40+K       !"#$%&'( ) * + , - . / 0 1 23456789:;<=>?@ABCDEFGHIJKLMNOPQ R S T U V W XYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrst u!v!w!x!yz{|}~"""""""""""""""""##############$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ % % %%%%%%%%%&&&&&&&&&& &!&"&#&$&%&&&'&(&)&*&+&,&-&.&/&0&1&2&3&4&5&6&7&8&9&:&;&<&=&>&?&@&A&B&C&D&E&F&G&H&I&J&K&L&M&N&O&P&Q&R&S&T&U&V&W&X&Y&Z&[&\&]&^&_&`&a&b&c&d&e&f&g&h&i&j&k&l&m&n&o&p&q&r&s&t&u&v&w&x&y&z&{&|&}&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'((((((((((((((((((((()))))))))))))*************++,----      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQR.S.T.U.V.W.X.Y.Z.[.\.].^._.`.a.b.c.d.e.f.g.h.i.j.k.l.mnopqrstuvwxyz{|}~//////////////////////////////////////////////////0000000001111111               2222222223333333333333333333333333 3 3 3 3 3333333333333333333 3!3"3#3$3%3&3'3(3)3*3+3,3-3.3/3031323334353637!8!9!:!;!<!=!>!?!@!A!B!C!D!E!F!G!H!I!J!K!L!M!N!O!P!Q!R!S!T!U!V!W!X!Y!Z![!\!]!^!_!`!a!b!c!d!e!f!g!h!i!j!k!l!m!n!o!p!q!r!s!t!u!v!w!x!y!z!{!|!}!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!4 5!4"4#4$6%6&4'4(4)4*7+7,7-7.8/808182838485868788898:8;8<8=8>8?8@8A8B8C8D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R9S9T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h;i;j;k;l;m;n;o;p;q;r;s;t;u<v<w<x<y<z<{<|<}<~<<========================================================================================>>>>>>????????@@@@@@@@@@@@@ABBBBBBBBBBBBBBBBBBBBB B B B B BBBBBBBBBBBBBBBBBBB B!B"B#B$B%B&B'B(B)B*B+B,B-B.B/B0B1B2B3B4B5B6B7B8B9B:B;B<B=B>B?B@BABBBCBDBEBFBGBHBIBJBKBLBMBNBOBPBQBRBSBTBUBVBWBXBYBZB[B\B]B^B_B`BaBbBcBdBeBfBgBhBiBjBkBlBmBnBoBpBqBrBsBtBuBvBwBxByBzB{B|B}B~BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB B B B B BBBBBBBBBBBBBBBBBBB B!B"B#B$B%B&B'B(B)B*B+B,B-B.B/B0B1B2C3C4C5C6C7C8C9C:C;C<C=C>C?C@CACBCCCDCECFCGCHCICJCKCLCMCNCOCPCQCRCSCTCUCVCWCXCYCZC[C\C]C^C_C`DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzE{E|E}E~EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG H H H H HHHHHHHHHHHHIIIIIII I!I"I#I$I%I&I'I(I)I*I+I,I-I.I/I0I1I2I3I4I5I6I7I8I9I:I;I<I=I>I?I@IAIBICIDIEIFIGJHJIJJJKJLJMJNJOJPJQJRJSJTJUJVJWJXJYJZJ[J\J]J^K_K`KaKbKcKdKeKfKgKhKiKjKkKlKmKnKoKpKqKrKsKtKuKvLwLxLyLzL{L|L}L~MMMMMMMMMMMMMMMMMMMMMMMMMNNNNNNOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOPQQQQQQQQQQQQQQQQQQQQQQQQRRRRRRRRRRRRRRRRRRRRRSSTTTTTTTTTTT T T T T T T T T T T T T T U V V W W W W W W W W W W W W W W W W W !W "W #W $W %W &W 'W (W )W *W +W ,W -W .W /W 0W 1W 2W 3W 4W 5W 6W 7W 8W 9W :W ;W <W =W >W ?W @W AW BW CW DW EW FW GW HW IW JW KW LW MW NW OW PW QW RW SW TW UW VW WW XW YW ZW [W \W ]W ^W _W `W aW bW cW dW eW fW gW hW iW jW kW lW mW nW oW pW q0 r0 s0 t0 u0 v0 w0 x0 y0 z0 {0 |0 }0 ~0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 !0 "0 #0 $0 %0 &0 '0 (0 )0 *0 +0 ,0 -0 .0 /0 00 1X 2X 3X 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J KY LZ MZ NZ OZ PZ QZ RZ SZ TZ UZ VZ WZ XZ YZ ZZ [Z \Z ]Z ^Z _Z `Z aZ bZ cZ dZ eZ fZ gZ hZ iZ jZ kZ lZ mZ nZ oZ pZ qZ rZ sZ tZ uZ vZ wZ xZ yZ zZ {Z |Z }Z ~Z Z Z Z Z Z Z Z Z Z Z Z [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] !] "] #] $] %^ &^ '^ (^ )^ *^ +^ ,^ -^ .^ /^ 0^ 1^ 2^ 3^ 4^ 5^ 6^ 7^ 8^ 9^ :^ ;^ <^ =^ >^ ?^ @^ A^ B^ C^ D^ E^ F^ G^ H^ I^ J^ K^ L^ M^ N^ O^ P^ Q^ R^ S^ T^ U^ V^ W^ X^ Y^ Z^ [^ \^ ]^ ^^ _^ `^ a^ b^ c^ d^ e% f% g% h% i% j% k% l% m% n% o% p% q% r% s% t% u% v% w% x% y% z% {% |% }% ~% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % !% "% #% $% %% &% '% (% )% *% +% ,% -% .% /% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% :% ;% <% =% >% ?% @% A% B% C% D% E% F% G% H% I% J% K% L% M% N% O% P% Q% R% S% T% U% V% W% X% Y% Z% [% \% ]% ^% _% `% a% b% c% d% e% f% g% h% i% j% k% l% m% n% o% p% q% r% s% t% u% v% w% x% y% z% {% |% }% ~% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % !% "% #% $% %% &% '% (% )% *% +% ,% -% .% /% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% :% ;% <% =% >% ?% @% A% B% C% D% E% F% G% H% I% J% K% L% M% N% O% P% Q% R% S% T% U% V% W% X% Y% Z% [% \% ]% ^% _% `% a% b% c% d% e% f% g% h% i% j% k% l% m% n% o% p% q% r% s% t% u% v% w% x% y% z% {% |% }% ~% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % %%%%%%%%%%%%%______ _!_"`#`$`%`&`'`(`)`*`+`,`-`.`/`0`1`2`3`4`5`6`7`8`9`:`;`<`=`>`?`@`A`B`C`D`E`F`G`H`I`J`K`L`M`N`O`P`Q`R`S`T`U`V`W`X`Y`Z`[`\`]`^`_```a`b`c`d`e`f`g`h`i`j`k`l`m`n`o`p`q`r`s`tauavawaxayaza{a| } ~                                                                                                                                                 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNObPbQbRbSbTbUbVbWbXbYbZb[b\b]b^b_b`babbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbwbxbyczc{c|c}c~ccccccccccccccccccccccccdddddddeeeeeeeeeeeeeeeefffggggggggggggggggggggggg                                 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @@@@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@'@(@)@*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1fhgihiiijikiliminioipiqirisitjujvjwjxjyjzj{j|j}j~jjjjjjjjjjkkkkklllmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmnnnnnnnnnnnnnnnnnnnnnoooooooooooooooooooooooo o o o o ooooooooooooooooooo o!o"o#o$o%o&o'o(o)o*o+o,o-o.o/o0o1o2o3o4o5o6o7o8o9o:o;o<o=o>o?o@oAoBoCoDoEoFoGoHoIoJoKoLoMoNoOoPoQoRoSoToUoVoWoXoYoZo[o\o]o^o_o`oaobocodoeofogohoiojokolomonooopoqorosotouovowoxoyozo{o|o}o~ooooooooooooooooooooooooooooooooooooooooopppppppppppqqqqqqrrrrrrrrrrrrrrrrrrrrrrrssssssssssssssssssssssssssssssssssssssssssssssssssssssssss s s s s sssssssssssssssssss s!s"s#s$s%s&s's(s)s*s+s,s-s.s/s0s1s2s3s4s5s6s7s8s9s:s;s<s=s>s?s@sAsBsCsDsEsFsGsHsIsJsKsLsMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLtMtNtOtPtQtRtStTtUtVtWtXtYtZt[t\t]t^t_t`tatbtctdtetftgthtitjtktltmtntotptqtrtstttutvtwtxtytzt{t|t}t~ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt t t t t ttttttttttttttttttt t!t"t#t$t%t&t't(t)t*t+t,t-t.t/t0t1t2t3t4t5t6t7t8t9t:t;t<t=t>t?t@tAtBtCtDtEtFtGtHtItJtKtLtMtNtOtPtQtRtStTtUtVtWtXtYtZt[t\t]t^t_t`tatbtctdtetftgthtitjtktltmtntotptqtrtstttutvtwtxtytzt{t|t}t~ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt t t t t ttttttttttttttttttt t!t"t#t$t%t&t't(t)t*t+t,t-t.t/t0t1t2t3t4t5t6t7t8t9t:t;t<t=t>t?t@tAtBtCtDtEtFtGtHtItJtKtLtMtNtOtPtQuRuSuTuUuVuWuXuYuZu[u\u]u^u_u`uaubucudueufuguhuiujukulumunuoupuqurusutuuuvuwuxuyuzu{u|u}u~uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv v v v v vvvvvvvvvvvvvvvvvvv v!v"v#v$v%v&v'v(v)v*v+v,v-v.v/v0v1v2v3v4v5v6v7v8v9v:v;v<v=v>v?v@vAvBvCvDvEvFvGvHvIvJvKvLvMvNvOvPvQvRvSvTvUvVvWvXvYvZv[v\v]v^v_v`vavbvcvdvevfvgvhvivjvkvlvmvnvovpvqvrvsvtvuvvvwvxvyvzv{v|v}v~vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvwwwwwwwwwxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x x x x xxxxxxxxxxxxxxxxxxx x!x"x#x$x%x&x'x(x)x*x+x,x-x.x/x0x1x2x3x4x5x6x7x8x9x:x;x<x=x>x?x@xAxBxCxDyEyFyGyHyIyJyKyLyMyNyOyPyQyRySyTyUyVyWyXyYyZy\y]y^y_y`yaybycydyeyfygyh4iyjykylymynyozpzqzrzszt{u{v{w{x{y{z{{{|{}|~||||||||||||}}}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     666666666666666666 6!6"6#6$6%6&6'6(6)6*6+6,-./0123456789:;<=>?@ABCDEFGHIJKLMNO-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z-{-|-}-~------------------------------------------------------------------------------------------------------------------------------------------- - - - - ------------------- -!-"-#-$-%-&-'-(-)-*-+4,4-4.4/40414243444546478{9{:{;{<{={>{?{@{A{B{C{D{E{F{G{H{I{J{K{L{M{N{O{P{Q{R{S{T{U{V{W{X{Y{Z{[{\{]{^{_{`{a{b{c{d{e{f{g{h{i{j{k{l{m{n{o{p{q{r{s{t{u{v{w{x{y{z{{{|{}{~{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~6446666444444474444444444445544447444777666664464474464444447464444444444444444444444464744444444444646666464444466447444444 4 4 4 4 4444444444444446646 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~55555555554444444444444444444444444444444444444444444444444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 !4 "4 #4 $4 %4 &4 '4 (4 )4 *4 +4 ,4 -4 .4 /4 04 14 24 34 44 54 64 74 84 94 :4 ;4 <4 =4 >4 ?4 @4 A4 B4 C4 D4 E4 F4 G4 H4 I4 J4 K4 L4 M4 N4 O4 P4 Q4 R4 S4 T4 U4 V4 W4 X4 Y4 Z4 [4 \4 ]4 ^4 _4 `4 a4 b4 c4 d4 e4 f4 g4 h4 i4 j4 k4 l4 m4 n4 o4 p4 q r s t u v w x y z { |z }z ~z z z z z z z z z z z z z z z z z 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6!6!6!6!6!6!6!6!6!6! 6! 6! 6! 6! 6!6!6!6!6!6!6!6!6!6!6!6!6!6!6!6!6!6!6! 6!!6!"6!#6!$6!%6!&6!'6!(!)!*!+!,!-!.!/!0!1!2!3!4!5!6!7!8!9!:!;!<!=!>!?!@!A!B!C!D!E!F!G!H!I!J!K!L!M!N!O|!P|!Q|!R|!S|!T|!U|!V|!W|!X|!Y|!Z|![|!\|!]|!^|!_|!`|!a|!b|!c|!d|!e|!f|!g|!h|!i|!j|!k|!l|!m|!n|!o|!p|!q|!r|!s|!t|!u|!v|!w|!x|!y|!z|!{|!||!}|!~|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!|!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""" " " " " """"""""""""""""""" "!"""#"$"%"&"'"(")"*"+","-"."/"0"1"2"3"4"5"6"7"8"9":";"<"=">"?"@"A"B"C"D"E"F"G"H"I"J"K"L"M"N"O"P"Q"R"S"T"U"V"W"X"Y"Z"["\"]"^"_"`"a"b"c"d"e"f"g"h"i"j"k"l"m"n"o"p}"q}"r}"s}"t}"u}"v}"w}"x}"y}"z}"{}"|}"}}"~}"}"}"}""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""########## # # # # ################### #!#"###$#%#&#'#(#)#*#+#,#-#.#/#0#1#2#3#4#5#6#7#8#9#:#;#<#=#>#?#@#A#B#C#D#E#F#G#H#I#J#K#L#M#N#O#P#Q#R#S#T#U#V#W#X#Y#Z#[#\#]#^#_#`#a#b#c#d#e#f#g#h#i#j#k#l#m#n#o#p#q#r#s#t#u#v#w#x#y#z#{#|#}#~#################################################################################################################################$$$$$$$$$$ $ $ $ $ $$$$$>$>$>$>$>$>$>$>$>$>$>$>$>$>$ >$!>$">$#>$$>$%>$&>$'>$(>$)>$*>$+>$,>$->$.>$/>$0>$1>$2>$3>$4>$5>$6>$7>$8>$9>$:>$;>$<>$=>$>>$?>$@>$A>$B>$C>$D>$E>$F>$G>$H>$I>$J>$K>$L>$M>$N>$O>$P>$Q>$R>$S>$T>$U>$V>$W>$X>$Y>$Z>$[>$\>$]>$^>$_>$`>$a>$b$c$d$e$f$g$h$i$j$k$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y$y%y%y%y%y%y%y%y%y%y% y% y% y% y% y%y%y%y%y%y%y%y%y%y%y%y%y%y%y%y%y%y%y% y%!y%"y%#y%$y%%y%&y%'y%(y%)y%*y%+y%,y%-y%.y%/y%0y%1y%2y%3y%4y%5y%6y%7y%8y%9y%:y%;y%<y%=y%>y%?y%@y%Ay%By%Cy%Dy%Ey%Fy%Gy%Hy%Iy%Jy%Ky%Ly%My%Ny%Oy%Py%Qy%Ry%Sy%Ty%Uy%Vy%Wy%Xy%Yy%Zy%[y%\y%]y%^y%_y%`y%ay%by%c'%d'%e'%f'%g'%h'%i'%j'%k'%l'%m'%n'%o'%p'%q'%r'%s'%t'%u'%v'%w'%x'%y'%z'%{'%|'%}'%~'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'&'&'&'&'&'&'&'&'&'& '& '& '& '& '&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'& '&!'&"'&#'&$'&%'&&'&''&('&)'&*'&+'&,'&-'&.'&/'&0'&1'&2'&3'&4'&5'&6'&7'&8'&9'&:'&;'&<'&='&>'&?'&@'&A'&B'&C'&D'&E'&F'&G'&H'&I'&J'&K'&L'&M'&N'&O'&P'&Q'&R'&S'&T'&U'&V'&W'&X'&Y'&Z'&['&\'&]'&^'&_'&`'&a'&b'&c'&d'&e'&f'&g'&h'&i'&j'&k'&l'&m'&n'&o'&p'&q'&r'&s'&t'&u'&v'&w'&x'&y'&z'&{'&|'&}'&~'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'''''''''''''''''''' '' '' '' '' '''''''''''''''''''''''''''''''''''''' ''!''"''#''$''%''&'''''('')''*''+'',''-''.''/''0''1''2''3''4''5''6''7''8''9'':'';''<''=''>''?''@''A''B''C''D''E''F''G''H''I''J''K''L'M'N'O'P'Q'R'S'T'U'V'W'X'Y'Z'['\']'^'_'`'a'b'c'd'e'f'g'h'i'j'k'l'm'n'o'p'q'r's't'u'v'w'x'y'z'{'|'}'~'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(((((((((( ( ( ( ( ((((((((((((((((((( (!("(#($(%(&('((()(*(+(,(-(.(/(0(1(2(3(4(5(6(7(8(9(:(;(<(=(>(?(@(A(B(C(D(E(F(G(H(I(J(K(L(M(N(O(P(Q(R(S(T(U(V(W(X(Y(Z([(\(](^(_(`(a(b(c(d(e(f(g(h(i(j(k(l(m(n(o(p(q(r(s(t(u(v(w(x(y(z({(|(}(~((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((()))))))))) ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6)7)8)9):);)<)=)>)?)@)A)B)C)D)E)F)G)H)I)J)K)L)M)N)O)P)Q)R)S)T)U)V)W)X)Y)Z)[)\)])^)_)`)a)b)c)d)e)f)g)h)i)j)k)l)m)n)o)p)q)r)s)t)u)v)w)x)y)z){)|)})~))))))))))V)V)V)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))********** * * * * ******************* *!*"*#*$*%*&*'*(*)***+*,*-*.*/*0*1*2*3*4*5*6*7*8*9*:*;*<*=*>*?*@*A*B*C*D*E*F*G*H*I*J*K*L*M*N*O*P*Q*R*S*T*U*V*W*X*Y*Z*[*\*]*^*_*`*a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*q*r*s*t*u*v*w*x*y*z*{*|*}*~*********************************************************************************************************************************++++++++++ + + + + +++++++++++++++++++ +!+"+#+$+%+&+'+(+)+*+++,+-+.+/+0+1+2+3+4+5+6+7+8+9+:+;+<+=+>+?+@+A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z+[+\+]+^+_+`+a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+x+y+z+{+|+}+~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,,,,,,,,, , , , , ,,,,,,,,,,,,,,,,,,, ,!,",#,$,%,&,',(,),*,+,,,-,.,/,0,1,2,3,4,5,6,7,8,9,:,;,<,=,>,?,@,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,[,\,],^,_,`,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,{,|,},~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,---------- - - - - ------------------- -!-"-#-$-%-&-'-(-)-*-+-,---.-/-0-1-2-3-4-5-6-7-8-9-:-;-<-=->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z-{-|-}-~---------------------------------------------------------------------------------------------------------------------------------.......... . . . . ................... .!.".#.$.%.&.'.(.).*.+.,.-.../.0.1.2.3.4.5.6.7.8.9.:.;.<.=.>.?.@.A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y.Z.[.\.].^._.`.a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.s.t.u.v.w.x.y.z.{.|.}.~.................................................................................................................................////////// / / / / /////////7/7/7/7/7/7/7/7/7/7/ 7/!7/"7/#7/$7/%7/&7/'7/(7/)7/*7/+7/,7/-7/.7//7/07/17/27/37/47/57/67/77/87/97/:7/;7/<7/=7/>7/?7/@7/A7/B7/C7/D7/E7/F7/G7/H7/I7/J7/K7/L7/M7/N7/O7/P7/Q7/R7/S7/T7/U7/V7/W7/X7/Y7/Z7/[7/\7/]7/^7/_7/`7/a7/b7/c7/d7/e7/f7/g7/h7/i7/j7/k7/l7/m7/n7/o7/p7/q7/r7/s7/t7/u7/v7/w7/x7/y7/z7/{7/|7/}7/~7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7//////0000000000 0 0 0 0 0000000000000000000 0!0"0#0$0%0&0'0(0)0*0+0,0-0.0/000102030405060708090:0;0<0=0>0?0@0A0B0C0D0E0F0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0[0\0]0^0_0`0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0{0|0}0~0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111 1 1 1 1 1111111111111111111 1!1"1#1$1%1&1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112222222222 2 2 2 2 2222222222222222222 2!2"2#2$2%2&2'2(2)2*2+2,2-2.2/202122232425262728292:2;2<2=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P2Q2R2S2T2U2V2W2X2Y2Z2[2\2]2^2_2`2a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2y2z2{2|2}2~2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223333333333 3 3 3 3 3333333333333333333 3!3"3#3$3%3&3'3(3)3*3+3,3-3.3/303132333435363738393:3;3<3=3>3?3@3A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3T3U3V3W3X3Y3Z3[3\3]3^3_3`3a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3y3z3{3|3}3~3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333334444444444 4 4 4 4 4444444444444444444 4!4"4#4$4%4&4'4(4)4*4+4,4-4.4/404142434445464748494:4;4<4=4>4?4@4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555 5 5 5 5 5555555555555555555 5!5"5#5$5%5&5'5(5)5*5+5,5-5.5/505152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y5Z5[5\5]5^5_5`5a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5y5z5{5|5}5~5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555556666666666 6 6 6 6 6666666666666666666 6!6"6#6$6%6&6'6(6)6*6+6,6-6.6/606162636465666768696:6;6<6=6>6?6@6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O6P6Q6R6S6T6U6V6W6X6Y6Z6[6\6]6^6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6y6z6{6|6}6~6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7{7|7}7~777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8! 8" 8# 8$ 8% 8& 8' 8( 8) 8* 8+ 8, 8- 8. 8/ 80 81 82 83 84 85 86 87 88 89 8: 8; 8< 8= 8> 8? 8@ 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 8O 8P 8Q 8R 8S 8T 8U 8V 8W 8X 8Y 8Z 8[ 8\ 8] 8^ 8_ 8` 8a 8b 8c 8d 8e 8f 8g 8h 8i 8j 8k 8l 8m 8n 8o 8p 8q 8r 8s 8t 8u 8v 8w 8x 8y 8z 8{ 8| 8} 8~ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9! 9" 9# 9$ 9% 9& 9' 9( 9) 9* 9+ 9, 9- 9. 9/ 90 91 92 93 94 95 96 97 98 99 9: 9; 9< 9= 9> 9? 9@ 9A 9B 9C 9D 9E 9F 9G 9H 9I 9J 9K 9L 9M 9N 9O 9P 9Q 9R 9S 9T 9U 9V 9W 9X 9Y 9Z 9[ 9\ 9] 9^ 9_ 9` 9a 9b 9c 9d 9e 9f 9g 9h 9i 9j 9k 9l 9m 9n 9o 9p 9q 9r 9s 9t 9u 9v 9w 9x 9y 9z 9{ 9| 9} 9~ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99999999999999999999999999999999999999999999999999999999999999999999999:::::::::: : : : : ::::::::::::::::::: :!:":#:$:%:&:':(:):*:+:,:-:.:/:0:1:2:3:4:5:6:7:8:9:::;:<:=:>:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:S:T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:{:|:}:~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;; ;!;";#;$;%;&;';(;);*;+;,;-;.;/;0;1;2;3;4;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z;[;\;];^;_;`;a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z;{;|;};~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<<<<<< < < < < <<<<<<<<<<<<<<<<<<<  =? =@ =A =B =C =D =E =F =G =H =I =J =K =L =M =N =O =P =Q =R =S =T =U =V =W =X =Y =Z =[ =\ =] =^ =_ =` =a =b =c =d =e =f =g =h =i =j =k =l =m =n =o =p =q =r =s =t =u =v=w=x=y=z={=|=}=~=================================================================================================================================>>>>>>>>>> > > > > >>>>>>>>>>>>>>>>>>> >!>">#>$>%>&>'>(>)>*>+>,>->.>/>0>1>2>3>4>5>6>7>8>9>:>;><>=>>>?>@>A>B>C>D>E>F>G>H>I>J>K>L>M>N>O>P>Q>R>S>T>U>V>W >X >Y >Z >[ >\ >] >^ >_ >`!>a!>b!>c!>d!>e!>f!>g!>h">i">j">k">l">m">n">o">p">q">r">s">t">u">v">w">x">y">z">{">|">}">~">">">">">">">">">">">">">">#>#>#>#>#>#>#>#>#>#>#>#>#>$>$>$>$>$>$>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>&>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'?'?'?'?'?'?'?'?'?'? '? '? '? '? '?'?'?'?'?'?'?'?'?'?'?'?'?'?'?(?)?)?)? )?!)?")?#)?$)?%)?&)?')?()?))?*)?+)?,)?-)?.)?/)?0)?1)?2)?3)?4)?5)?6)?7)?8)?9)?:)?;)?<)?=)?>)??)?@)?A)?B)?C)?D)?E)?F)?G)?H)?I)?J)?K)?L)?M)?N)?O)?P)?Q)?R)?S)?T*?U*?V*?W*?X*?Y*?Z*?[*?\*?]*?^*?_*?`*?a+?b+?c+?d+?e+?f+?g,?h,?i,?j,?k,?l-?m-?n-?o-?p-?q-?r-?s-?t-?u-?v-?w-?x-?y.?z.?{.?|.?}.?~.?.?.?.?.?.?.?.?.?.?.?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?/?0?0?0?0?0?0?0?0?0?0?????????????????????????????1?1?2?????????????????????????????3?3?3?3?3?3?3?3?3?3?4?4?4?5????@6@7@8@8@8@8@8@8@8@ 8@ 8@ 8@ 8@ 8@9@9@9@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@'@(@)@*@+@,@-@.@/@0@1@2@3@4@5@6@7@8@9@:@;@<@=@>@?@@@A@B@C@D@E@F@G@H@I@J@K@L@M@N@O@P@Q@R@S@T@U@V@W@X@Y@Z@[@\@]@^@_@`@a@b@c@d@e@f@g@h@i@j@k@l@m@n@o@p@q@r@s@t@u@v:@w:@x;@y;@z;@{;@|;@};@~;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@;@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<A<A<A<A<A<A<A<A<A<A <A <A <A <A <A<A<A<A<A<A<A<A<A<A=A=A=A=A=A=A=A=A=A =A!=A"=A#>A$>A%>A&>A'>A(>A)>A*>A+>A,>A->A.>A/>A0>A1>A2>A3>A4?A5?A6?A7?A8?A9?A:?A;?A<?A=?A>?A??A@?AA?AB?AC?AD?AE?AF?AG?AH?AI?AJ?AK?AL?AM?AN?AO?AP?AQ?AR?AS?AT?AU?AV?AW?AX?AY?AZ?A[?A\?A]?A^?A_?A`?Aa?Ab?Ac?Ad?Ae?Af?Ag?Ah?Ai?Aj?Ak?Al?Am?An?Ao?Ap?Aq?Ar?As?At?Au?Av?Aw?Ax?Ay?Az?A{?A|?A}?A~?A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@A@AAAAAAABABABABABABABABABABABABABABABABABABABABABABABABAAAAAAAAAACACADAEAEAEAEAEAEAFAFAFAFAFAFAFBFBFBFBFBFBFBFBFBFB FB FB FB FB FBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFB FB!FB"FB#FB$FB%FB&FB'FB(FB)FB*FB+FB,FB-GB.GB/GB0GB1GB2GB3GB4GB5GB6GB7GB8GB9GB:GB;GB<GB=GB>GB?GB@GBAGBBGBCGBDGBEGBFGBGGBHGBIGBJGBKGBLGBMGBNGBOGBPGBQGBRGBSGBTGBUGBVGBWGBXHBYHBZHB[HB\HB]HB^HB_HB`HBaHBbHBcHBdHBeHBfHBgHBhHBiHBjHBkHBlHBmHBnHBoIBpIBqIBrIBsIBtIBuIBvIBwIBxIByIBzJB{JB|KB}KB~KBKBKBKBKBKBKBKBKBKBKBLBLBLB B B B B B B B B B BBBMBMBMBMBMBMBMBMBMBMBMBMBMBMBMBNBNBNBNBNBNBNBOBOBOBOBOBOBOBOBOBOBOBPBPBPBPBPBPBPBPBPBPBPBPBPBQBQBQBQBQBQBQBQBQBQBQBQBQBQBQBQBQBQBQBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBRBRCRCRCRCRCRCRCRCRCRC RC RC RC RC RCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRC RC!RC"RC#RC$RC%RC&RC'RC(RC)RC*RC+RC,RC-RC.RC/RC0RC1RC2RC3RC4RC5RC6RC7RC8RC9RC:RC;RC<RC=RC>RC?RC@RCARCBRCCRCDRCERCFRCGRCHRCISCJSCKSCLSCMSCNSCOSCPSCQSCRSCSSCTTCUTCVTCWTCXTCYTCZTC[TC\TC]TC^TC_TC`TCaTCbTCcTCdTCeTCfTCgTChTCiTCjTCkTClTCmTCnTCoTCpTCqTCrTCsTCtTCuTCvTCwTCxTCyTCzTC{TC|TC}TC~TCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTDTDTDTDTDTDTDTDTDTD TD TD TD TD TDTDTDUDUDUDUDUDUDUDUDUDUDVDVDVDVDVDVD VD!VD"VD#VD$VD%VD&WD'WD(WD)WD*D+D,D-D.D/D0D1D2D3D4D5D6D7D8D9D:D;D<D=D>XD?XD@XDAXDBXDCXDDXDEXDFXDGXDHXDIXDJXDKXDLXDMXDNXDOXDPXDQXDRXDSXDTXDUXDVYDWYDXYDYYDZYD[YD\YD]YD^YD_YD`YDaYDbYDcYDdYDeYDfYDgYDhYDiYDjYDkYDlYDmYDnYDoZDpZDqZDrZDsZDtZDuZDvZDwZDxZDyZDzZD{ZD|ZD}ZD~ZD[D[D[D[D[D[D[D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D\D]D]D^D^D^D^D^D^D^D_D`D`D`D`D`D`D`D`D`D`D`D`D`D`D`D`DaDaDaDaDaDaDaDaDbDbDbDbDbDbDcDcDdDdDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeEeEeEeEeEeEeEeEeEeE eE eE eE eE eEeEeEeEeEeEeEeEeEeEeEeEeEeEeEeEeEeEeE eE!eE"eE#eE$eE%eE&eE'eE(eE)eE*eE+eE,eE-eE.eE/eE0eE1eE2eE3eE4eE5eE6eE7eE8 E9 E: E; E< E= E> E?fE@fEAfEBfECfEDfEEfEFfEGfEHfEIfEJfEKfELgEMgENgEOgEPgEQgERgESgETgEUgEVgEWgEXgEYgEZgE[gE\gE]gE^gE_gE`gEahEbhEchEdhEehEfhEghEhhEi Ej Ek El Em En EoiEpiEqiEriEsiEtiEuiEviEwiExiEyiEziE{iE|iE}iE~iEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEiEjEjEjEjEjEjEjEjEjEjEjEjEjEjEjEjEkEkEkEkEkEkEkEkEkEkEkEkElEmEmEmEmEmEmEmEmEmEmEnEnEnEnEoEoEoEoEoEoEoEoEoEoEoEoEoEoEEEEEEEEEEEEEEEEEEpEqEqEqEqEqEqEqEqEqEqEEEEEEEEEEEEEFFFFFFFFFF F F F F FFFFFFFFFFFFFFFFFFF F!F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9rF:sF;sF<sF=sF>sF?sF@sFAsFBsFCsFDsFEsFFsFGsFHsFIsFJsFKsFLtFMtFNtFOtFPuFQuFRuFSuFTuFUvFVvFWvFXvFYvFZvF[vF\vF]vF^vF_vF`vFavFbvFcvFdvFevFfvFgvFhvFivFjvFkvFlvFmvFnvFovFpvFqvFrvFsvFtvFuvFvvFwvFxvFyvFzvF{vF|vF}vF~vFvFvFwFwFwFwFwFwFwFwFwFwFwFwFxFyFyFyFyFzFzFzFzFzF{F|F|F|F|F|F|F|F|F|F}F}F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~FtFFFFFuFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G)G*G+G,G-G.G/G0G1G2G3G4G5G6G7G8G9G:G;G<G=G>G?G@GAGBGCGDGEGFGGGHGIGJGKGLGMGNGOGPGQGRGSGTGUGVGWGXGYGZG[G\G]G^G_G`GaGbGcGdGeGfGgGhGiGjGkGlGmGnGoGpGqGrGsGtGuGvGwGxGyGzG{G|G}G~GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGHHHHHHHHHH H H H H HHHHHHHHHHHHHHHHHHH H!H"H#H$H%H&H'H(H)H*H+H,H-H.H/H0H1H2H3H4H5H6H7H8H9H:H;H<H=H>H?H@HAHBHCHDHEHFHGHHHIHJHKHLHMHNHOHPHQHRHSHTHUHVHWHXHYHZH[H\H]H^H_H`HaHbHcHdHeHfHgHhHiHjHkHlHmHnHoHpHqHrHsHtHuHvHwHxHyHzH{H|H}H~HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIIIIII I I I I IIIIIIIIIIIIIIIIIII I!I"I#I$I%I&I'I(I)I*I+I,I-I.I/I0I1I2I3I4I5I6I7I8I9I:I;I<I=I>I?I@IAIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZI[I\I]I^I_I`IaIbIcIdIeIfIgIhIiIjIkIlImInIoIpIqIrIsItIuIvIwIxIyIzI{I|I}I~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJJJJJJJJJJ J J J J JJJJJJJJJJJJJJJJJJJ J!J"J#J$J%J&J'J(J)J*J+J,J-J.J/J0J1J2J3J4J5J6J7J8J9J:J;J<J=J>J?J@JAJBJCJDJEJFJGJHJIJJJKJLJMJNJOJPJQJRJSJTJUJVJWJXJYJZJ[J\J]J^J_J`JaJbJcJdJeJfJgJhJiJjJkJlJmJnJoJpJqJrJsJtJuJvJwJxJyJzJ{J|J}J~JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJKKKKKKKKKK K K K K KKKKKKKKKKKKKKKKKKK K!K"K#K$K%K&K'K(K)K*K+K,K-K.K/K0K1K2K3K4K5K6K7K8K9K:K;K<K=K>K?K@KAKBKCKDKEKFKGKHKIKJKKKLKMKNKOKPKQKRKSKTKUKVKWKXKYKZK[K\K]K^K_K`KaKbKcKdKeKfKgKhKiKjKkKlKmKnKoKpKqKrKsKtKuKvKwKxKyKzK{K|K}K~KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKSafe'KKKKKKKKKKKKKKKKKKKKKKKLLLLLLLLLL L L L L LLLLLLLLLLLLLLLLLLL L!L"L#L$L%L&L'L(L)L*L+L,L-L.L/L0L1L2L3L4L5L6L7L8L9L:L;L<L=L>L?L@LALBLCLDLELFLGLHLILJLKLLLMLNLOLPLQLRLSLTLULVLWLX&LYLZL[L\L]L^L_L`LaLbLcLdLeLfLgLhLiLjLkLlLmLnLoLpLqLrLsLtLuLvLwLxLyLzL{L|L}L~LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL$LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLSafeVNone߼ !"