con_env2 ty) classToIfaceDecl :: TidyEnv -> Class -> (TidyEnv, IfaceDecl) classToIfaceDecl env clas = ( env1 , IfaceClass { ifName = getName tycon, ifRoles = tyConRoles (classTyCon clas), ifBinders = toIfaceTyVarBinders tc_binders, ifBody = body, ifFDs = map toIfaceFD clas_fds }) where (_, clas_fds, sc_theta, _, clas_ats, op_stuff) = classExtraBigSig clas tycon = classTyCon clas body | isAbstractTyCon tycon = IfAbstractClass | otherwise = IfConcreteClass { ifClassCtxt = tidyToIfaceContext env1 sc_theta, ifATs = map toIfaceAT clas_ats, ifSigs = map toIfaceClassOp op_stuff, ifMinDef = fmap getOccFS (classMinimalDef clas) } (env1, tc_binders) = tidyTyConBinders env (tyConBinders tycon) toIfaceAT :: ClassATItem -> IfaceAT toIfaceAT (ATI tc def) = IfaceAT if_decl (fmap (tidyToIfaceType env2 . fst) def) where (env2, if_decl) = tyConToIfaceDecl env1 tc toIfaceClassOp (sel_id, def_meth) = ASSERT( sel_tyvars == binderVars tc_binders ) IfaceClassOp (getName sel_id) (tidyToIfaceType env1 op_ty) (fmap toDmSpec def_meth) where -- Be careful when splitting the type, because of things -- like class Foo a where -- op :: (?x :: String) => a -> a -- and class Baz a where -- op :: (Ord a) => a -> a (sel_tyvars, rho_ty) = splitForAllTys (idType sel_id) op_ty = funResultTy rho_ty toDmSpec :: (Name, DefMethSpec Type) -> DefMethSpec IfaceType toDmSpec (_, VanillaDM) = VanillaDM toDmSpec (_, GenericDM dm_ty) = GenericDM (tidyToIfaceType env1 dm_ty) toIfaceFD (tvs1, tvs2) = (map (tidyTyVar env1) tvs1 ,map (tidyTyVar env1) tvs2) -------------------------- tidyTyConBinder :: TidyEnv -> TyConBinder -> (TidyEnv, TyConBinder) -- If the type variable "binder" is in scope, don't re-bind it -- In a class decl, for example, the ATD binders mention -- (amd must mention) the class tyvars tidyTyConBinder env@(_, subst) tvb@(TvBndr tv vis) = case lookupVarEnv subst tv of Just tv' -> (env, TvBndr tv' vis) Nothing -> tidyTyVarBinder env tvb tidyTyConBinders :: TidyEnv -> [TyConBinder] -> (TidyEnv, [TyConBinder]) tidyTyConBinders = mapAccumL tidyTyConBinder tidyTyVar :: TidyEnv -> TyVar -> FastString tidyTyVar (_, subst) tv = toIfaceTyVar (lookupVarEnv subst tv `orElse` tv) -------------------------- instanceToIfaceInst :: ClsInst -> IfaceClsInst instanceToIfaceInst (ClsInst { is_dfun = dfun_id, is_flag = oflag , is_cls_nm = cls_name, is_cls = cls , is_tcs = mb_tcs , is_orphan = orph }) = ASSERT( cls_name == className cls ) IfaceClsInst { ifDFun = dfun_name, ifOFlag = oflag, ifInstCls = cls_name, ifInstTys = map do_rough mb_tcs, ifInstOrph = orph } where do_rough Nothing = Nothing do_rough (Just n) = Just (toIfaceTyCon_name n) dfun_name = idName dfun_id -------------------------- famInstToIfaceFamInst :: FamInst -> IfaceFamInst famInstToIfaceFamInst (FamInst { fi_axiom = axiom, fi_fam = fam, fi_tcs = roughs }) = IfaceFamInst { ifFamInstAxiom = coAxiomName axiom , ifFamInstFam = fam , ifFamInstTys = map do_rough roughs , ifFamInstOrph = orph } where do_rough Nothing = Nothing do_rough (Just n) = Just (toIfaceTyCon_name n) fam_decl = tyConName $ coAxiomTyCon axiom mod = ASSERT( isExternalName (coAxiomName axiom) ) nameModule (coAxiomName axiom) is_local name = nameIsLocalOrFrom mod name lhs_names = filterNameSet is_local (orphNamesOfCoCon axiom) orph | is_local fam_decl = NotOrphan (nameOccName fam_decl) | otherwise = chooseOrphanAnchor lhs_names -------------------------- coreRuleToIfaceRule :: CoreRule -> IfaceRule coreRuleToIfaceRule (BuiltinRule { ru_fn = fn}) = pprTrace "toHsRule: builtin" (ppr fn) $ bogusIfaceRule fn coreRuleToIfaceRule (Rule { ru_name = name, ru_fn = fn, ru_act = act, ru_bndrs = bndrs, ru_args = args, ru_rhs = rhs, ru_orphan = orph, ru_auto = auto }) = IfaceRule { ifRuleName = name, ifActivation = act, ifRuleBndrs = map toIfaceBndr bndrs, ifRuleHead = fn, ifRuleArgs = map do_arg args, ifRuleRhs = toIfaceExpr rhs, ifRuleAuto = auto, ifRuleOrph = orph } where -- For type args we must remove synonyms from the outermost -- level. Reason: so that when we read it back in we'll -- construct the same ru_rough field as we have right now; -- see tcIfaceRule do_arg (Type ty) = IfaceType (toIfaceType (deNoteType ty)) do_arg (Coercion co) = IfaceCo (toIfaceCoercion co) do_arg arg = toIfaceExpr arg bogusIfaceRule :: Name -> IfaceRule bogusIfaceRule id_name = IfaceRule { ifRuleName = fsLit "bogus", ifActivation = NeverActive, ifRuleBndrs = [], ifRuleHead = id_name, ifRuleArgs = [], ifRuleRhs = IfaceExt id_name, ifRuleOrph = IsOrphan, ifRuleAuto = True }