# # !"NoneDRNoneDSafeSA monad that can catch exceptions. A minimal definition requires a definition of .Implementations on top of L should implement # to eventually call the primitive Ln. These are used for implementations that support asynchronous exceptions. The default implementations of  and  use ! thus rarely require overriding.Generalised version of LB, allowing an arbitrary exception handling monad instead of just L.Generalised version of LB, allowing an arbitrary exception handling monad instead of just L.Generalised version of LB, allowing an arbitrary exception handling monad instead of just L.Generalised version of LB, allowing an arbitrary exception handling monad instead of just L.Generalised version of LB, allowing an arbitrary exception handling monad instead of just L.Always executes the first argument. If this throws an exception the second argument is executed and the exception is raised again.dLLLLLLLLLLLLLLLLLLLLLLLLLLLLLMMLMMMMMMMM M M M M MMMMMMMMMMMMMMMLLMMMLM M!M"M#M$M% M&M'M(M)M*M+M,M-M.M/M0M1 SafeNoneD M26Size of a 64-bit word when written as a base-62 string,Converts a 64-bit word into a base-62 stringSafeSafeeDefault maximum depth for both class instance search and type family reduction. See also Trac #5395.PDefault maximum constraint-solver iterations Typically there should be very few NoneK  File name.File modification time. File owner. File group. File mode. File size. File bytes.M3)Archives have numeric values padded with '\x20' to the right.M4GNU Archives feature a special //D entry that contains the extended names. Those are referred to as / num$, where num is the offset into the //4 entry. In addition, filenames are terminated with L in the archive.M5put an Archive Entry. This assumes that the entries have been preprocessed to account for the extenden file name table section "//" e.g. for GNU Archives. Or that the names have been move into the payload for BSD Archives.M6@Take a filePath and return (mod time, own, grp, mode in decimal)M6%mod time, own, grp, mode (in decimal)Safe &'FQTV 2A sequence of nodes. May be any of four shapes (OO, OC, CO, COC). Open at the entry means single entry, mutatis mutandis for exit. A closedclosed block is a basic/ block and can't be extended further. Clients should avoid manipulating blocks and should stick to either nodes or graphs.M7!Maybe type indexed by closed/open!Maybe type indexed by open/closed 6Either type indexed by closed/open using type families Used at the type level to indicate a "closed" structure which supports control transfer only through the use of named labels---no "fallthrough" is permitted. The number of control-flow edges is unconstrained. uUsed at the type level to indicate an "open" structure with a unique, unnamed control-flow edge flowing in or out.  Fallthrough2 and concatenation are permitted at an open point.LSplit a closed block into its entry node, open middle block, and exit node.#map a function over the nodes of a   A strict !map over a block, with different functions to apply to first nodes, middle nodes and last nodes respectively. The map is strict.M8Fold a function over every node in a block, forward or backward. The fold function must be polymorphic in the shape of the nodes.&      !"#$&     $#" !SafeFT1'(>.,)*+-/0123456789:;<=?@ABCEDFGHIJKLMNOPQRSTUVW1BCEDFGHIJKLMNOPQRST'(>.,)*+-/0123456789:;<=?@AUVWSafe345FTXYZ[ZXY[ (c) Dan DoelBSD3dan.doel@gmail.com experimental+non-portable (multi-parameter type classes)Safe;=>?QV gYA monad transformer for performing backtracking computations layered over another monad mlWRuns a ListT computation with the specified initial success and failure continuations.ghijklghiljkNoneV]=y=GHC's own exception type error messages all take the form:   location:  error BIf the location is on the command line, or in GHC itself, then  location9="ghc". All of the error types below correspond to a  locationx of "ghc", except for ProgramError (where the string is assumed to contain a location already, so we don't print one).z(Some other fatal signal (SIGHUP,SIGTERM){*Prints the short usage msg after the error|AA problem with the command line arguments, but don't print usage.}The  impossible happened._The user tickled something that's known not to work yet, but we're not counting it as a bug.An installation problem.&An error in the user's code, probably.The name of this GHC.M9RShort usage information to display when we are given the wrong cmd line arguments.Show an exception as a string.sShow an exception which can possibly throw other exceptions. Used when displaying exception thrown within TH code.;Append a description of the given exception to this string.Note that this uses %>, which may have some uninitialized fields if invoked before  has been called. If the error message to be printed includes a pretty-printer document which forces one of these fields this call may bottom.Panics and asserts.Panics and asserts.Panics and asserts.HThrow a failed assertion exception for a given filename and line number.Like try, but pass through UserInterrupt and Panic exceptions. Used when we want soft failures when reading interface files, for example. TODO: I'm not entirely sure if this is catching what we really want to catchM:-We use reference counting for signal handlerssTemporarily install standard signal handlers for catching ^C, which just throw an exception in the current thread." yz}{|~"yz}{|~ "None>U#NoneBKM;\The predicates below look costly, but aren't, GHC+GCC do a great job at the big case below.M<nWe really mean .|. instead of + below, but GHC currently doesn't do any constant folding with bitops. *sigh*$SafeNAPowerPC 64-bit ABI4ARM Instruction Set Architecture, Extensions and ABIOperating systems that the native code generator knows about. Having OSUnknown should produce a sensible default, but no promises.Architectures that the native code generator knows about. TODO: It might be nice to extend these constructors with information about what instruction set extensions an architecture might support._Contains enough information for the native code generator to emit code for this platform.7This predicate tells us whether the platform is 32-bit.JThis predicate tells us whether the OS supports ELF-like shared libraries.GThis predicate tells us whether the OS support Mach-O shared libraries.AA&SafeP !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~(SafeUQBranch condition codes.)SafeV/  *Safek Stream m a b is a computation in some Monad m/ that delivers a sequence of elements of type a followed by a result of type b.!More concretely, a value of type  Stream m a b can be run using  runStream in the Monad m, and it delivers eitherthe final result: Left b, or Right (a,str), where a( is the next element in the stream, and str4 is a computation to get the rest of the stream.4Stream is itself a Monad, and provides an operation { that produces a new element of the stream. This makes it convenient to turn existing monadic computations into streams.The idea is that Stream is useful for making a monadic computation that produces values from time to time. This can be used for knitting together two complex monadic operations, so that the producer does not have to produce all its values before the consumer starts consuming them. We make the producer into a Stream, and the consumer pulls on the stream each time it wants a new value.CTurn a Stream into an ordinary list, by demanding all the elements.Turn a list into a #, by yielding each element in turn.&Apply a function to each element of a , lazily/Apply a monadic operation to each element of a , lazilyanalog of the list-based Z on Streams. This is a simple way to map over a Stream while carrying some state around.  +NoneVmExpand occurrences of the $topdir interpolation in a string..Returns a Unix-format path pointing to TopDir.,SafeVomFCheck if ANSI escape sequences can be used to control color in stderr.SafeoNone+F'A call stack constraint, but only when  isDebugOn.@Compose a function with itself n times. (nth rather than twice)3Like filter, only it reverses the sense of the testSUses a function to determine which of two output lists an input element should joinTeases a list of Ls apart into two lists is a kind of K0 that is lazy in the second list (observe the ~) is like Lo but is lazy in the second list. The length of the output is always the same as the length of the first list. is like Lz but is lazy in the second and third lists. The length of the output is always the same as the length of the first list. takes a list of Bools and a list of some elements and filters out these elements for which the corresponding value in the list of Bools is False. This function does not check whether the lists have equal length. takes a list of Bools and two lists as input, and outputs a new list consisting of elements from the last two input lists. For each Bool in the list, if it is Lq;, then it takes an element from the former list. If it is Lp~, it takes an element from the latter list. The elements taken correspond to the index of the Bool in its list. For example: @filterByLists [True, False, True, False] "abcd" "wxyz" = "axcz" AThis function does not check whether the lists have equal length. takes a list of Bools and a list of some elements and partitions the list according to the list of Bools. Elements corresponding to Lq+ go to the left; elements corresponding to Lp go to the right. For example, ;partitionByList [True, False, True] [1,2,3] == ([1,3], [2])D This function does not check whether the lists have equal length.stretchZipWith p z f xs ys stretches ys by inserting z in the places where p returns TrueatLength atLen atEnd ls n unravels list ls to position n . Precisely:  atLength atLenPred atEndPred ls n | n < 0 = atLenPred ls | length ls < n = atEndPred (n - length ls) | otherwise = atLenPred (drop n ls)  &(lengthExceeds xs n) = (length xs > n) '(lengthAtLeast xs n) = (length xs >= n) "(lengthIs xs n) = (length xs == n) %(lengthIsNot xs n) = (length xs /= n) &(lengthAtMost xs n) = (length xs <= n) ((lengthLessThan xs n) == (length xs < n) True if length xs == length ysTrue if length xs /= length ysTrue if length xs <= length ysTrue if length xs < length ysSplit a list into chunks of n elements8Replace the last element of a list with another element.%+spanEnd p l == reverse (span p (reverse l))b. The first list returns actually comes after the second list (when you look at the input list).(=Convert a word to title case by capitalising the first letterM=SFind the "restricted" Damerau-Levenshtein edit distance between two strings. See:  9http://en.wikipedia.org/wiki/Damerau-Levenshtein_distance. Based on the algorithm presented in "A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances" in PSC'02 (Heikki Hyyro). See  *http://www.cs.uta.fi/~helmu/pubs/psc02.pdf and  ,http://www.cs.uta.fi/~helmu/pubs/PSCerr.html for an explanation2mSearch for possible matches to the users input in the given list, returning a small number of ranked resultsOqA sample hash function for Strings. We keep multiplying by the golden ratio and adding. The implementation is: rhashString = foldl' f golden where f m c = fromIntegral (ord c) * magic + hashInt32 m magic = 0xdeadbeef2Where hashInt32 works just as hashInt shown above.Knuth argues that repeated multiplication by the golden ratio will minimize gaps in the hash space, and thus it's a good choice for combining together multiple keys to form one.;Here we know that individual characters c are often small, and this produces frequent collisions if we use ord c alone. A particular problem are the shorter low ASCII and ISO-8859-1 character strings. We pre-multiply by a magic twiddle factor to obtain a good distribution. In fact, given the following test: testp :: Int32 -> Int testp k = (n - ) . length . group . sort . map hs . take n $ ls where ls = [] : [c : l | l <- ls, c <- ['\0'..'\xff']] hs = foldl' f golden f m c = fromIntegral (ord c) * k + hashInt32 m n = 100000!We discover that testp magic = 0.M>A sample (and useful) hash function for Int32, implemented by extracting the uppermost 32 bits of the 64-bit result of multiplying by a 33-bit constant. The constant is from Knuth, derived from the golden ratio: $golden = round ((sqrt 5 - 1) * 2^32)We get good key uniqueness on small inputs (a problem with previous versions): (length $ group $ sort $ map hashInt32 [-32767..65536]) == 65536 + 32768 %'      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOP3$%%     & !"'#( )+,*-./0124:;<=>?@ABCDEFG56789HIJKLMNO'P*9 /302.NoneCZA colour/style for use with coloured.j;Parse the colour scheme from a string (presumably from the  GHC_COLORS environment variable).kdAllow colours to be combined (e.g. bold + red); In case of conflict, right side takes precedence.RSYXWVUTZ[\]^_`abcdefghijZ[\]^_`abcdefghRSYXWVUTijNone+<FzqTakes a list of Maybes and returns the first Just if there is one, or Nothing otherwise.tFlipped version of  fromMaybe, useful for chaining.vTry performing an L action, failing on error.LwLxLyM?M@MAMBMCMDMEMFLmonpqrstuvwxmonxwtpqsruvt4None|Lift an L- operation with 1 argument into another monad}Lift an L. operation with 2 arguments into another monad~Lift an L. operation with 3 arguments into another monadLift an L. operation with 4 arguments into another monadmapAndUnzipM for triplesMonadic version of mapAccumLMonadic version of mapSndMonadic version of concatMapMonadic version of mapMaybeMonadic version of fmapMonadic version of fmapMonadic version of L&, aborts the computation at the first True valueMonad version of L&, aborts the computation at the first False valueMonadic version of orMonadic version of foldl1Monadic version of foldl that discards its resultMonadic version of foldr-Monadic version of fmap specialised for MaybeMonadic version of when#, taking the condition in the monadMonadic version of unless#, taking the condition in the monadcombining function initial stateinputsfinal state, outputs%&$|}~%&$|}~/NoneDK'A 5 is a pointer to some null-terminated array of bytes.A  is an array of bytes, hashed to support fast O(1) comparison. It is also associated with a character encoding, so that we know how to convert a M to the local encoding, or to the Z-encoding used by the compiler internally.@s support a memoized conversion to the Z-encoding via zEncodeFS. Create a  from an existing MG#; the difference between this and L is that we don't have to copy the bytes if the string is new to the table. Create a  from an existing MG#; the difference between this and L is that we don't have to copy the bytes if the string is new to the table.Creates a UTF-8 encoded  from a L Creates a  from a UTF-8 encoded [Word8]MHCreates a Z-encoded  from a LReturns the length of the  in charactersReturns True if this Q is not Z-encoded but already has a Z-encoding cached (used in producing stats).Returns True if the  is empty"Unpacks and decodes the FastString1Gives the UTF-8 encoded bytes corresponding to a !Returns a Z-encoded version of a w. This might be the original, if it was already Z-encoded. The first time this function is applied to a particular , the results are memoized. Outputs a  with no decoding at all,, that is, you get the actual bytes in the  written to the MI.Wrap an unboxed address into a . Encode a L into a newly allocated i using Latin-1 encoding. The original string must not contain non-Latin-1 characters (above codepoint 0xff). Decode a  back into a LH using Latin-1 encoding. This does not free the memory associated with .Compute the length of a -, which must necessarily be null-terminated.** Nonem $Is this an acceptable variable name?'Is this an acceptable constructor name? Is this an acceptable type name?`Is this an acceptable alphanumeric variable name, assuming it starts with an acceptable letter?_Is this an acceptable symbolic variable name, assuming it starts with an acceptable character?cIs this an acceptable alphanumeric constructor name, assuming it starts with an acceptable letter?bIs this an acceptable symbolic constructor name, assuming it starts with an acceptable character?MJIs this string an acceptable id, possibly with a suffix of hashes, but not worrying about case or clashing with reserved words?MKcIs this character acceptable in an identifier (after the first letter)? See alexGetByte in Lexer.xMLDAll reserved identifiers. Taken from section 2.4 of the 2010 Report.MMBAll reserved operators. Taken from section 2.4 of the 2010 Report.MN@Does this string contain only dashes and has at least 2 of them?QRSTTRSQ2NoneC  3"(c) The University of Glasgow 2001 BSD-style (see the file LICENSE)!David Terei <code@davidterei.com>stableportableNoneD=4+Rendering mode.NormalWith zig-zag cuts%No indentation, infinitely long linesAll on one lineA rendering style.The rendering modeLength of line, in chars%Ratio of line length to ribbon lengthThe TextDetails data typeOA TextDetails represents a fragment of text that will be output at some point.A single Char fragmentA whole String fragmentMOMRDoc is a "reduced GDoc", guaranteed not to have a top-level Above or Beside.The abstract type of documents. A Doc represents a *set* of layouts. A Doc with no occurrences of Union or NoDoc represents just one layout.AA document of height and width 1, containing a literal character.5A document of height 1 containing a literal string.  satisfies the following laws:  s *  t =  (sKt) "" * x = x, if x non-empty8The side condition on the last law is necessary because  "" has height 1, while  has no height.Some text with any width. (text s = sizedText (length s) s)YSome text, but without any width. Use for non-printing text such as a HTML or Latex tags2The empty document, with no height and no width.  is the identity for *, +, ( and )), and anywhere in the argument list for ,, !, ", #, . etc. Returns Lq if the document is emptyMP3Produce spacing for indenting the amount specified.Aan old version inserted tabs being 8 columns apart in the output. Apply  to  if boolean is true.MQ*Perform some simplification of a built up GDoc.!List version of *."List version of +.#List version of (.$[Nest (or indent) a document by a given number of positions (which may also be negative). $ satisfies the laws: $ 0 x = x $ k ($ k' x) = $ (k+k') x $ k (x * y) = $ k z * $ k y $ k (x ( y) = $ k x ( $ k y $ k  = x * $ k y = x * y, if x non-empty6The side condition on the last law is needed because  is a left identity for *.% "hang d1 n d2 = sep [d1, nest n d2]&Apply % to the arguments if the first  is not empty.' @punctuate p [d1, ... dn] = [d1 <> p, d2 <> p, ... dn-1 <> p, dn](Above, except that if the last line of the first argument stops at least one position before the first line of the second begins, these two lines are overlapped. For example: % text "hi" $$ nest 5 (text "there") lays out as  hi there rather than  hi there( is associative, with identity , and also satisfies(x ( y) * z = x ( (y * z), if y non-empty.)Above, with no overlapping. ) is associative, with identity .* Beside. * is associative, with identity .+;Beside, separated by space, unless one of the arguments is . + is associative, with identity .,Either " or #.-Either ! or #.."Paragraph fill" version of -./"Paragraph fill" version of ,.MRfirstE returns its first argument if it is non-empty, otherwise its second.0The default style (1mode=PageMode, lineLength=100, ribbonsPerLine=1.5).1 Render the Doc to a String using the given Style.MSDefault TextDetails printer2 The general rendering interface. A ';' character A ',' character A : character A space characterA '=' characterA '(' characterA ')' characterA '[' characterA ']' characterA '{' characterA '}' character int n = text (show n) integer n = text (show n) float n = text (show n) double n = text (show n) rational n = text (show n)Wrap document in '...'Wrap document in "..."Wrap document in (...)Wrap document in [...]Wrap document in {...}2Rendering mode Line lengthRibbons per lineWhat to do with textWhat to do at the end The documentResultF      !"#$%&'()*+,-./012345F     *+!"()#,-/.$%&' 012345(5)5*6+6!None8<u'Represents a pretty-printable document.To display an u, use , , , or . Avoid calling D. directly as it breaks the abstraction layer.wJust warn about an assertion failure, recording the given file and line number. Should typically be accessed with the WARN macros7BWhen we print a binder, we often want to print its type too. The OutputableBndr class encapsulates this idea.<< is used to tell the thing that prints binder what language construct is binding the identifier. This can be used to decide how much info to print. Also see Note [Binding-site specific printing] in PprCore=The x in (x. e)>+The x in case scrut of x { (y,z) -> ... }?+The y,z in case scrut of x { (y,z) -> ... }@The x in (let x = rhs in e)A(Class designating that some type has an u representationMT<The most recently used colour. This allows nesting colours.JcFor a given package, we need to know whether to print it with the component id to disambiguate it.K`For a given module, we need to know whether to print it with a package name to disambiguate it.L given an original name, this function tells you which module name it should be qualified with when printing for the user, if any. For example, given Control.Exception.catch, which is in scope as Exception.catch, this function will return Just  Exceptiony. Note that the return value is a ModuleName, not a Module, because in source code, names are qualified by ModuleNames.MWhen printing code that contains original names, we need to map the original names back to something the user understands. This is the purpose of the triple of functions that gets passed around when rendering u.Z$NB: This won't ever show package IDsg!Style for printing error messagesm(This is not a recommended way to render u,, since it breaks the abstraction layer of u. Prefer to use , , , or  instead.o6Truncate a list that is longer than the current depth.~,Says what to do with and without -dppr-debug7Says what to do with -dppr-debug; without, return emptyThe analog of 4 for u, which tries to make sure the terminal doesn't get screwed up by the ANSI color codes if an exception is thrown during pretty-printing.Like  but appends an extra newline.Like  but specialized with  and MU V-. This is typically used to output C-- code.An efficient variant of  specialized for  that outputs to a .doublePrec p n shows a floating point number n with p. digits of precision after the decimal point.Indent u some specified amount Join two u$ together horizontally without a gap Join two u. together horizontally with a gap between them Join two u[ together vertically; if there is no vertical overlap it "dovetails" the two onto one line Join two u together vertically Concatenate u horizontally Concatenate u+ horizontally with a space between each one Concatenate u vertically with dovetailingSeparate: is either like  or like , depending on what fitsCatenate: is either like  or like , depending on what fitswA paragraph-fill combinator. It's much like sep, only it keeps fitting things on one line until it can't fit any more.This behaves like , but it uses ( for horizontal conposition rather than This behaves like D, but does not indent the second document when the header is empty..Apply the given colour/style for the argument.)Only takes effect if colours are enabled.2Special combinator for showing character literals./Special combinator for showing string literals.3Special combinator for showing bytestring literals.0Special combinator for showing unboxed literals.AReturns the separated concatenation of the pretty printed things.GReturns the comma-separated concatenation of the pretty printed things.NReturns the comma-separated concatenation of the quoted pretty printed things. ,y,z] ==> `x', `y', `z'&Converts an integer to a verbal index: MspeakNth 1 = text "first" speakNth 5 = text "fifth" speakNth 21 = text "21st"-Converts an integer to a verbal multiplicity: CspeakN 0 = text "none" speakN 5 = text "five" speakN 10 = text "10"cConverts an integer and object description to a statement about the multiplicity of those objects: speakNOf 0 (text "melon") = text "no melons" speakNOf 1 (text "melon") = text "one melon" speakNOf 3 (text "melon") = text "three melons"IDetermines the pluralisation suffix appropriate for the length of a list: Rplural [] = char 's' plural ["Hello"] = empty plural ["Hello", "World"] = char 's'BDetermines the form of to be appropriate for the length of a list: ]isOrAre [] = text "are" isOrAre ["Hello"] = text "is" isOrAre ["Hello", "World"] = text "are"BDetermines the form of to do appropriate for the length of a list: `doOrDoes [] = text "do" doOrDoes ["Hello"] = text "does" doOrDoes ["Hello", "World"] = text "do"&Throw an exception saying "bug in GHC"3Throw an exception saying "this isn't finished yet"WThrow an exception saying "bug in pgm being compiled" (used for unusual program errors)!If debug output is on, show some u on the screenpprTraceIt desc x is equivalent to pprTrace desc (ppr x) xpprTraceException desc x action< runs action, printing a message if it throws an exception.!If debug output is on, show some u7 on the screen along with a call stack when available.Panic with an assertation failure, recording the given file and line number. Should typically be accessed with the ASSERT family of macros The headerAmount to indent the hung body3The hung body, indented and placed below the headerThe punctuationQThe list that will have punctuation added between every adjacent pair of elementsPunctuated list#The pretty printing function to useThe things to be pretty printedua where the things have been pretty printed, comma-separated and finally packed into a paragraph.#The pretty printing function to useThe things to be pretty printedu_ where the things have been pretty printed, bar-separated and finally packed into a paragraph.uDvwx798:;<=>?@ABCEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ABC798:;uDkvx<=>?@XUVWMNOPQLKJ`YaZ\b[]^_EFGHIwrsqlmjnopx|{zytuvgfdecihRST~}w8NoneDɌ .A StringBuffer is an internal pointer to a sized chunk of bytes. The bytes are intended to be *immutable*. There are pure operations to read the contents of a StringBuffer.GA StringBuffer may have a finalizer, depending on how it was obtained.3Read a file into a .K. The resulting buffer is automatically managed by the garbage collector.MV.Skip the byte-order mark if there is one (see  1744 and ;6016), and return the new position of the handle in bytes.This is better than treating #FEFF as whitespace, because that would mess up layout. We don't have a concept of zero-width whitespace in Haskell: all whitespace codepoints have a width of one column.6 Encode a L into a .T as UTF-8. The resulting buffer is automatically managed by the garbage collector.7/Return the first UTF-8 character of a nonempty .2 and as well the remaining portion (analogous to ). Warning:# The behavior is undefined if the .L is empty. The result shares the same buffer as the original. Similar to 0, if the character cannot be decoded as UTF-8, '\0' is returned.8/Return the first UTF-8 character of a nonempty . (analogous to ). Warning:# The behavior is undefined if the . is empty. Similar to 0, if the character cannot be decoded as UTF-8, '\0' is returned.: Return a .7 with the first UTF-8 character removed (analogous to ). Warning:# The behavior is undefined if the .? is empty. The result shares the same buffer as the original.; Return a . with the first n bytes removed. Warning:2 If there aren't enough characters, the returned .x will be invalid and any use of it may lead to undefined behavior. The result shares the same buffer as the original.<-Compute the difference in offset between two . s that share the same buffer. Warning:# The behavior is undefined if the .s use separate buffers.=Check whether a . is empty (analogous to ).> Computes a .K which points to the first character of the wanted line. Lines begin at 1.?Decode the first n bytes of a . as UTF-8 into a L. Similar to K, if the character cannot be decoded as UTF-8, they will be replaced with '\0'.AReturn the previous n* characters (or fewer if we are less than n characters into the buffer.;n, the number of bytes?n, the number of bytes@n, the number of bytes./1023456789:;<=>?@AB./1023456789=:;<>?@AB9Noner DEFGHIJKL DEFGHIJKL:NoneTUVWXYZ[\]^_`aTU[V\XWYZ^]a_`W5X5\5;Nonek4Calculate the set difference of two lists. This is O((m + n) log n), where we subtract a list of n elements from a list of m elements.3Extremely short cases are handled specially: When m or n is 0, this takes O(1) time. When m is 1, it takes O(n) time. hijklmnopqrst jkhmponlqstri<None&'щw-Simple data type to represent JSON documents. uvw}|{zyx~ w}|{zyx~uv=None "#01345;='FWe attach SrcSpans to lots of things, so let's have a datatype for it. Source SpanA d identifies either a specific portion of a text file or a human-readable description of a location.A  delimits a portion of a text file. It could be represented by a pair of (line,column) coordinates, but in fact we optimise slightly by using more compact representations for single-line and zero-length spans, both of which are quite common.-The end position is defined to be the column after the end of the span. That is, a span of (1,1)-(1,2) is one character long, and a span of (1,1)-(1,1) is zero characters long.Real Source SpanSource LocationReal Source Location'Represents a single point within a fileBuilt-in "bad"  values for particular locationsBuilt-in "bad"  values for particular locationsBuilt-in "bad"  values for particular locationsCreates a "bad" 4 that has no detailed information about its locationGives the filename of the %Raises an error when used on a "bad" %Raises an error when used on a "bad"  Move the  down by one line if the character is a newline, to the next 8-char tabstop if it is a tab, and across by one character in any other caseBuilt-in "bad" ,s for common sources of location uncertaintyBuilt-in "bad" ,s for common sources of location uncertaintyBuilt-in "bad" ,s for common sources of location uncertaintyCreate a "bad" " that has not location information Create a  corresponding to a single point Create a  between two points in a fileMWLq0 if the span is known to straddle only one line.MXLq if the span is a single point Create a  between two points in a file Combines two w into one that spans at least all the characters within both spans. Assumes the "file" part is the same in both inputsMY Combines two w into one that spans at least all the characters within both spans. Assumes the "file" part is the same in both inputsCConvert a SrcSpan into one that represents only its first character Test if a 1 is "good", i.e. has precise location information@True if the span is known to straddle only one line. For "bad" , it returns FalseTests whether the first span "contains" the other span, meaning that it covers at least as much source code. True where spans are equal.)Returns the location at the start of the  or a "bad"  if that is unavailable'Returns the location at the end of the  or a "bad"  if that is unavailableObtains the filename for a  if it is "good"Combine locations from two % things and add them to a third thing.Tests whether the two located things are equal,Tests the ordering of the two located things$Alternative strategies for ordering s$Alternative strategies for ordering s$Alternative strategies for ordering s@Determines whether a span encloses a given line and column index4Determines whether a span is enclosed by another one*The span that may be enclosed by the otherThe span it may be enclosed by<<?None1>$Located Haskell Documentation StringHaskell Documentation StringANone(Generate a section type (e.g.  @progbits). See #13937. section typepretty assembler fragmentBNone1]1 = $(f x y) =* f x y, i.e. a naked top level expressionAn integer or infinityFractional LiteralMUsed (instead of Rational) to represent exactly the floating point literal that we encountered in the user's source program. This allows us to pretty-print exactly what the user wrote, which is important e.g. for floating point numbers that can't represented as Doubles (we used to via Double for pretty-printing). See also #2245.Integral LiteralUsed (instead of Integer) to represent negative zegative zero which is required for NegativeLiterals extension to correctly parse  `-0::Double`$ as negative zero. See also #13211.Inline SpecificationRule Match Information Phase NumbervFor when code is generated, e.g. TH, deriving. The pretty printer will then make its own representation of the item. Default Method Specification' Inside Lambda(Interesting Context)!identifier Occurrence Information*2There are many occurrences, or unknown occurrences+OMarks unused variables. Sometimes useful for lambda and case-bound variables.,3Occurs exactly once (per branch), not inside a rule-This identifier breaks a loop of mutually recursive functions. The field marks whether it is only a loop breaker due to a reference in a rule3Embedding Projection pairA'This instance must not overlap another A- instance. However, it may be overlapped by C instances, and it may overlap B instances.BuSilently ignore this instance if you find a more specific one that matches the constraint you are trying to resolveYExample: constraint (Foo [Int]) instance Foo [Int] instance {- OVERLAPPABLE  -} Foo [a]Since the second instance has the Overlappable flag, the first instance will be chosen (otherwise its ambiguous which to choose)CWSilently ignore any more general instances that may be used to solve the constraint..Example: constraint (Foo [Int]) instance {- OVERLAPPING 4-} Foo [Int] instance Foo [a]Since the first instance has the Overlapping flag, the second---more general---instance will be ignored (otherwise it is ambiguous which to choose)DEquivalent to having both C and B flags.EBehave like Overlappable and Overlapping, and in addition pick an an arbitrary one if there are multiple matching candidates, and don't worry about later instantiationExample: constraint (Foo [b]) instance {-# INCOHERENT -} Foo [Int] instance Foo [a] Without the Incoherent flag, we'd complain that instantiating bY would change which instance was chosen. See also note [Incoherent instances] in InstEnvFvThe semantics allowed for overlapping instances for a particular instance. See Note [Safe Haskell isSafeOverlap] (in ) for a explanation of the I field.u : u '{-# OVERLAPPABLE'" or '{-# OVERLAPPING'" or '{-# OVERLAPS'" or '{-# INCOHERENT', u `#-}`,JHWhich technique the user explicitly requested when deriving an instance.KGHC's "standard" strategy, which is to implement a custom instance for the data type. This only works for certain types that GHC knows about (e.g., L, LU, L( when -XDeriveFunctor is enabled, etc.)L -XDeriveAnyClassM -XGeneralizedNewtypeDerivingQRecursivity FlagZCaptures the fixity of declarations as they are parsed. This is not necessarily the same as the fixity declaration, as the normal fixity may be overridden using parens or backticks.d Warning Text6reason/explanation from a WARNING or DEPRECATED pragmagrA String Literal in the source, including its original raw format for use by source to source manipulation tools.rIf the Id is a lambda-bound variable then it may have lambda-bound variable info. Sometimes we know whether the lambda binding this variable is a "one-shot" lambda; that is, whether it is applied at most once.This information may be useful in optimisation, as computations may safely be floated inside such a lambda without risk of duplicating work.sNo informationt#The lambda is applied at most once.v A *zero-indexed* constructor tagwConstructor TagUType of the tags associated with each constructor possibility or superclass selectorxThe number of arguments that a join point takes. Unlike the arity of a function, this is a purely syntactic property and is fixed when the join point is created (or converted from a value). Both type and value arguments are counted.yRepresentation ArityThe number of represented arguments that can be applied to a value before it does "real work". So: fib 100 has representation arity 0 x -> fib x has representation arity 1 ( x, y +) -> fib (x + y) has representation arity 2zThe number of value arguments that can be applied to a value before it does "real work". So: fib 100 has arity 0 x -> fib x has arity 1 See also Note [Definition of arity] in CoreArityQTags are allocated from here for real constructors or for superclass selectors$It is always safe to assume that an Id) has no lambda-bound variable information=Pretty print an alternative in an unboxed sum e.g. "| a | |"./Special combinator for showing string literals.A representation of infinityMZAdd two sM[ Multiply two sTurn a positive number into an , where 0 represents infinityInject any integer into an #The pretty printing function to useThe things to be pretty printedAlternative (one-based)ArityuU where the alternative havs been pretty printed and finally packed into a paragraph.      !"#%$&'()*+,-./0123456789:;<=>?@BCDEAFGHIJKLMNOPQRSTVUWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~k{|}~wvzyxulmndefghijab]^_`Z[\QRSNOPcWXYJKLMFGHI@BCDEATVU;<=>?789:rst)*+,-./012'&(#%$3456 !"opq     CNoneDnk2%Class of things that we can obtain a 4 from4Unique identifier.The type of unique identifiers that are used in many places in GHC for fast ordering and equality tests. You should generate these with the functions from the  UniqSupply moduleBThese are sometimes also referred to as "keys" in comments in GHC.M\SHow many bits are devoted to the unique index (as opposed to the class character).<eThe interface file symbol-table encoding assumes that known-key uniques fit in 30-bits; verify this.HSee Note [Symbol table representation of names] in BinIface for details.(23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXY(4235=?67:;89KY><@HIECBJAUVWXPRSQTLMNODFGDNone7`)A monad for generating unique identifiersaGet a new UniqueSupplybGet a new unique identifierc.Get an infinite list of new unique identifiersd/A monad which just gives the ability to obtain 4se Unique SupplyA value of type e is unique, and it can supply one distinct 4S. Also, from the supply, one can also manufacture an arbitrary number of further  UniqueSupplyD values, which will be distinct from the first and from all others.gCreate a unique supply out of thin air. The character given must be distinct from those of all calls to this function in the compiler for the values generated to be truly unique.h Build two e6 from a single one, each of which can supply its own 4.iCreate an infinite list of e from a single onej Obtain the 4 from this particular ekObtain an infinite list of 4: that can be generated by constant splitting of the supplyl Obtain the 4 from this particular e, and a new supplym Build three e< from a single one, each of which can supply its own uniquen Build four e< from a single one, each of which can supply its own uniqueoRun the d action, returning the final epRun the d action, discarding the final e`bacdefghijklmnopqrstejklghimnd`bacsopqtrfENone1K1`plusUFM_CD f m1 d1 m2 d2` merges the maps using f! as the combinding function and d1 resp. d2/ as the default value if there is no entry in m1 reps. m2-. The domain is the union of the domains of m1 and m2.Representative example: UplusUFM_CD f {A: 1, B: 2} 23 {B: 3, C: 4} 42 == {A: f 1 42, B: f 2 3, C: f 23 4 } Pretty-print a non-deterministic set. The order of variables is non-deterministic and for pretty-printing that shouldn't be a problem. Having this function helps contain the non-determinism created with nonDetEltsUFM.Pretty-print a non-deterministic set. The order of variables is non-deterministic and for pretty-printing that shouldn't be a problem. Having this function helps contain the non-determinism created with nonDetUFMToList.Determines the pluralisation suffix appropriate for the length of a set in the same way that plural from Outputable does for lists.The things to be pretty printed3The pretty printing function to use on the elementsu+ where the things have been pretty printedThe things to be pretty printed3The pretty printing function to use on the elementsu+ where the things have been pretty printed<z{|}~<z{}~|FNone1K  converts a z a into a  a0 assuming, without checking, that it maps each 4 to a value that has that 4. See Note [UniqSet invariant].##GNone13GNMaps indexed by 2 keysHNone Graph nodes. Represents a thing that can conflict with another thing. For the register allocater the nodes represent registers. "A unique identifier for this node. LThe class of this node, determines the set of colors that can be used. The color of this node, if any.9Neighbors which must be colored differently to this node.(Colors that cannot be used by this node.=Colors that this node would prefer to be, in decending order.>Neighbors that this node would like to be colored the same as.The Interference graph. There used to be more fields, but they were turfed out in a previous revision. maybe we'll want more later..All active nodes in the graph.A fn to check if a node is trivially colorable For graphs who's color classes are disjoint then a node is 'trivially colorable' when it has less neighbors and exclusions than available colors for that node.hFor graph's who's color classes overlap, ie some colors alias other colors, then this can be a bit more tricky. There is a general way to calculate this, but it's likely be too slow for use in the code. The coloring algorithm takes a canned function which can be optimised by the user to be specific to the specific graph being colored.for details, see "A Generalised Algorithm for Graph-Coloring Register Allocation" Smith, Ramsey, Holloway - PLDI 2004.An empty graph.5Modify the finite map holding the nodes in the graph.An empty node.          INone13<Ǻ (Type of unique deterministic finite mapsM]+A type of values tagged with insertion timeM^insertion time%ePerforms a deterministic fold over the UniqDFM. It's O(n log n) while the corresponding function on z is O(n).&ePerforms a nondeterministic fold over the UniqDFM. It's O(n), same as the corresponding function on z[. If you use this please provide a justification why it doesn't introduce nondeterminism.* Converts g to a list, with elements in deterministic order. It's O(n log n) while the corresponding function on z is O(n).4>Partition UniqDFM into two UniqDFMs according to the predicate5(Delete a list of elements from a UniqDFM67This allows for lossy conversion from UniqDFM to UniqFM8(Apply a function to a particular element9The expression (alterUDFM f k map) alters value x at k, or absence thereof. alterUDFM can be used to insert, delete, or update a value in UniqDFM. Use addToUDFM, delFromUDFM or adjustUDFM when possible, they are more efficient.:,Map a function over every value in a UniqDFM>The things to be pretty printed3The pretty printing function to use on the elementsu+ where the things have been pretty printed& !"#$%&'()*+,-./0123456789:;<=>&589:! "#$%'()+,-./012734;<>*6&=JNone GHIJKLMNOPQRSTUVWXYZ[\]GMNHIJKLOPQRSTUVWXYZ[\]KNoneΎ_A non-deterministic set of FastStrings. See Note [Deterministic UniqFM] in UniqDFM for explanation why it's not deterministic and why it matters. Use DFastStringEnv if the set eventually gets converted into a list or folded over in a way where the order changes the generated code.^_`abcdefghijklmnopqrstu_f`ajlbcmphiedqnogk^trsuLNoneшvThe class of a register. Used in the register allocator. We treat all registers in a class as being interchangable.vwxyzvwxyzMNoneN~"A subcomponent of another registerA register of some classWorst case displacementTa node N of classN has some number of neighbors, all of which are from classC.(worst neighbors classN classC) is the maximum number of potential colors for N that can be lost by coloring its neighbors.pThis should be hand coded/cached for each particular architecture, because the compute time is very long..For a node N of classN and neighbors of classesC (bound classN classesC) is the maximum number of potential colors for N that can be lost by coloring its neighbors.@The total squeese on a particular node with a list of neighbors.A version of this should be constructed for each particular architecture, possibly including uses of bound, so that alised registers don't get counted twice, as per the paper.M_powerset (for lists)M`powersetLS (list of sets)so we can put regs in UniqSets~~NNone!Determine the class of a register4Determine all the regs that make up a certain class.`Determine the common name of a reg returns Nothing if this reg is not part of the machine.!Which regs alias what other regs.COptimised versions of RegColorBase.{worst, squeese} specific to x86ONone"A register, either virtual or realRealRegs are machine regs which are available for allocation, in the usual way. We know what class they are, because that's part of the processor's architecture.RealRegPairs are pairs of real registers that are allocated together to hold a larger value, such as with Double regs on SPARC.4An identifier for a primitive real machine register.The patch function supplied by the allocator maps VirtualReg to RealReg regs, but sometimes we want to apply it to plain old Reg.Print a reg in a generic manner If you want the architecture specific names, then use the pprReg function from the appropriate Ppr module.PNoneQNone345FT6RNone &';=FQTVZGraph' is abstracted over the block type, so that we can build graphs of annotated blocks for example (Compiler.Hoopl.Dataflow needs this).@A control-flow graph, which may take any of four shapes (O/O, OC, CO, C/C). A graph open at the entry has a single, distinguished, anonymous entry point; if a graph is closed at the entry, its entry point(s) are supplied by a context.UGives access to the anchor points for nonlocal edges as well as the edges themselvesMaBody abstracted over block5A (possibly empty) collection of closed/closed blocksMaps over all nodes in a graph. Function  enables a change of representation of blocks, nodes, or both. It lifts a polymorphic block transform into a polymorphic graph transform. When the block representation stabilizes, a similar function should be provided for blocks.Mb(This is the most important traversal over this data structure. It drops unreachable code and puts blocks in an order that is good for solving forward dataflow problems quickly. The reverse order is good for solving backward dataflow problems quickly. The forward order is also reasonably good for emitting instructions, except that it will not usually exploit Forrest Baskett's trick of eliminating the unconditional branch from a loop. For that you would need a more serious analysis, probably based on dominators, to identify loop headers.The ubiquity of  postorder_dfs' is one reason for the ubiquity of the LGraph3 representation, when for most purposes the plain W representation is more mathematically elegant (but results in more complicated code).+Here's an easy way to go wrong! Consider - A -> [B,C] B -> D C -> D c Then ordinary dfs would give [A,B,D,C] which has a back ref from C to D. Better to get [A,B,C,D] Traversal:  postorder_dfs returns a list of blocks reachable from the entry of enterable graph. The entry and exit are *not* included. The list has the following property:nSay a "back reference" exists if one of a block's control-flow successors precedes it in the output list1Then there are as few back references as possibletThe output is suitable for use in a forward dataflow problem. For a backward problem, simply reverse the list. ( postorder_dfsu is sufficiently tricky to implement that one doesn't want to try and maintain both forward and backward versions.)"The label of a first node or blockGives control-flow successorsSNone"e9Pretty print a graph in a somewhat human readable format.sPretty print a graph in graphviz .dot format. Conflicts get solid edges. Coalescences get dashed edges.McNodes in the graph are doubly linked, but we only want one edge for each conflict if the graphviz graph. Traverse over the graph, but make sure to only print the edges for each node once.What graphviz color to use for each node color It's usually safe to return X11 style colors here, ie "red", "green" etc or a hex triplet #aaff55 etcTNoneZLookup a node from the graph.>Get a node from the graph, throwing an error if it's not there-Add a node to the graph, linking up its edges/Delete a node and all its edges from the graph.LModify a node in the graph. returns Nothing if the node isn't present.Get the size of the graph, O(n)Union two graphs together.Add a conflict between nodes to the graph, creating the nodes required. Conflicts are virtual regs which need to be colored differently.UDelete a conflict edge. k1 -> k2 returns Nothing if the node isn't in the graphAdd some conflicts to the graph, creating nodes if required. All the nodes in the set are taken to conflict with each other.qAdd an exclusion to the graph, creating nodes if required. These are extra colors that the node cannot use. Add a coalescence edge to the graph, creating nodes if requried. It is considered adventageous to assign the same color to nodes in a coalesence. 4Delete a coalescence edge (k1 -> k2) from the graph. Add a color preference to the graph, creating nodes if required. The most recently added preference is the most prefered. The algorithm tries to assign a node it's prefered color if possible. Do aggressive coalescing on this graph. returns the new graph and the list of pairs of nodes that got coalesced together. for each pair, the resulting node will have the least key and be second in the pair. sCoalesce this pair of nodes unconditionally / aggressively. The resulting node is the one with the least key.returns: Just the pair of keys if the nodes were coalesced the second element of the pair being the least one3Nothing if either of the nodes weren't in the graph Freeze a node This is for the iterative coalescer. By freezing a node we give up on ever coalescing it. Move all its coalesce edges into the frozen set - and update back edges from other nodes. Freeze one node in the graph This if for the iterative coalescer. Look for a move related node of low degree and freeze it.4We probably don't need to scan the whole graph looking for the node of absolute lowest degree. Just sample the first few and choose the one with the lowest degree out of those. Also, we don't make any distinction between conflicts of different classes.. this is just a heuristic, after all.IDEA: freezing a node might free it up for Simplify.. would be good to check for triv right here, and add it to a worklist if known triv/non-move nodes. NFreeze all the nodes in the graph for debugging the iterative allocator. 7Find all the nodes in the graph that meet some criteria validate the internal structure of a graph all its edges should point to valid nodes If they don't then throw an errorMdeIf this node is colored, check that all the nodes which conflict with it have different colors. MSlurp out a map of how many nodes had a certain number of conflict neighbours Set the color of a certain node fIf True, coalesce nodes even if this might make the graph less colorable (aggressive coalescing) fIf True, coalesce nodes even if this might make the graph less colorable (aggressive coalescing)!keys of the nodes to be coalesced key of the node to freeze the graphgraph with that node frozen (extra debugging info to display on error-whether this graph is supposed to be colored.graph to validatevalidated graphMdTrue if this node is ok 9(conflict neighbours, num nodes with that many conflicts)                  UNoner Try to color a graph with this set of colors. Uses Chaitin's algorithm to color the graph. The graph is scanned for nodes which are deamed 'trivially colorable'. These nodes are pushed onto a stack and removed from the graph. Once this process is complete the graph can be colored by removing nodes from the stack (ie in reverse order) and assigning them colors different to their neighbors.MeuScan through the conflict graph separating out trivially colorable and potentially uncolorable (problem) nodes.Checking whether a node is trivially colorable or not is a resonably expensive operation, so after a triv node is found and removed from the graph it's no good to return to the starte of the graph and recheck a bunch of nodes that will probably still be non-trivially colorable.@To ward against this, during each pass through the graph we collect up a list of triv nodes that were found, and only remove them once we've finished the pass. The more nodes we can delete at once the more likely it is that nodes we've already checked will become trivially colorable for the next pass.TODO: add work lists to finding triv nodes is easier. If we've just scanned the graph, and removed triv nodes, then the only nodes that we need to rescan are the ones we've removed edges from.Mf)Try to assign a color to all these nodes.MgSelect a color for a certain node taking into account preferences, neighbors and exclusions. returns Nothing if no color can be assigned to this node. "whether to do iterative coalescing6how many times we've tried to color this graph so far.>map of (node class -> set of colors available for this class).3fn to decide whether a node is trivially colorable.Ufn to choose a node to potentially leave uncolored if nothing is trivially colorable.the graph to color.Me"whether to do iterative coalescing2fn to decide whether a node is trivially colorableUfn to choose a node to potentially leave uncolored if nothing is trivially colorable.the graph to scanMf>map of (node class -> set of colors available for this class). the graphnodes to assign a color to.Mg>map of (node class -> set of colors available for this class). the graph&key of the node to select a color for.+               WNone &',;=DFV^ Information we keep around during interface file serialization/deserialization. Namely we keep the functions for serializing and deserializing ss and Ns. We do this because we actually use serialization in two distinct settings,+When serializing interface files themselvesjWhen computing the fingerprint of an IfaceDecl (which we computing by hashing its Binary serialization)@These two settings have different needs while serializing Names:|Names in interface files are serialized via a symbol table (see Note [Symbol table representation of names] in BinIface).During fingerprinting a binding Name is serialized as the OccName and a non-binding Name is serialized as the fingerprint of the thing they represent. See Note [Fingerprinting IfaceDecls] for further discussion. serialize a non-binding s( (e.g. a reference to another binding). serialize a binding s (e.g. the name of an IfaceDecl) !$Get access to the underlying buffer.0It is quite important that no references to the Mh; leak out of the continuation lest terrible things happen. 0how to deserialize ss 1how to serialize non-binding sshow to serialize binding ss%                 ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4%         % ' ( & " ) ! * + # $ , - / .         0 1 2 3 40None"#>?}6A  consists of the package name, package version, component ID, the transitive dependencies of the component, and other information to uniquely identify the source code and build configuration of a component.This used to be known as an InstalledPackageId7, but a package can contain multiple components and a ` uniquely identifies a component within a package. When a package only has one component, the  coincides with the InstalledPackageIdAn installed unit identifier identifies a library which has been installed to the package database. These strings are provided to us via the  -this-unit-id flag. The library in question may be definite or indefinite; if it is indefinite, none of the holes have been filled (we never install partially instantiated libraries.) Put another way, an installed unit id is either fully instantiated, or not instantiated at all./Installed unit identifiers look something like p+af23SAj2dZ219, or maybe just p if they don't use Backpack.lA unit identifier identifies a (possibly partially) instantiated library. It is primarily used as part of , which in turn is used in Name=, which is used to give names to entities when typechecking.#There are two possible forms for a . It can be a  A, in which case we just have a string that uniquely identifies some fully compiled, installed library we have on disk. However, when we are typechecking a library with missing holes, we may need to instantiate a library on the fly (in which case we don't have any on-disk representation.) In that case, you have an  Q, which explicitly records the instantiation, so that we can substitute over it.2A ModuleName is essentially a simple string, e.g.  Data.List.A Module is a pair of a  and a .Module variables (i.e.  Hd) which can be instantiated to a specific module at some later point in time are represented with  set to Mi* (this allows us to avoid having to make  a partial operation.) qA map keyed off of s (actually, their 4Ls) Has deterministic folds and can be deterministically converted to a list rA map keyed off of s (actually, their 4s) s A set of s tA map keyed off of s uNSubstitution on module variables, mapping module names to module identifiers. vA map keyed off of  z wA  w is an f with the invariant that it only refers to a definite library; i.e., one we have generated code for. zA  z is a  which contains a . JThe full hashed unit identifier, including the component id and the hash. A unit identifier which identifies an indefinite library (with holes) that has been *on-the-fly* instantiated with a substitution  . In fact, an indefinite unit identifier could have no holes, but we haven't gotten around to compiling the actual library yet.?An indefinite unit identifier pretty-prints to something like p[H= H ,A=aimpl:A>] (p is the 5, and the brackets enclose the module substitution). A private, uniquely identifying representation of a UnitId. This string is completely private to GHC and is just used to get a unique; in particular, we don't use it for symbols (indefinite libraries are not compiled). Cached unique of  . MThe component identity of the indefinite library that is being instantiated. The sorted (by !) instantiations of this library. (A cache of the free module variables of  unitIdInsts&. This lets us efficiently tell if a w has been fully instantiated (free module variables are empty) and whether or not a substitution can have any effect. Module LocationlWhere a module lives on the file system: the actual locations of the .hs, .hi and .o files, if we have them Add the -boot suffix to .hs, .hi and .o files Add the -boot suffix if the Bool argument is True Add the -boot4 suffix to all file paths associated with the module 6Compares module names lexically, rather than by their 4s !Get a string representation of a p that's unique and stable across recompilations. eg. "$aeson_70dylHtv1FFGeai1IoxcQr$Data.Aeson.Types.Internal" MReturns the string version of the module name, with dots replaced by slashes. LReturns the string version of the module name, with dots replaced by colons. Calculate the free holes of a m. If this set is non-empty, this module was defined in an indefinite library that had required signatures.If a module has free holes, that means that substitutions can operate on it; if it has no free holes, substituting over a module has no effect. A % is definite if it has no free holes. !Create a module variable at some 5. See Note [Representation of module/name variables] cThis gives a stable ordering, as opposed to the Ord instance which gives an ordering based on the 4Ns of the components, which may not be stable from run to run of the compiler.  Create a new  ' given an explicit module substitution.  Injects an  > (indefinite library which was on-the-fly instantiated) to a - (either an indefinite or definite library).  Injects an   to  (see also  .  Lossy conversion to the on-disk  for a component.  Test if a  corresponds to a given  z, modulo instantiation.  Test if a  corresponds to a given , modulo instantiation. $Retrieve the set of free holes of a . A % is definite if it has no free holes.  Generate a uniquely identifying  for a unit identifier. This is a one-way function. You can rely on one special property: if a unit identifier is in most general form, its  coincides with its [. This hash is completely internal to GHC and is not used for symbol names or file paths.Mj1Generate a hash for a sorted module substitution. (Create a new, un-hashed unit identifier. 5Compares package ids lexically, rather than by their 4s 6Create a new simple unit identifier (no holes) from a . +Create a new simple unit identifier from a L. Internally, this is primarily used to specify wired-in unit identifiers. Substitutes holes in a 0. NOT suitable for being called directly on a  nameModule6, see Note [Representation of module/name variable]. p[A= A]:B maps to  p[A=q():A]:B with A=q():A; similarly,  A maps to q():A. Substitutes holes in a c, suitable for renaming when an include occurs; see Note [Representation of module/name variable].p[A= A] maps to p[A= B] with A= B. Like  , but requires only  so it can be used by Packages. *Like 'renameHoleUnitId, but requires only  so it can be used by Packages. BGiven a possibly on-the-fly instantiated module, split it into a  that we definitely can find on-disk, as well as an instantiation if we need to instantiate it on the fly. If the instantiation is Nothing" no on-the-fly renaming is needed. See  . This is the package Id for the current program. It is the default package Id if you don't specify a package name. We don't add this prefix to symbol names, since there can be only one main package per program.MiThis is a fake package id used to provide identities to any un-implemented signatures. The set of hole identities is global over an entire compilation. Don't use this directly: use   or  = instead. See Note [Representation of module/name variables] ~    q r s t u v w x y z { | }    ~  u    z { | } v w x y t r q s None"#;=>? . = Get the GHC  right out of a Cabalish  82POJNMLKIHGFEDCBA@?>=<;:98765432 4 5 6 7 8 9 : ; < = > ? @2 > ? @ = 8POJNMLKIHGFEDCBA@?>=<;:98765432 6 7 4 5 9 : ; <YNoneD  K KZNone1 L A C type, used in CAPI FFI callsu : u  '{-# CTYPE' , u,u , u '#-}', W,How to call a particular function in C-land.! L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l! b c d ^ _ ` a e f \ ] P l k Z [ W X Y g Q R S T U V h i j N O L M[None1345  \NoneN When we are given files (modified by -x arguments) we need to determine if they are Haskellish or not to figure out how we should try to compile it. The rules are: If no -x flag was specified, we check to see if the file looks like a module name, has no extension, or has a Haskell source extension.^If an -x flag was specified, we just make sure the specified suffix is a Haskell one.2 2 None%V Find a reasonably short cycle a->b->c->a, in a strongly connected component. The input nodes are presumed to be a SCC, so you can start anywhere. (),+* ,+* () ]NoneV  combining function initial stateinputsfinal state, outputs combining function initial stateinputsfinal state, outputs%                           %                           3 3^None*d )6A command-line warning message and the reason it arose -A command-line error message 0[Used when filtering warnings: if a reason is given it can be filtered out when displaying. A4GHC flag modes describing when a flag has an effect. B-The flag only affects the non-interactive GHC C)The flag only affects the interactive GHC D#The flag affects multiple ghc modes E.This flag should not be seen in cli completionMk Parse an IntlLooks for "433" or "=342", with no trailing gubbins * n or =n => Just n * gibberish => NothingMlDiscards a leading equals sign6 % & ' ( ) * , + - . / 0 1 2 3 4 8 5 6 7 9 : ; < = > ? @ A D B C E F G H I J K L M N O P Q R S T U V W X Y Z6 Y 4 8 5 6 7 9 : ; < = > ? @ A D B C E % & ' W X F G H I J K L M N Z - . / ) * , + 0 1 2 3 ( O P Q R T U V S%None;=  "Contains not only a collection of  as but also a plethora of information relating to the compilation of a single file or GHC sessionEAn internal helper to check whether to use unicode syntax for output.&Note: You should very likely be using  instead of this function. eyA collection of files that must be deleted before ghc exits. The current collection is stored in an IORef in DynFlags,  M. g2Files that will be deleted at the end of runGhc(T) h*Files that will be deleted the next time i4 is called, or otherwise at the end of the session. }Flag in string form ~Flag in internal form NExtra action to run when the flag is found Typically, emit a warning or error %In which ghc mode the flag has effect When invoking external tools as part of the compilation pipeline, we pass these a sequence of options on the command-line. Rather than just using a list of Strings, we use a type that allows us to distinguish between filepaths and 'other stuff'. The reason for this is that this type gives us a handle on transforming filenames, and filenames only, to whatever format they're expected to be on a particular platform. +Flags for manipulating packages visibility. -package,  -package-id  -hide-package %Flags for manipulating package trust. -trust  -distrust 6Flags for manipulating the set of non-broken packages. -ignore-package RRepresents the renaming that may be associated with an exposed package, e.g. the rns part of -package "foo (rns)"._Here are some example parsings of the package flags (where a string literal is punned to be a : -package foo is ModRenaming True []-package foo () is ModRenaming False []-package foo (A) is ModRenaming False [(A, A)]-package foo (A as B) is ModRenaming False [(A, B)]-package foo with (A as B) is ModRenaming True [(A, B)] %Bring all exposed modules into scope?  Bring module m into scope under name n. We accept flags which make packages visible, but how they select the package varies; this data type reflects what selection criterion is used. -package, by  4  -package-id, by  -What to do in the link step, if there is one. Don't link at all Link object code into a binary NUse the in-memory dynamic linker (works for both bytecode and object code). FLink objects into a dynamic lib (DLL on Windows, DSO on ELF platforms) Link objects into a static lib The  L tells us whether we're doing multi-module compilation (controlled via the GHC[ API) or one-shot (single-module) compilation. This makes a difference primarily to the Finder: in one-shot mode we look for interface files for imported modules, but in multi-module mode we look for source files in order to check whether they need to be recompiled. --make , GHCi, etc.  ghc -c Foo.hs ghc -M, see Finder for why we need this 1The target code type of the compilation (if any).6Whenever you change the target, also make sure to set   to something sensible. A can be used to avoid generating any output, however, note that:If a program uses Template Haskell the typechecker may need to run code from an imported module. To facilitate this, code generation is enabled for modules imported by modules that use template haskell. See Note [-fno-code mode]. Generate C code. 2Generate assembly using the native code generator. 0Generate assembly using the llvm code generator. Generate bytecode. (Requires  ) *Don't generate any code. See notes above. no SCC annotations added ,top-level and nested functions are annotated "top-level functions annotated only !exported functions annotated only annotate call-sites ,Verbosity level: see Note [Verbosity levels] Optimisation level %How much debug information to produce Number of simplifier phases Max simplifier iterations !Max no iterations for pm checking Additional demand analysis The number of modules to compile in parallel in --make mode, where Nothing ==> compile as many in parallel as there are CPUs. Enable RTS timing statistics? The heap size to set. OMaximum number of bindings from the type envt to show in type error messages AMaximum number of substitutions to show in type error messages NMaximum number of unmatched patterns to show in non-exhaustiveness warnings Multiplier for simplifier ticks Threshold for SpecConstr 2Max number of specialisations for any one function iMax number of specialisations for recursive types Not optional; otherwise ForceSpecConstr can diverge. Threshold for LiberateCase ?Arg count for lambda floating See CoreMonad.FloatOutSwitches Simplification history size Typechecker maximum stack depth LNumber of iterations in the constraints solver Typically only 1 is needed Way flags from the command line !$The global "way" (e.g. "p" for prof) 2This is set by ( based on where its output is going. 3 Override the  2 set by  . Set by -ddump-file-prefix <Path to store the .mix files ?the -ffrontend-opta flags given on the command line, in *reverse* order that they're specified on the command line. EThe  -package-db flags given on the command line, In *reverse* order that they're specified on the command line. This is intended to be applied with the list of "initial" package databases derived from GHC_PACKAGE_PATH; see getPackageConfRefs. FThe -ignore-package] flags from the command line. In *reverse* order that they're specified on the command line. GThe -package and  -hide-package] flags from the command-line. In *reverse* order that they're specified on the command line. HThe -plugin-package-idY flags from command line. In *reverse* order that they're specified on the command line. IThe -trust and  -distrustG flags. In *reverse* order that they're specified on the command line. J@Filepath to the package environment file (if overriding default) VSafe Haskell mode lMsgDoc output action: use ErrUtils instead of this if you can s8GHCi scripts specified by -ghci-script, in reverse order wwhat kind of {- SCC -} to add automatically zMachine dependent flags (-m blah stuff) 8Run-time linker information (what options we need, etc.) Run-time compiler information 0Max size, in bytes, of inline array allocations. ^Only inline memcpy if it generates no more than this many pseudo (roughly: Cmm) instructions. ^Only inline memset if it generates no more than this many pseudo (roughly: Cmm) instructions. /Reverse the order of error messages in GHC/GHCi *Limit the maximum number of errors to show 9Unique supply configuration for testing build determinism The various Safe Haskell modes Used when outputting warnings: if a reason is given, it is displayed. If a warning isn't controlled by a flag, this is made explicit at the point of use. !Warning was enabled with the flag CWarning was made an error because of -Werror or -Werror=WarningFlag -Enumerates the simple on-or-off dynamic flags .Append dump output to files instead of stdout. H -fPIC I -fPIE J -pie ]The directory for this version of ghc in the user's app directory (typically something like ~.ghcx86_64-linux-7.6.3)MmA filepath like x86_64-linux-7.6.3k with the platform string to use when constructing platform-version-dependent files that need to co-exist. 6Will this target result in an object file on the disk? bDoes this target retain *all* top-level bindings for a module, rather than just the exported bindings, in the TypeEnv and compiled code (if any)? In interpreted mode we do this, so that GHCi can call functions inside a module. In HscNothing mode we also do it, so that Haddock can get access to the GlobalRdrEnv for a module after typechecking it. The  X value corresponding to the default way to create object files on the current platform. Are we building with -fPIE or -fPIC enabled?Used by  to partially initialize a new   value The normal  Y. Note that they are not suitable for use in this form and must be fully initialized by  first.Like   but appends an extra newline.Test whether a   is setSet a  Unset a  Test whether a   is setSet a  Unset a  Test whether a   is setSet a  Unset a  Test whether a   is set as fatalMnMark a   as fatal (do not set the flag)MoMark a   as not fatalTest whether a Mp is setSet a MpUnset a MpMq(Set the Haskell language standard to useYSome modules have dependencies on others through the DynFlags rather than textual importsIs the -fpackage-trust mode on9Is Safe Haskell on in some way (including inference mode) (Is the Safe Haskell safe language in use!.Is the Safe Haskell safe inference mode active"(Test if Safe Imports are on in some formMrSet a 'Safe Haskell' flag#Are all direct imports required to be safe for this Safe Haskell mode? Direct imports are when the code explicitly imports a module$Are all implicit imports required to be safe for this Safe Haskell mode? Implicit imports are things in the prelude. e.g System.IO when print is used.MsCombine two Safe Haskell modes correctly. Used for dealing with multiple flags. This makes Safe Haskell very much a monoid but for now I prefer this as I don't want to export this functionality from the module but do want to export the type constructors.%A list of unsafe flags under Safe Haskell. Tuple elements are: * name of the flag * function to get srcspan that enabled the flag * function to test if the flag is on * function to turn the flag off&A list of unsafe flags under Safe Haskell. Tuple elements are: * name of the flag * function to get srcspan that enabled the flag * function to test if the flag is on * function to turn the flag off'3Retrieve the options corresponding to a particular opt_* field in the correct order({Gets the verbosity flag for the current verbosity level. This is fed to other tools, so GHC-specific verbosity flags like  -ddump-most are not included. Sets the  , to be appropriate to the optimisation level/TParse dynamic flags from a list of command line arguments. Returns the the parsed  =, the left-over arguments, and a list of warnings. Throws a {Q if errors occurred during parsing (such as unknown flags or missing arguments).0Like / but does not allow the package flags (-package, -hide-package, -ignore-package, -hide-all-packages, -package-db). Used to parse flags set in a modules pragma.1Parses the dynamically set flags for GHC. This is the most general form of the dynamic flag parser that the other methods simply wrap. It allows saying which flags are valid flags and indicating if we are parsing arguments from the command line or from a file pragma.2!Write an error or warning to the Mt.MuQCheck (and potentially disable) any extensions that aren't allowed in safe mode.The bool is to indicate if we are parsing command line flags (false means file pragma). This allows us to generate better warnings.4All dynamic flags option strings without the deprecated ones. These are the user facing strings for enabling and disabling options.Mv4All flags with possibility to filter deprecated onesMwThis is where we handle unrecognised warning flags. We only issue a warning if -Wunrecognised-warning-flags is set. See Trac #11429 for context.8yMake a list of flags for shell completion. Filter all available flags into two groups, for interactive GHC vs all other.MxDefine a new flag.My!Define a new flag with an effect.Mz,Define a new deprecated flag with an effect.M{Define a new deprecated flag.M|dDefine a new deprecated flag with an effect where the deprecation message depends on the flag valueM}UDefine a new deprecated flag where the deprecation message depends on the flag valueM~`Define a new deprecated flag where the deprecation message is shown depending on the flag valueMDefine a new flag for GHCi.M*Define a new flag for GHCi with an effect.M.Define a new flag invisible to CLI completion.M=Define a new flag invisible to CLI completion with an effect.MHide a  { from being displayed in --show-options.vThis is for example useful for flags that are obsolete, but should not (yet) be deprecated for compatibility reasons.M Find the  { for a  .9These -W<blah> flags can all be reversed with  -Wno-<blah>MThese -<blah> flags can all be reversed with  -no-<blah>MThese -d<blah> flags can all be reversed with  -dno-<blah>:These -f<blah> flags can all be reversed with  -fno-<blah>;These -f<blah> flags can all be reversed with  -fno-<blah>MThese -X blah# flags cannot be reversed with -XNo blahMThese -X blah# flags cannot be reversed with -XNo blah^ They are used to place hard requirements on what GHC Haskell language features can be used.=These -X blah$ flags can all be reversed with -XNo blah>Warning groups.sAs all warnings are in the Weverything set, it is ignored when displaying to the user which group a warning is in.?JWarning group hierarchies, where there is an explicit inclusion relation.Each inner list is a hierarchy of warning groups, ordered from smallest to largest, where each group is a superset of the one before it.Separating this from >J allows for multiple hierarchies with no inherent relation to be defined.3The special-case Weverything group is not included.M^Find the smallest group in every hierarchy which a warning belongs to, excluding Weverything.M+Warnings enabled unless specified otherwiseMThings you get with -WMThings you get with -WallMAThings you get with -Weverything, i.e. *all* known warnings flagsMThings you get with -Wcompat.This is intended to group together warnings that will be enabled by default at some point in the future, so that library authors eager to make their code future compatible to fix issues before they even generate warnings.A4Was the runtime system built with profiling enabled?GGiven a j of a signature in the home library, find out how it is instantiated. E.g., the canonical form of A in  p[A=q[]:A] is q[]:A.H,Find the package environment (if one exists){We interpret the package environment as a set of package flags; to be specific, if we find a package environment file like _clear-package-db global-package-db package-db blah/package.conf.d package-id id1 package-id id2we interpret this as [ -hide-all-packages , -clear-package-db , -global-package-db , -package-db blah/package.conf.d , -package-id id1 , -package-id id2 ]YThere's also an older syntax alias for package-id, which is just an unadorned package id id1 id21Resolve any internal inconsistencies in a set of  . Returns the consistent  6 as well as a list of warnings to report to the user.MThis is the value that ! takes before it is initialized.An empty FilesToClean'  to retrieve the options from%Relevant record accessor: one of the opt_* accessors#Correctly ordered extracted options/Updated  -, left-over arguments, and list of warnings.0Updated  -, left-over arguments, and list of warnings.1valid flags to match against(are the arguments from the command line?current dynamic flagsarguments to parseMTrue  = it should be turned onThe flag prefix!What to do when the flag is found&Specification of this particular flag  w x y z { | } ~                             ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~    !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ e f g h i j k l m n o p q r s t u v w z x y { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~  w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ @>?  DE                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  { | } ~  w z x y - :;=9  C3 +)*2 " !#$%&  ,   '(.IFHG/0145678< JKLABMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ o p q r s t u v i j k l m n e f g h_None A9We need 8 bytes because our largest registers are 64 bit.qWe (allegedly) put the first six C-call arguments in registers; where do we start putting the rest of them?6Check whether an offset is representable with 13 bits.  Check whether an integer will fit in 32 bits. A CmmInt is intended to be truncated to the appropriate number of bits, so here we truncate it to Int64. This is important because e.g. -1 as a CmmInt might be either -1 or 18446744073709551615.!Sadness. ! !`NoneK W.True  = This is a static closure. Affects how we garbage-collect it. Static closure have an extra static link field at the end. Constructors do not have a static variant; see Note [static constructors]/aA description of the layout of a closure. Corresponds directly to the closure types in includesrtsstorage/ClosureTypes.h.8Byte offset, or byte count9Word offset, or word count:cRound up the given byte count to the next byte count that's a multiple of the machine's word size.; Round up base to a multiple of size.<7Convert the given number of words to a number of bytes.This function morally has type WordOff -> ByteOff , but uses Num a to allow for overloading.=sFirst round the given byte count up to a multiple of the machine's word size and then convert the result to words.S/Size of a closure header (StgHeader in includesrtsstorage/Closures.h)TJSize of the profiling part of a closure header (StgProfHeader in includesrtsstorage/Closures.h)MPThe garbage collector requires that every closure is at least as big as this.`(The total size of the closure, in words.aCThe byte offset into the card table of the card for a given elementb>Convert a number of elements to a number of cards, rounding upc"The size of a card table, in bytesd"The size of a card table, in wordse%Derives the RTS closure type from an /J"#$%&')(*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkJ98<=:;7>?6@ABC/012345.')(*+,-"#$%&DGHFEIJKLNOPQM`SUVWXT[^_YZ\]RefghiabcdkjaNone _Av3The slots that are still available to be allocated.w#Assignment of vregs to stack slots.xIdentifier for a stack slot.y-An empty stack map, with all slots available.zIf this vreg unique already has a stack assignment then return the slot number, otherwise allocate a new slot, and update the map.{4Return the number of stack slots that were allocatedtuvwxyz{xtuvwyz{ None1 tOccurrence NamexIn this context that means: "classified (i.e. as a type name, value name, etc) but not qualified and not yet resolved"Other names in the compiler add additional information to an OccName. This class provides a consistent way to access the underlying OccName. Value OccNamesKs are those that are either in the variable or data constructor namespaces Test if the t8 is a data constructor that starts with a symbol (e.g. :, or []) Test if the tU is that for any operator (whether it is a data constructor or variable or whatever)Wrap parens around an operatorhHaskell 98 encourages compilers to suppress warnings about unsed names in a pattern if they start with _: this implements that testM Build an t derived from another t.4Note that the pieces of the name are passed in as a  [FastString]: so that the whole name can be constructed with a single 3, minimizing unnecessary intermediate allocations.Test for definitions internally generated by GHC. This predicte is used to suppress printing of internal definitions in some debug printsIs an t one of a Typeable TyCon or Modulew binding? This is needed as these bindings are renamed differently. See Note [Grand plan for Typeable] in TcTypeable.<Derive a name for the representation type constructor of a data/newtype instance.MCA prefix which distinguishes one sort of derived name from anotherDThe name we are deriving from in pieces which will be concatenated.M the namespacean identifying prefixanother optional prefixthe t to derive fromIndex of superclass, e.g. 3 Class, e.g. OrdDerived Occname, e.g. $p3OrdUnique to combine with the tLocal name, e.g. satNice unique version, e.g. $L23satFamily name, e.g. Mapavoid these Occs R:Map3Typically the class and type glommed together e.g. OrdMaybe-. Only used in debug mode, for extra clarity Is this a hs-boot instance DFun?avoid these OccsE.g.  $f3OrdMaybeTyCon or data con stringavoid these OccsE.g.  $f3OrdMaybe data T = MkT ... deriving( Data ) needs definitions for $tT :: Data.Generics.Basics.DataType $cMkT :: Data.Generics.Basics.ConstrTyCon or data con stringavoid these OccsE.g.  $f3OrdMaybe data T = MkT ... deriving( Data ) needs definitions for $tT :: Data.Generics.Basics.DataType $cMkT :: Data.Generics.Basics.Constrt_`bdf|}~t~}|_`dbfNone"# !sdA unique, unambiguous name for something, containing information about where that thing originated. *A class allowing convenient access to the s of various datatypes!BuiltInSyntax is for things like (:), []Q and tuples, which have special syntactic forms. They aren't in scope as such.wReturns True if the name is (a) Internal (b) External but from the specified module (c) External but from the  interactive packageThe key idea is that False means: the entity is defined in some other module you can find the details (type, fixity, instances) in some interface file those details will be stored in the EPT or HPTTrue means: the entity is defined in this module or earlier in the GHCi session you can find details (type, fixity, instances) in the TcGblEnv or TcLclEnvThe isInteractiveModule part is because successive interactions of a GCHi session each give rise to a fresh module (Ghci1, Ghci2, etc), but they all come from the magic  interactive package; and all the details are kept in the TcLclEnv, TcGblEnv, NOT in the HPT or EPT. See Note [The interactive package] in HscTypes!jReturns True if the Name comes from some other package: neither this pacakge nor the interactive package.(aCreate a name which is (for now at least) local to the current module and hence does not need a  to disambiguate it from other ss+=Create a name which definitely originates in the given module,>Create a name which is actually defined by the compiler itself-0Create a name brought into being by the compiler1Make a name for a foreign call5 Make the s? into an internal name, regardless of what it was to begin with6%Create a localised variant of a name.If the name is external, encode the original's module name to disambiguate. SPJ says: this looks like a rather odd-looking function; but it seems to be used only during vectorisation, so I'm not going to worry7rCompare Names lexicographically This only works for Names that originate in the source code or have been tidied.;!Get a string representation of a s that's unique and stable across recompilations. Used for deterministic generation of binds for derived instances. eg. "$aeson_70dylHtv1FFGeai1IoxcQr$Data.Aeson.Types.Internal$String"FAssumes that the s is a non-binding one. See  and  for serializing binding ss. See  ( for the rationale for this distinction.st_`bdf|}~   !"#$%&'()*+,-./0123456789:;<=>?@A7s-.()*/01+,23456:9'"#$%& !7  <=>?@A8;bNone Ǚ O A number of Ps in dependency order: earlier R scope over later QB In a single (def, use) pair, the defs also scope over the usesP(Just ds, us) => The use of any member of the ds, implies that all the us+ are used too. Also, us may mention ds. Nothing => Nothing is defined in this group, but nevertheless all the uses are essential. Used for instance declarations, for exampleQ&A set of names that are used somewhereR)A set of names that are defined somewherec,True if there is a non-empty intersection. s1 c s2 doesn't compute s2 if s1 is emptyfGet the elements of a NameSet with some stable ordering. This only works for Names that originate in the source code or have been tidied. See Note [Deterministic UniqFM] to learn about nondeterminismv Just like w, but R are not eliminated from the Q returnedw Collect all Q>, regardless of whether the group is itself used, but remove R on the wayx Given some O and some QJ, find all the uses, transitively. The result is a superset of the input Q,; and includes things defined in the input O (but only if they are used)*OPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwx*TVWX[\]^ZY_bU`cadefSghijklmnopRQPOqrstxuwvcNone 7yDeterministic Name EnvironmentQSee Note [Deterministic UniqFM] in UniqDFM for explanation why we need DNameEnv.zName Environmentyz{|}~z}~|y{eNone01345 "Fields in an algebraic record typeUser-visible label of the fieldIWas DuplicateRecordFields on in the defining module for this datatype?Record selector function2A map from labels to all the auxiliary informationeField labels are just represented as strings; they are not necessarily unique (even within a module)Record selector OccNames are built from the underlying field name and the name of the first data constructor of the type, to support duplicate record field names. See Note [Why selector names include data constructors].  fNone xUsed when we want to fingerprint a structure without depending on the fingerprints of external Names that it refers to.gNone ^A collection of annotations Can't use a type synonym or we hit bug #2412 due to source importEThe kind of annotation target found in the middle end of the compilerAn annotation targetCWe are annotating something with a name: a type or identifier%We are annotating a particular module]Represents an annotation after it has been sufficiently desugared from it's initial form of The target of the annotationGet the name& of an annotation target if it exists. An empty annotation environment.WConstruct a new annotation environment that contains the list of annotations provided.,Add the given annotation to the environment."Union two annotation environments.5Find the annotations attached to the given target as Mk values of your choice. If no deserializer is specified, only transient annotations will be returned.5Find the annotations attached to the given target as Mk values of your choice. If no deserializer is specified, only transient annotations will be returned.Deserialize all annotations of a given type. This happens lazily, that is no deserialization will take place until the [a] is actually demanded and the [a] can also be empty (the UniqFM is not filtered).|The "payload" of an annotation allows recovery of its value at a given type, and can be persisted to an interface file None wAtomically update the reference. Does not force the evaluation of the new variable contents. For strict update, use .Strict variant of .2Perform a computation with a different environment1Perform a computation with an altered environment;&$|}~@None"# &5Log message intended for compiler developers No fileline column stuff-Log messages intended for end users. No fileline column stuff.TSevWarning and SevError are used for warnings and errors o The message has a filelinercolumn heading, plus "warning:" or "error:", added by mkLocMessags o Output is intended for end users`Write out a dump. If --dump-to-file is set then this goes to a file. otherwise emit to stdout.When hdrM is empty, we print in a more compact format (no separators and blank lines)The  / is used only to choose the filename to use if --dump-to-file> is used; it is not used to decide whether to dump the output;Make a possibly annotated error message with location info.5Make an unannotated error message with location info.Categorise error msgs by their importance. This is so each section can be rendered visually distinct. See Note [Error report] for where these come from.Primary error msg.-Context e.g. "In the second argument of ...".@Supplementary information, e.g. "Relevant bindings include ...".M6This has the same text as errDocImportant . errMsgDoc.Everything is fine%A problem, and some indication of why*If they aren't all valid, return the first!A long (multi-line) error message A short (one-line) error message;Variant that doesn't care about qualified/unqualified names!A long (multi-line) error message A short (one-line) error message;Variant that doesn't care about qualified/unqualified namesa wrapper around F. First check whether the dump flag is set Do nothing if it is unseta wrapper around F. First check whether the dump flag is set Do nothing if it is unsetUnlike 0, has a printer argument but no header argumentM#Run an action with the handle of a  , if we are outputting to a file, otherwise Lx.M1Choose where to put a dump file based on DynFlagsM&Build a nice file name from name of a   constructorTime a compilation phase.(When timings are enabled (e.g. with the -v2o flag), the allocations and CPU time used by the phase will be reported to stderr. Consider a typical usage: 3withTiming getDynFlags (text "simplify") force passY. When timings are enabled the following costs are included in the produced accounting,The cost of executing pass to a result r in WHNFThe cost of evaluating force r to WHNF (e.g. ())The choice of the force function depends upon the amount of forcing desired; the goal here is to ensure that the cost of evaluating the result is, to the greatest extent possible, included in the accounting provided by [. Often the pass already sufficiently forces its result during construction; in this case const () is a reasonable choice. In other cases, it is necessary to evaluate the result to normal form, in which case something like Control.DeepSeq.rnf is appropriate.To avoid adversely affecting compiler performance when timings are not requested, the result is only forced when timings are enabled.#Like " but with  rather then %Checks if given  is a fatal warning.optional annotationseveritylocationmessageA means of getting a   (often   will work here)The name of the phase.A function to force the result (often either const () or rnf)!The body of the phase to be timedL      !"#$%&L  %    !"#$&1None<V ڑPz map from  to  83, plus the transitive closure of preload packages. Retrieve the  from  ; used in the hs-boot loop-breaker.Given a fully instantiated , improve it into a + if we can find it in the package database.-!The result of performing a lookup.-Found the module uniquely, nothing else to do/,Multiple modules with the same name in scope0No modules found, but there were some hidden ones with an exact name match. First is due to package hidden, second is due to module being hidden16Nothing found, here are some suggested different namesMgFor each package, a mapping from uid -> i indicates that this package was brought into GHC by the ith  -package-db flag on the command line. We use this mapping to make sure we prefer packages that were defined later on the command line, if there is an ambiguity.M'A reverse dependency index, mapping an  to the  s which have a dependency on it.M%The reason why a package is unusable.MWe ignored it explicitly using -ignore-package.MhThis package transitively depends on a package that was never present in any of the provided databases.M[This package transitively depends on a package involved in a cycle. Note that the list of  reports the direct dependencies of this package that (transitively) depended on the cycle, and not the actual cycle itself (which we report separately at high verbosity.)MAThis package transitively depends on a package which was ignored.MbThis package transitively depends on a package which was shadowed by an ABI-incompatible package.M A mapping of  to  8A. This list is adjusted so that only valid packages are here.  85 reflects what was stored *on disk*, except for the 2_ flag, which is adjusted at runtime. (In particular, some packages in this map may have the 3 flag be Lp.)M A mapping of  4 to C. This is used when users refer to packages in Backpack includes.MOA mapping from wired in names to the original names from the package database.2The packages we're going to link in eagerly. This list should be in reverse dependency order; that is, a package is always mentioned before the packages it depends on.3nPackages which we explicitly depend on (from a command line flag). We'll use this to generate version macros.MThis is a full map from  to all modules which may possibly be providing it. These providers may be hidden (but we'll still want to report them in error messages), or it may be an ambiguous import.M A map, like M$, but controlling plugin visibility.4A map saying, for each requirement, what interfaces must be merged together when we use them. For example, if our dependencies are p[A= A] and q[A= A,B=r[C= A]:B]*, then the interfaces to merge for A are p[A= A]:A, q[A= A,B=r[C= A]:B]:A and r[C= A]:C.?There's an entry in this map for each hole in our home library.M Map from  to 4 to all the origins of the bindings in scope. The  PackageConfk is not cached, mostly for convenience reasons (since this is the slow path, we'll just look it up again).MM< records the various aspects of visibility of a particular .M-Any custom renamings that should bring extra s into scope.M(The package name is associated with the 4. This is used to implement legacy behavior where -package foo-0.1& implicitly hides any packages named fooMTThe signatures which are contributed to the requirements context from this unit ID.M^Whether or not this unit was explicitly brought into scope, as opposed to implicitly via the 3' fields in the package database (when -hide-all-packages is not passed.)Mz map from  to a M.MThe set of transitively reachable packages according to the explicitly provided command line arguments. See Note [UnitId to InstalledUnitId improvement]Mz map from 5Package state is all stored in  f, including the details of all packages, which packages are exposed, and which modules they provide.!The package state is computed by DC, and kept in DynFlags. It is influenced by various package flags: -package pkg and  -package-id pkg cause  pkg to become exposed. If -hide-all-packagesk was not specified, these commands also cause all other packages with the same name to become hidden.-hide-package pkg causes  pkg to become hidden.=(there are a few more flags, check below for their semantics)/The package state has the following properties.Let exposedPackages/ be the set of packages thus exposed. Let depExposedPackages be the transitive closure from exposedPackages of their dependencies.`When searching for a module from a preload import declaration, only the exposed modules in exposedPackages are valid.KWhen searching for a module from an implicit import, all modules from depExposedPackages are valid.When linking in a compilation manager mode, we link in packages the program depends on (the compiler knows this list by the time it gets to the link step). Also, we link in all packages which were mentioned with preload -package flags on the command-line, or are a transitive dependency of same, or are "base"/"rts". The reason for this is that we might need packages which don't contain any Haskell modules, and therefore won't be discovered by the normal mechanism of dependency tracking.Given a module name, there may be multiple ways it came into scope, possibly simultaneously. This data type tracks all the possible ways it could have come into scope. Warning: don't use the record functions, they're partial!6Module is hidden, and thus never will be available for import. (But maybe the user didn't realize), so we'll still keep track of these modules.)77Module is public, and could have come from some places.8 Just False) means that this module is in someone's exported-modules$ list, but that package is hidden;  Just True means that it is available; Nothing means neither applies.9XIs the module available from a reexport of an exposed package? There could be multiple.:<Is the module available from a reexport of a hidden package?;ODid the module export come from a package flag? (ToDo: track more information.M+Smart constructor for a module which is in exposed-modulesH. Takes as an argument whether or not the defining package is exposed.M+Smart constructor for a module which is in reexported-modulesY. Takes as an argument whether or not the reexporting package is expsed, and also its  8.MASmart constructor for a module which was bound by a package flag.MIs the name from the import actually visible? (i.e. does it cause ambiguity, or is it only relevant when we're making suggestions?)M~Are there actually no providers for this module? This will never occur except when we're filtering based on package imports.MEmpty package configuration map<=Find the package we know about with the given unit id, if any=A more specialized interface, which takes a boolean specifying whether or not to look for on-the-fly renamed interfaces, and just a  rather than a  . (so it can be used while we're initializing  >AFind the package we know about with the given package name (e.g. fooP), if any (NB: there might be a locally defined unit name which overrides this)?<Search for packages with a given package ID (e.g. "foo-0.1")MEExtends the package configuration map with a list of package configs.@YLooks up the package with the given id in the package state, panicing if it is not foundCGet a list of entries from the package database. NB: be careful with this function, although all packages in this map are "visible", this does not imply that the exposed-modules of the package are available (they may have been thinned or renamed).DCall this after %. It reads the package database files, and sets up various internal tables of package information, according to the package-related flags on the command-line (-package,  -hide-package etc.)Returns a list of packages to link in if we're doing dynamic linking. This list contains the packages that the user explicitly mentioned with -package flags.D6 can be called again subsequently after updating the  G field of the  , and it will update the  L in  + and return a list of packages to link in.M A little utility to tell if the +H is indefinite (if it is not, we should never use on-the-fly renaming.)MLike Mp, but doesn't return a list of unmatched packages. Furthermore, any packages it returns are *renamed* if the UnitArg# has a renaming associated with it.M Rename a  8( according to some module instantiation.MHThis sorts a list of packages, putting "preferred" packages first. See M# for the semantics of "preference".MReturns L} if pkg should be preferred over pkg'J when picking which should be "active". Here is the order of preference:  First, prefer the latest version`If the versions are the same, prefer the package that came in the latest package database.Pursuant to #12518, we could change this policy to, for example, remove the version preference, meaning that we would always prefer the packages in alter package database.M;Compute the reverse dependency index of a package database.MGiven a list of Is to remove, a database, and a reverse dependency index (as computed by Mv), remove those packages, plus any packages which depend on them. Returns the pruned database, as well as a list of  8s that was removed.MGiven a  8 from some M, return all entries in F> which correspond to packages that do not exist in the index.MGiven a  8 from some M return all entries in EK which correspond to packages that do not exist, OR have mismatching ABIs.MGiven a list of databases, merge them together, where packages with the same unit id in later databases override earlier ones. This does NOT check if the resulting database makes sense (that's done by M).MValidates a database, removing unusable packages from it (this includes removing packages that the user has explicitly ignored.) Our general strategy: 2Remove all broken packages (dangling dependencies)#Remove all packages that are cyclicApply ignore flags9Remove all packages which have deps with mismatching ABIsJGiven a wired-in , "unwire" it into the 2 that it was recorded as in the package database.M-Makes the mapping from module to package infoKBFind all the include directories in these and the preload packagesM<Find all the library paths in these and the preload packagesOFind all the link options in these and the preload packages, returning (package hs lib options, extra library options, other flags)M Either the @ or ? as appropriate for the way.SAFind all the C-compiler options in these and the preload packagesTFFind all the package framework paths in these and the preload packagesUAFind all the package frameworks in these and the preload packagesVTakes a T, and if the module is in any package returns list of modules which take that name.Z Find all the  8# in both the preload packages from  # and corresponding to the list of  8s[ Will the s( come from a dynamically linked library?\ Show (very verbose) package info]Show simplified package info.The idea is to only print package id, and any information that might be different from the package databases (exposure, trust)^4Show the mapping of modules to where they come from.nPOJNMLKIHGFEDCBA@?>=<;:98765432234 4 5 6 7 8 9 : ; < = > ? @*+,-./0156789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^<234DEFGHC<=A>?@BYVWX-./01*+,56789:;KMOSTUZQLNPRJI\]^[hNone f!Read in assembly file and processM4These are the rewrites that the mangler will performMbRewrite a line of assembly source with the given rewrites, taking the first rewrite that applies.MThis rewrites .type$ annotations of function symbols to %object+. This is done as the linker can relocate  %functions through the Procedure Linking Table (PLT). This is bad since we expect that the info table will appear directly before the symbol's location. In the case that the PLT is used, this will be not an info table but instead some random PLT garbage.MThis rewrites aligned AVX instructions to their unaligned counterparts on x86-64. This is necessary because the stack is not adequately aligned for aligned AVX spills, so LLVM would emit code that adjusts the stack pointer and disable tail call optimization. Both would be catastrophic here so GHC tells LLVM that the stack is 32-byte aligned (even though it isn't) and then rewrites the instructions in the mangler.MreplaceOnce match replace bs1 replaces the first occurrence of the substring match in bs with replace.MVThis function splits a line of assembly code into the label and the rest of the code.ffiNone G gmUsed when a temp file is created. This determines which component Set of FilesToClean will get the temp filehSA file with lifetime TFL_CurrentModule will be cleaned up at the end of upweep_modiOA file with lifetime TFL_GhcSession will be cleaned up at the end of runGhc(T)kDelete all files in filesToClean dflags.lDelete all files in filesToClean dflags. That have lifetime TFL_CurrentModule. If a file must be cleaned eventually, but must survive a cleanCurrentModuleTempFiles, ensure it has lifetime TFL_GhcSession.m7Ensure that new_files are cleaned on the next call of k or lj, depending on lifetime. If any of new_files are already tracked, they will have their lifetime updated.noUpdate the lifetime of files already being tracked. If any files are not being tracked they will be discarded.qQCreate and use a temporary directory in the system standard temporary directory.Behaves exactly the same as rG, except that the parent temporary directory will be that returned by M.r%Create and use a temporary directory.Creates a new temporary directory inside the given directory, making use of the template. The temp directory is deleted after use. For example: 4withTempDirectory "src" "sdist." $ \tmpDir -> do ...The tmpDir: will be a new subdirectory of the given directory, e.g.  src/sdist.342.qDirectory name template. See  openTempFile.#Callback that can use the directoryr)Temp directory to create the directory inDirectory name template. See  openTempFile.#Callback that can use the directory ghijklmnopqr ghijklmnopqrjNone z Version of &System.Process.readProcessWithExitCode> that takes a key-value tuple to insert into the environment.~BRun a command, placing the arguments in an external response file.This command is used in order to avoid overlong command line arguments on Windows. The command line arguments are first written to an external, temporary response file, and then passed to the linker via @filepath. response files for passing them in. See: 'https://gcc.gnu.org/wiki/Response_Files -https://ghc.haskell.org/trac/ghc/ticket/10777xstdoutz program path program argsaddition to the environment(exit_code, stdout, stderr)tvuwxyz{|}~xyz{|}~tvuwkNoneV lNone 5M A sectionMName of the sectionMContent of the sectionM Description of the section tableM'offset of the table describing sectionsM%size of an entry in the section tableMnumber of sectionsM<index of a special section which contains section's namesM ELF headerThe ELF header indicates the native word size (32-bit or 64-bit) and the endianness of the target machine. We directly store getters for words of different sizes as it is more convenient to use. We also store the word size as it is useful to skip some uninteresting fields.Other information such as the target machine and OS are left out as we don't use them yet. We could add them in the future if we ever need them.M(Get a Word16 with the correct endiannessM(Get a Word32 with the correct endiannessM7Get a Word with the correct word size and endiannessMWord size in bytesMRead the ELF headerMRead the ELF section tableMRead a ELF sectionM:Find a section from its name. Return the section contents.0We do not perform any check on the section type.8Given a section name, read its contents as a ByteString.OIf the section isn't found or if there is any parsing error, we return NothingMread a Note as a ByteStringIf you try to read a note from a section which does not support the Note format, the parsing is likely to fail and Nothing will be returnedread a Note as a StringIf you try to read a note from a section which does not support the Note format, the parsing is likely to fail and Nothing will be returned.Generate the GAS code to create a Note sectionGHeader fields for notes are 32-bit long (see Note [ELF specification]).It seems there is no easy way to force GNU AS to generate a 32-bit word in every case. Hence we use .int directive to create them: however "The byte order and bit size of the number depends on what kind of target the assembly is for." (https:/sourceware.orgbinutilsdocsas/Int.html#Int)If we add new target platforms, we need to check that the generated words are 32-bit long, otherwise we need to use platform specific directives to force 32-bit .int in asWord32.M8runGet in IO monad that throws an IOException on failuremNone 6DDnNone&' \MA FlatSwitchPlan is a list of SwitchPlans, with an integer inbetween every two entries, dividing the range. So if we have (abusing list syntax) [plan1,n,plan2], then we use plan1 if the expression is < n, and plan2 otherwise.nA SwitchPlan abstractly describes how a Switch statement ought to be implemented. See Note [createSwitchPlan]>A value of type SwitchTargets contains the alternatives for a  CmmSwitch value, and knows whether the value is signed, the possible range, an optional default value and a map from values to jump labels.MtNumber of consecutive default values allowed in a jump table. If there are more of them, the jump tables are split.}Currently 7, as it costs 7 words of additional code when a jump table is split (at least on x64, determined experimentally).MMinimum size of a jump table. If the number is smaller, the switch is implemented using conditionals. Currently 5, because an if-then-else tree of 4 values is nice and compact.MGMinimum non-zero offset for a jump table. See Note [Jump Table Offset].The smart constructor mkSwitchTargets normalises the map a bit: * No entries outside the range * No entries equal to the default * No default if all elements have explicit values7Changes all labels mentioned in the SwitchTargets valueCReturns the list of non-default branches of the SwitchTargets value3Return the default label of the SwitchTargets value+Return the range of the SwitchTargets value.Return whether this is used for a signed valueLswitchTargetsToTable creates a dense jump table, usable for code generation.`Also returns an offset to add to the value; the list is 0-based on the result of that addition.The conversion from Integer to Int is a bit of a wart, as the actual scrutinee might be an unsigned word, but it just works, due to wrap-around arithmetic (as verified by the CmmSwitchTest test case).;The list of all labels occuring in the SwitchTargets value.xGroups cases with equal targets, suitable for pretty-printing to a c-like switch statement with fall-through semantics.#Custom equality helper, needed for CmmCommonBlockElimNDoes the target support switch out of the box? Then leave this to the target!This function creates a SwitchPlan from a SwitchTargets value, breaking it down into smaller pieces suitable for code generation.oNone rA $The operation to perform atomically./eMachine-level primops; ones which we can reasonably delegate to the native code generators to handle.)Most operations are parameterised by the r that they operate on. Some operations have separate signed and unsigned versions, and float and integer versions.Returns Lqe if the MachOp has commutable arguments. This is used in the platform-independent Cmm optimisations.If in doubt, return LpM. This generates worse code on the native routes, but is otherwise harmless.Returns Lq$ if the MachOp is associative (i.e. (x+y)+z == x+(y+z)=) This is used in the platform-independent Cmm optimisations.If in doubt, return LpM. This generates worse code on the native routes, but is otherwise harmless.Returns Lq if the MachOp is a comparison.fIf in doubt, return False. This generates worse code on the native routes, but is otherwise harmless.Returns Just w6 if the operation is an integer comparison with width w, or Nothing otherwise..Returns the MachRep of the result of a MachOp.This function is used for debugging only: we can check whether an application of a MachOp is "type-correct" by checking that the MachReps of its arguments are the same as the MachOp expects. This is used when linting a CmmExpr.The alignment of a memcpy-ish operation.      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-.pNone w  qNone &A bitmap represented by a sequence of 7 s on the target architecture. These are used for bitmaps in info tables and other generated code which need to be emitted as sequences of StgWords.%Make a bitmap from a sequence of bits0Make a bitmap where the slots specified are the ones in the bitmap. eg. [0,1,3], size 4 ==> 0xb. The list of Ints must be already sorted.0Make a bitmap where the slots specified are the zeros in the bitmap. eg. [0,1,3], size 4 ==> 0x4X (we leave any bits outside the size as zero, just to make the bitmap easier to read). The list of Ints must& be already sorted and duplicate-free.Magic number, must agree with BITMAP_BITS_SHIFT in InfoTables.h. Some kinds of bitmap pack a size/bitmap into a single word if possible, or fall back to an external pointer when the bitmap is too large. This value represents the largest size of bitmap that can be packed into a single word. size in bitssorted indices of ones size in bits*sorted indices of zeros free of duplicatesrNone1 A collection of & - several things that are "available"2Records what things are "available", i.e. in scopeAn ordinary identifier in scope%A type or class in scope. Parameters:1) The name of the type or class 2) The available pieces of type or class, excluding field selectors. 3) The record fields of the type (see Note [Representing fields in AvailInfo]).The AvailTC Invariant: * If the type or class is itself to be in scope, it must be *first* in this list. Thus, typically: AvailTC Eq [Eq, ==, /=]Compare lexicographicallymJust the main name made available, i.e. not the available pieces of type or class brought into scope by the  GenAvailInfoYAll names made available by the availability information (excluding overloaded selectors)YAll names made available by the availability information (including overloaded selectors)CNames for non-fields made available by the availability information5Fields made available by the availability information trims an  to keep only a single namefilters s by the given predicate filters an  by the given predicate Combines s from the same family avails may have several items with the same availName E.g import Ix( Ix(..), index ) will give Ix(Ix,index,range) and Ix(index) We want to combine these; addAvail does thatsNone1 j"Import Item Specification'Describes import info a particular Name4The import had no import list, or had a hiding list$The import had an import list. The  field is True iff the thing was named  explicitlyT in the import specs rather than being imported as part of a "..." group. Consider: import C( T(..) )Here the constructors of T! are not named explicitly; only T is named explicitly. Import Declaration SpecificationGDescribes a particular import declaration and is shared among all the  Provenances for that declModule imported, e.g.  import Muggle Note the Muggle5 may well not be the defining module for this thing!Import alias, e.g. from as M (or Muggle if there is no as clause)Was this import qualified?-The location of the entire import declarationImport SpecificationThe v of something says how it came to be imported It's quite elaborate so that we can give accurate unused-name warnings.wThe children of a Name are the things that are abbreviated by the ".." notation in export lists. See Note [Parents]$See Note [Parents for record fields]Global Reader ElementAn element of the True  = the thing was defined locallyIn scope through these importsGlobal Reader Environment Keyed by t3; when looking up a qualified name we look up the t part, and then check the  Provenance to see if the appropriate qualification is valid. This saves routinely doubling the size of the env by adding both qualified and unqualified names to the domain.~The list in the codomain is required because there may be name clashes These only get reported on lookup, not on constructionEINVARIANT 1: All the members of the list have distinct $ fields; that is, no duplicate Names>INVARIANT 2: Imported provenance => Name is an ExternalName However LocalDefs can have an InternalName. This happens only when type-checking a [d| ... |] Template Haskell quotation; see this note in RnNames Note [Top-level Names in Template Haskell decl quotes]^INVARIANT 3: If the GlobalRdrEnv maps [occ -> gre], then greOccName gre = occNB: greOccName gre is usually the same as nameOccName (gre_name gre), but not always in the case of record seectors; see greOccNameLocal Reader Environment3This environment is used to store local bindings (let, where , lambda, case). It is keyed by OccName, because we never use it for qualified names We keep the current mapping, *and* the set of all Names in scope Reason: see Note [Splicing Exact names] in RnEnv Reader NameqDo not use the data constructors of RdrName directly: prefer the family of functions that creates them, such as `Note: A Located RdrName will only have API Annotations if it is a compound one, e.g.  `bar` ( ~ )u : u , u '(' or '[' or '[:' , u ')' or ']' or ':]',, u '`' , u,u , u,Unqualified name1Used for ordinary, unqualified occurrences, e.g. x, y or Foo. Create such a  with Qualified name)A qualified name written by the user in source code. The module isn't necessarily the module where the thing is defined; just the one from which it is imported. Examples are Bar.x, Bar.y or Bar.Foo. Create such a  with  Original name$An original name; the module is the defining module. This is used when GHC generates code that will be fed into the renamer (e.g. from deriving clauses), but where we want to say "Use Prelude.map dammit". One of these can be created with  Exact nameWe know exactly the s. This is used: ,When the parser parses built-in syntax like [] and (,), but wants a  from it8By Template Haskell, when TH has generated a unique nameSuch a  can be created by using  on a sMake a qualified & in the given namespace and where the  and the tG are taken from the first and second elements of the tuple respectivelymake a p where all the elements point to the same Provenance (useful for "hiding" imports, or imports with no details).Takes a list of distinct GREs and folds them into AvailInfos. This is more efficient than mapping each individual GRE to an AvailInfo and the folding using & but needs the uniqueness assumption.!Look for precisely this sw in the environment. This tests whether it is in scope, ignoring anything else that might be in scope with the same t."Look for a particular record field selector in the environment, where the selector name and field label may be different: the GlobalRdrEnv is keyed on the label. See Note [Parents for record fields] for why this happens.MLook for precisely this s! in the environment, but with an t% that might differ from that of the s. See "' and Note [Parents for record fields].'>Test if an unqualified version of this thing would be in scope(2Takes a list of GREs which have the right OccName x> Pick those GREs that are are in scope * Qualified, as 4 if want_qual is Qual M _ * Unqualified, as x if want_unqual is Unqual _Return each such GRE, with its ImportSpecs filtered, to reflect how it is in scope qualified or unqualified respectively. See Note [GRE filtering])Pick GREs that are in scope *both* qualified *and* unqualified Return each GRE that is, as a pair (qual_gre, unqual_gre) These two GREs are the original GRE with imports filtered to express how it is in scope qualified an unqualified respectivelySUsed only for the 'module M' item in export list; see RnNames.exports_from_avail,>Apply a transformation function to the GREs for these OccNames0Is in scope unqualified?1,Is in scope qualified with the given module?5ZPrint out one place where the name was define/imported (With -dppr-debug, print them all)g      !"#$%&'()*+,-./012345g     +*-. !"#,()$%&'105234/XNone 234= 1 2 3MNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJK423= 1 2 3MNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKtNone NLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmopqrstnuvwxyz{|}~      !"#$%&'()*,-./0123+456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZg[\]^_`abcdefhijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPuNone1 ZLQ<Some template haskell tokens have two variants, one with an e the other not:  [| or [e| [|| or [e|| This type indicates whether the e is present or not.TCertain tokens can have alternate representations when unicode syntax is enabled. This flag is attached to those tokens in the lexer so that the original source representation can be reproduced in the corresponding  ApiAnnotationW` : , i,r, ,,  May have r when in a listYsomething beginning '-- |'Zsomething beginning '-- ^'[something beginning '-- $'\a section heading](doc options (prune, ignore-exports, etc)^comment starting by "--"_comment in {- -}`API Annotations exist so that tools can perform source to source conversions of Haskell code. They are used to keep track of the various syntactic keywords that are not captured in the existing AST.SThe annotations, together with original source comments are made available in the pm_annotations field of !. Comments are only retained if Opt_KeepRawTokenStream is set in %% before parsing.*The wiki page describing this feature is 4https://ghc.haskell.org/trac/ghc/wiki/ApiAnnotationsNote: in general the names of these are taken from the corresponding token, unless otherwise noted See note [Api annotations] above for details of the usaged!e'`'gcase or lambda casei'#)' or '#-}' etcj'|)'k'|)', unicode variantl'}'m'|]'n'|]', unicode varianto')'p']'ras a list separatorsin a RdrName for a tuplet'=>'u'=>', unicode variantw'::'x'::', unicode variant|L}'..'Unicode variantRfor function name in matches where there are multiple equations for the function. for CType'infix' or 'infixl' or 'infixr''<-''<-', unicode variantL.;where a name loses its location in the AST, this carries it'(#' or '{-# LANGUAGE' etc'(|''(|', unicode variant'{''[e|' or '[e||''[|''[|', unicode variant'(''$(''$$(''[''->''->', unicode variant';''''staticK double ''''~'~#'()' for types e.g. INTEGER*String value, will need quotes when output'|'-<-<, unicode variant'->''->', unicode variant-<<-<<, unicode variant>>->>-, unicode variantRetrieve a list of annotation s based on the E of the annotated AST element, and the known type of the annotation.Retrieve a list of annotation s based on the p of the annotated AST element, and the known type of the annotation. The list is removed from the annotations./Retrieve the comments allocated to the current Note: A given < may appear in multiple AST elements, beware of duplicates/Retrieve the comments allocated to the current ', and remove them from the annotations;Convert a normal annotation into its unicode equivalent one}QRSTUVWXYZ[\]^_`ieabcdfghjklmnopqrstuvwxyz{|}~}`ieabcdfghjklmnopqrstuvwxyz{|}~XYZ[\]^_TUVQRSWvNoneD }Encapsulated call to addAnnotation, requiring only the SrcSpan of the AST construct the annotation belongs to; together with the AnnKeywordId, this is the key of the annotation map.'This type is useful for places in the parser where it is not yet known what SrcSpan an annotation should be added to. The most common situation is when we are parsing a list: the annotations need to be associated with the AST element that *contains* the list, not the list itself.  lets us defer adding the annotations until we finish parsing the list and are now parsing the enclosing element; we then apply the ' to associate the annotations. Another common situation is where a common fragment of the AST has been factored out but there is no separate AST node for this fragment (this occurs in class and data declarations). In this case, the annotation belongs to the parent data declaration.The usual way an  is created is using the mjD ("make jump") function, and then it can be discharged using the ams function.The subset of the   used by the parser'key of package currently being compiledbitmap of permitted extensionsMDo we want to generate ';' layout tokens? In some cases we just want to generate '}', e.g. in MultiWayIf we don't need ';'s because '|'# separates alternatives (unlike a `case`G expression where we need ';' to as a separator between alternatives).MTest whether a   is setTest whether a Mp is set0Extracts the flag information needed for parsingCreates a parse state from a   valueCreates a parse state from a  valueFGiven a location and a list of AddAnn, apply them all to the location.Given a  that surrounds a HsPar or HsParTy , generate O values for the opening and closing bordering on the start and end of the span3Move the annotations and comments belonging to the old span to the new one.MGo through the  comment_q in PState; and remove all comments that belong within the given span      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~wNone fxNone1;<=^ ""Type Variable BinderA  is the binder of a ForAllTy It's convenient to define this synonym here rather its natural home in TyCoRep, because it's used in DataCon.hs-boot Argument Flag3Is something required to appear in source Haskell (), permitted by request (X) (visible type application), or prohibited entirely from appearing in source Haskell (P)? See Note [TyVarBndrs, TyVarBinders, TyConBinders, and visibility] in TyCoRepM,Not exported: may be discarded as dead code.MExported: kept aliveMIdentifier ScopeVariableEssentially a typed s?, that may also contain some additional information about the  and it's use sites.MTKey for fast comparison Identical to the Unique in the name, cached here for speedThe type or kind of the  in questionType or Coercion VariableEquality VariableImplicit parameter IdentifierDictionary IdentifierDictionary Function IdentifierEvidence VariableEvidence Identifier Kind Variable Type VariableType or Kind VariableType or kind VariableCoercion Variable IdentifierCompare Vars by their Uniques. This is what Ord Var does, provided here to make it explicit at the call-site that it can introduce non-determinism. See Note [Unique Determinism]  Does this 1 classify an argument that is written in Haskell?  Does this 5 classify an argument that is not written in Haskell?.Do these denote the same level of visibility? C arguments are visible, others are not. So this function equates  and . Used for printing.Make a named binderMake many named binders% Exported "s will not be removed as dead code(If it's a local, make it global)Exports the given local . Can also be called on global Ms, such as data constructors and class operations, which are born as global s and automatically exported*We can only do this to LocalIds22 returns True% for type variables as well as local ws These are the variables that we need to pay attention to when finding free variables, or doing dependency analysis.44 returns True of s and es that must have a binding in this module. The converse is not quite right: there are some global vs that must have bindings, such as record selectors. But that doesn't matter, because it's only used for assertions5isExportedIdVar means "don't throw this away"R      !"#$%&'()*+,-./012345R   "#%$ !&'()*.+,21/0-354  ~None1 TA Cost Centre Stack is something that can be attached to a closure. This is either:$the current cost centre stack (CCCS)Xa pre-defined cost centre stack (there are several pre-defined CCSs, see below).A Cost Centre is a single {- SCC -} annotation. Two cost centres may have the same name and module but different SrcSpans, so we need a way to distinguish them easily and give them different object-code labels. So every CostCentre has a Unique that is distinct from every other CostCentre in the same module.tXXX: should really be using Unique here, but we need to derive Data below and there's no Data instance for Unique.Name of the cost centre itself Name of module defining this CC..Is this a cost-centre which records scc counts)Is this a cost-centre which can be sccd ?""None &'-01FGV ,For now, we work only with nominal equality.coaxrProves returns Nothing when it doesn't like the supplied arguments. When this happens in a coercion that means that the coercion is ill-formed, and Core Lint checks for that.-A more explicit representation for `t1 ~ t2`.A : is a "coercion constructor", i.e. a named equality axiom.The  [CoAxBranch]O passed into the mapping function is a list of all previous branches, reversedAANone ],-./0123456789:;<=>?@ABCDEFGHI20-.,/G1HI896:54?@3=>DEBA;<7CF-None;= ݙXTyCons represent type constructors. Type constructors are introduced by things such as:1) Data declarations: data Foo = ... creates the Foo type constructor of kind *2) Type synonyms: type Foo = ... creates the Foo type constructor 3) Newtypes: newtype Foo a = MkFoo ... creates the Foo type constructor of kind * -> *4) Class declarations: class Foo where creates the Foo type constructor of kind *zThis data type also encodes a number of primitive, built in type constructors such as those for function and tuple types. Is this the  for an unboxed tuple? Does this  represent a tuple?NB: when compiling  Data.Tuple, the tycons won't reply True to , because they are built as  AlgTyCons`. However they get spat into the interface file as tuple tycons, so I don't think it matters.PPaints a picture of what a U represents, in broad strokes. This is used towards more informative error messages.[ e.g., the (->) .hA h is an abstraction of a type. It contains information that the code generator needs in order to pass arguments, return results, and store values of this type.kUnlifted pointerlSigned, word-sized valuemUnsigned, word-sized valuen-Signed, 64 bit value (with 32-bit words only)o/Unsigned, 64 bit value (with 32-bit words only)pA pointer, but not) to a Haskell value (use '(Un)liftedRep')sA vectoru;Information pertaining to the expansion of a type synonym (type)vnRepresents an open type family without a fixed right hand side. Additional instances can appear at any time.7These are introduced by either a top level declaration: data family T a :: *COr an associated data type declaration, within a class declaration: !class C a b where data T b :: *w"An open type synonym family e.g. type family F x y :: * -> *x$A closed type synonym family e.g. &type family F x where { F Int = Bool }yWA closed type synonym family declared in an hs-boot file with type family F a where ..z0Built-in type family used by the TypeNats solver+An ordinary type constructor has no parent.An unboxed type constructor. The TyConRepName is a Maybe since we currently don't allow unboxed sums to be Typeable since there are too many of them. See #13276.\Type constructors representing a class dictionary. See Note [ATyCon for classes] in TyCoRepMType constructors representing an *instance* of a *data* family. Parameters:1) The type family in question*2) Instance types; free variables are the  of the current X (not the family one). INVARIANT: the number of types matches the arity of the family 3) A CoTyConD identifying the representation type with the type instance familyMSome promoted datacons signify extra info relevant to GHC. For example, the IntRep constructor of  RuntimeRep corresponds to the l constructor of hH. This data structure allows us to store this information right in the 6. The other approach would be to look up things like  RuntimeRep's PrimRep by known-key every time.an ordinary promoted data conA constructor of  RuntimeRepX. The argument to the function should be the list of arguments to the promoted datacon.A constructor of VecCountA constructor of VecElemRepresents right-hand-sides of s for algebraic typesSays that we know nothing about this data type, except that it's represented by a pointer. Used when we export a data type abstractly into an .hi file.Information about those s derived from a dataE declaration. This includes data types with no constructors at all.Information about those s derived from a newtype declarationaThe data type constructors; can be empty if the user declares the type to have no constructors'INVARIANT: Kept in order of increasing 3 tag (see the tag assignment in DataCon.mkDataCon)JCached value: is this an enumeration type? See Note [Enumeration types]The unique constructor for the newtype. It has no existentials.Is this a boxed, unboxed or constraint tuple?cCached value: the argument type of the constructor, which is just the representation type of the  (remember that newtypeEs do not exist at runtime so need a different representation type). The free s of this type are the  from the corresponding  Same as the 0, but this time eta-reduced. Hence the list of ?s in this field may be shorter than the declared arity of the .MThe function type constructor, (->)M"Algebraic data types, from - data declarations - newtype declarations - data instance declarations - type instance declarations - the TyCon generated by a class declaration - boxed tuples - unboxed tuples - constraint tuples All these constructors are lifted and boxed except unboxed tuples which should have an  parent. Datanewtypetype families are handled by M. See  for more information.MRepresents type synonymsMHRepresents families (both type and data) Argument roles are all NominalMZPrimitive types; cannot be defined in Haskell. This includes the usual suspects (such as Int#0) as well as foreign-imported types and kinds (*, #, and ?)M%Represents promoted data constructor.MBThese exist only during a recursive type/class type-checking knot.[A Unique of this TyCon. Invariant: identical to Unique of Name stored in tyConName field.Name of the constructor Full binders Result kindKind of this TyConArity TyVar bindersMiThe role for each type variable This list has length = tyConArity See also Note [TyCon Role signatures]JThe C type that should be used for this type when using the FFI and CAPIMWas the data type declared with GADT syntax? If so, that doesn't mean it's a true GADT; only that the "where" form was used. This field is used only to guide pretty-printingMThe "stupid theta" for the data type (always empty for GADTs). A "stupid theta" is the context to the left of an algebraic type declaration, e.g. Eq a in the declaration data Eq a => T a ....MGContains information about the data constructors of the algebraic type,Maps a label to information about the fieldM'Gives the class or family declaration  for derived 8s representing class or family instances, respectively.M8Contains information about the expansion of the synonymvName of result type variable, used for pretty-printing with --show-iface and for reifying TyCon in Template HaskellMVType family flavour: open, closed, abstract, built-in. See comments for FamTyConFlavMFor *associated* type/data families The class in whose declaration the family is declared See Note [Associated families and their parent class]Mgis this a type family injective in its type variables? Nothing if no injectivity annotation was givenMYMost primitive tycons are unlifted (may not contain bottom) but other are lifted, e.g.  RealWorld Only relevant if tyConKind = *MCorresponding data constructorMSee comments with QScoped tyvars over the tycon's body See Note [How TcTyCons work] in TcTyClsDeclsM What sort of  this represents.Both type classes as well as family instances imply implicit type constructors. These implicit type constructors refer to their parent structure (ie, the class or family from which they derive) using a type of the following form.Extract those s that we are able to learn about. Note that visibility in this sense does not correspond to visibility in the context of any particular user program!MChecks the invariants of a ~/ given the appropriate type class name, if anyMake a s for the Typeable* representation of the given wired-in type^The name (and defining module) for the Typeable representation (TyCon) of a type constructor.&See Note [Grand plan for Typeable] in  TcTypeable in TcTypeable.The size of a h in bytes.cThis applies also when used in a constructor, where we allow packing the fields. For instance, in data Foo = Foo Float Float the two fields will take only 8 bytes, which for 64-bit arch will be equal to 1 word. See also mkVirtHeapOffsetsWithPadding for details of how data fields are layed out.JReturn if Rep stands for floating type, returns Nothing for vector types.-The labels for the fields of this particular N-The labels for the fields of this particular (Look up a field label belonging to this N^Make a map from strings to FieldLabels from all the data constructors of this algebraic tyconYGiven the name of the function type constructor and it's kind, create the corresponding . It is recomended to use  if you want this functionality#This is the making of an algebraic . Notably, you have to pass in the generic (in the -XGenerics sense) information about the type constructor - you can get hold of it easily (see Generics module)Simpler specialization of  for classes4Makes a tycon suitable for use during type-checking. The only real need for this is for printing error messages during a recursive type/class type-checking knot. It has a kind because TcErrors sometimes calls typeKind. See also Note [Kind checking recursive type and class declarations] in TcTyClsDecls.Create an unlifted primitive  , such as Int#.Kind constructorsCreate a lifted primitive  such as  RealWorldCreate a type synonym Create a type family #Create a promoted data constructor  Somewhat dodgily, we give it the same Name as the data constructor itself; when we pretty-print the TyCon we add a quote; see the Outputable TyCon instance Test if the 8 is algebraic but abstract (invisible data constructors)Make a fake, recovery 8 from an existing one. Used when recovering from errors Does this 7 represent something that cannot be defined in Haskell?Is this i unlifted (i.e. cannot contain bottom)? Note that this can only be true for primitive and unboxed-tuple sReturns True if the supplied  resulted from either a data or newtype declarationReturns True9 for vanilla AlgTyCons -- that is, those created with a data or newtype declaration.Returns True for data types that are  definitelyT represented by heap-allocated constructors. These are scrutinised by Core-level case: expressions, and they get info tables allocated for them.-Generally, the function will be true for all data types and false for newtype1s, unboxed tuples, unboxed sums and type family &s. But it is not guaranteed to return True in all cases that it could.%NB: for a data type family, only the instance 2s get an info table. The family declaration  does not is true of  s for which this property holds (where X is the role passed in): If (T a1 b1 c1) ~X (T a2 b2 c2), then (a1 ~X1 a2), (b1 ~X2 b2), and (c1 ~X3 c2) (where X1, X2, and X3, are the roles given by tyConRolesX tc X) See also Note [Decomposing equality] in TcCanonical is true of s for which this property holds (where X is the role passed in): If (T tys ~X t), then (t's head ~X T). See also Note [Decomposing equality] in TcCanonical Is this an  of a M that is generative and injective with respect to representational equality?Is this  that for a newtypeTake a  apart into the s it scopes over, the 'Q it expands into, and (possibly) a coercion from the representation type to the newtype . Returns Nothing if this is not possible. Is this a * representing a regular H98 type synonym (type)?True iff we can decompose (T a b c) into ((T a b) c) I.e. is it injective and generative w.r.t nominal equality? That is, if (T a b) ~N d e f, is it always the case that (T ~N d), (a ~N e) and (b ~N f)? Specifically NOT true of synonyms (open and otherwise)It'd be unusual to call mightBeUnsaturatedTyCon on a regular H98 type synonym, because you should probably have expanded it first But regardless, it's not decomposableIs this an algebraic  declared with the GADT syntax?Is this an algebraic ( which is just an enumeration of values? Is this a ., synonym or otherwise, that defines a family? Is this a >, synonym or otherwise, that defines a family with instances?Is this a synonym 1 that can have may have further instances appear?Is this a synonym 1 that can have may have further instances appear?"Is this an open type family TyCon?0Is this a non-empty closed type family? Returns Lx( for abstract or empty closed families. tc returns } is is tc is an injective tycon (where is states for which  tc is injective), or | otherwise.#Are we able to extract information . to class argument list mapping from a given ? Is this the  for a boxed tuple? Is this the  for an unboxed sum? Is this the  for a promoted tuple?Is this a PromotedDataCon?<Retrieves the promoted DataCon if this is a PromotedDataCon;kIs this tycon really meant for use at the kind level? That is, should it be permitted without -XDataKinds?NLThese TyCons should be allowed at the kind level, even without -XDataKinds.Identifies implicit tycons that, in particular, do not go into interface files (because they are implicitly reconstructed when the interface is read). Note that:tAssociated families are implicit, as they are re-constructed from the class declaration in which they reside, andFamily instances are not? implicit as they represent the instance body (similar to a dfun! does that for a class instance).Tuples are implicit iff they have a wired-in name (namely: boxed and unboxed tupeles are wired-in and implicit, but constraint tuples are not)AIs this a TcTyCon? (That is, one only used during type-checking?)Could this TyCon ever be levity-polymorphic when fully applied? True is safe. False means we're sure. Does only a quick check based on the TyCon's category. Precondition: The fully-applied TyCon has kind (TYPE blah))Expand a type synonym application, if any/Check if the tycon actually refers to a proper `data` or  `newtype`W with user defined constructors rather than one from a class or other construction.As O, but returns the empty list of constructors if no constructors could be foundDetermine the s originating from the given  , if the d is the sort that can have any constructors (note: this does not include abstract algebraic types) If the given  has a single data constructor, i.e. it is a data/ type with one alternative, a tuple type or a newtype, then that constructor is returned. If the ] has more than one constructor, or represents a primitive or function type constructor then Nothing5 is returned. In any other case, the function panics-Determine the number of value constructors a  has. Panics if the  is not algebraic or a tuple,Determine if number of value constructors a M has is smaller than n. Faster than tyConFamilySize tc <= n. Panics if the  is not algebraic or a tuple Extract an F with information about data constructors from an algebraic or tuple . Panics for any other sort of @Extract type variable naming the result of injective type family8Get the list of roles for the type parameters of a TyConGExtract the bound type variables and type expansion of a type synonym . Panics if the  is not a synonymThe number of type parameters that need to be passed to a newtype to resolve it. May be less than in the definition if it can be eta-contracted.WExtract the bound type variables and type expansion of an eta-contracted type synonym . Panics if the  is not a synonym Extracts the newtype coercion from such a 5, which can be used to construct something with the newtypeHs type from its representation type (right hand side). If the supplied  is not a newtype , returns NothingFind the "stupid theta" of the V. A "stupid theta" is the context to the left of an algebraic type declaration, e.g. Eq a in the declaration data Eq a => T a ... Extract the Ys bound by a vanilla type synonym and the corresponding (unsubstituted) right hand side.NExtract the information pertaining to the right hand side of a type synonym (type) declaration.VExtract the flavour of a type family (with all the extra information that it carries) Is this  that for a class instance? If this N is that for a class instance, return the class it is for. Otherwise returns Nothing #Return the associated types of the , if any Is this ! that for a data family instance?If this m is that of a data family instance, return the family in question and the instance types. Otherwise, return NothingIf this - is that of a data family instance, return a u which represents a coercion identifying the representation type with the type instance family. Otherwise, return Nothing Extract any  from this TyConCan this flavour of  appear unsaturated?Is this flavour of & an open type family or a data family?Returns whether or not this d is definite, or a hole that may be filled in at some later point. See Note [Skolem abstract data] Binders of the  Result kindThe roles for each TyVar>The C type this type corresponds to when using the CAPI FFIStupid theta: see M#Information about data constructors0What flavour is it? (e.g. vanilla, type family)Was the  declared with GADT syntax?Result kind of the Arity of the tuple %Whether the tuple is boxed or unboxedKind of the resulting Arity of the sums scoped over: see result kind onlyDScoped type variables; see Note [How TcTyCons work] in TcTyClsDecls What sort of  this representsresult kind, never levity-polymorphicresult kindresult kindNresultd kind, never levity-polymorphic (If you need a levity-polymorphic PrimTyCon, change isTcLevPoly.)result kindresult kind Arguments to  Returns a u substitution, the body type of the synonym (not yet substituted) and any arguments remaining from the applicationOPQRSTUVWXYZ[\]^_`abcdefghsjklmnopqrituvwxyz{|}~     ~uvwxyz{|}PQRSTUVWXYZ[\     thsjklmnopqri]^_`abcdefgO{None;=^ 8Show forall flag1Unconditionally show the forall quantifier with (9 ) or when (:Y) the names used are free in the binder or when compiling with -fprint-explicit-foralls.R!See Note [Holes in IfaceCoercion]W@The various types of TyCons which have special, built-in syntax.Xa regular tyconYe.g.  (a, b, c) or (a, b, c)p. The arity is the tuple width, not the tycon arity (which is twice the width in the case of unboxed tuples).Ze.g.  (a | b | c)[A heterogeneous equality TyCon (i.e. eqPrimTyCon, eqReprPrimTyCon, heqTyCon) that is actually being applied to two types of the same kind. This affects pretty-printing only: see Note [Equality predicates in IfaceType]\IIs a TyCon a promoted data constructor or just a normal type constructor? Extract an u from an t."Extract the variable name from an t. Extract an u from an e."Extract the variable name from an e.NDefault  variables to  LiftedPtr. e.g. U($) :: forall (r :: GHC.Types.RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b  turns in to, - ($) :: forall a (b :: *). (a -> b) -> a -> bWe do this to prevent RuntimeRep variables from incurring a significant syntactic overhead in otherwise simple type signatures (e.g. ($)). See Note [Defaulting RuntimeRep variables] and #11549 for further discussion.Like , but always uses an explicit forall.;Render the "forall ... ." or "forall ... ->" bit of a type.NRender the ... in (forall ... .) or (forall ... ->)]. Returns both the list of not-yet-rendered binders and the doc. No anonymous binders here!NMPretty-print a type-level equality. Returns (Just doc) if the argument is a  saturated| application of eqTyCon (~) eqPrimTyCon (~#) eqReprPrimTyCon (~R#) hEqTyCon (~~)[See Note [Equality predicates in IfaceType] and Note [The equality types story] in TysPrimPrints "(C a, D b) =>", including the arrow. Used when we want to print a context in a type, so we use FunPrec to decide whether to parenthesise a singleton predicate; e.g. Num a => a -> aPrints a context or ()- if empty You give it the context precedenceNif printing coercions otherwiseN*visibility of the first binder in the listytuv@ABCDEFGHIJKLMNOPQRwfgx_`ayjklmnopqrstz{|bcd89:;<=>?STUVWXYZ[\^]ehiuwvxyz|{}~y}{yjklmnopqrstizv@ABCDEFGHIJKLMNOPQR;<=>?x_`aSTUVWXYZ[\^]wfg|bcdhz|{uwvxuyet89:~None&+Deterministic Type or Coercion Variable SetDeterministic Type Variable SetDeterministic Identifier SetDeterministic Variable SetType or Coercion Variable SetCoercion Variable SetType Variable SetIdentifier Set A non-deterministic Variable Set<A non-deterministic set of variables. See Note [Deterministic UniqFM] in UniqDFM for explanation why it's not deterministic and why it matters. Use DVarSet if the set eventually gets converted into a list or folded over in a way where the order changes the generated code, for example when abstracting variables.5map the function over the list, and union the resultsDetermines the pluralisation suffix appropriate for the length of a set in the same way that plural from Outputable does for lists.Pretty-print a non-deterministic set. The order of variables is non-deterministic and for pretty-printing that shouldn't be a problem. Having this function helps contain the non-determinism created with nonDetEltsUFM. Passing a list to the pretty-printing function allows the caller to decide on the order of Vars (eg. toposort them) without them having to use nonDetEltsUFM at the call site. This prevents from let-binding non-deterministically ordered lists and reusing them where determinism matters.5Map the function over the list, and union the resultsTrue if empty intersectionTrue if non-empty intersection2Partition DVarSet according to the predicate given'Delete a list of variables from DVarSet"Add a list of variables to DVarSetAConvert a DVarSet to a VarSet by forgeting the order of insertiontransCloVarSet for DVarSetThe things to be pretty printed4The pretty printing function to use on the elementsu+ where the things have been pretty printedGGNoneV7 'Deterministic Type Variable Environment $Deterministic Identifier Environment "Deterministic Variable Environment Coercion Variable Environment %Type or Coercion Variable EnvironmentType Variable EnvironmentIdentifier EnvironmentVariable EnvironmentTidy EnvironmentKWhen tidying up print names, we keep a mapping of in-scope occ-names (the |+) and a Var-to-Var of the current renamingsRename Environment 2When we are comparing (or matching) types or terms, we are faced with "going under" corresponding binders. E.g. when comparing: \x. e1 ~ \y. e2Basically we want to rename [x -> y] or [y -> xH], but there are lots of things we must be careful of. In particular, x might be free in e2 , or y in e1[. So the idea is that we come up with a fresh binder that is free in neither, and rename x and y, respectively. That means we must maintain: 'A renaming for the left-hand expression)A renaming for the right-hand expressionsAn in-scope setVFurthermore, when matching, we want to be able to have an 'occurs check', to prevent: \x. f ~ \y. ymatching with [f -> y]. So for each expression we want to know that set of locally-bound variables. That is precisely the domain of the mappings 1. and 2., but we must ensure that we always extend the mappings as we go in.-All of this information is bundled up in the A set of variables that are in scope at some point "Secrets of the Glasgow Haskell Compiler inliner" Section 3.2 provides the motivation for this abstraction.Look up a variable the N. This lets you map from the variable's identity (unique) to its full value. uniqAway in_scope vK finds a unique that is not used in the in-scope set, and gives that to v.%Retrieve the left mapping&Retrieve the right mapping'Applies (E to several variables: the two variable lists must be of equal length(rnBndr2 env bL bR goes under a binder bL5 in the Left term, and binder bR, in the Right term. It finds a new binder, new_b&, and returns an environment mapping  bL -> new_b and  bR -> new_b) Similar to (= but returns the new variable as well as the new environment* Similar to (7 but used when there's a binder on the left side only.+ Similar to (8 but used when there's a binder on the right side only., Similar to *5 but used for eta expansion See Note [Eta expansion]- Similar to (5 but used for eta expansion See Note [Eta expansion]2?Look up the renaming of an occurrence in the left or right term3?Look up the renaming of an occurrence in the left or right term4?Look up the renaming of an occurrence in the left or right term5?Look up the renaming of an occurrence in the left or right term6)Tells whether a variable is locally bound7)Tells whether a variable is locally bound9$Wipe the left or right side renaming:$Wipe the left or right side renaming;"swap the meaning of left and rightn      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvn  UVST=?ABCDEMFGHN@IJZKLO^QR]_`W>XPY\[   acbdrufqpghisjklmnoetv !(')236745*+9:;./01",-#$8%&<Nonene.Predicate on possible free variables: returns True! iff the variable is interestingRun a free variable computation, returning a list of distinct free variables in deterministic order and a non-deterministic set containing those variables.eRun a free variable computation, returning a list of distinct free variables in deterministic order.Run a free variable computation, returning a deterministic set of free variables. Note that this is just a wrapper around the version that returns a deterministic list. If you need a list you should use .Run a free variable computation, returning a non-deterministic set of free variables. Don't use if the set will be later converted to a list and the order of that list will impact the generated code.tAdd a variable - when free, to the returned free variables. Ignores duplicates and respects the filtering function.Return no free variables.%Union two free variable computations.5Mark the variable as not free by putting it in scope.%Mark many free variables as not free.#Filter a free variable computation.BMap a free variable computation over a list and union the results.&Union many free variable computations.|Add multiple variables - when free, to the returned free variables. Ignores duplicates and respects the filtering function.~~None1^=]A collection of !s 0The key type representing kinds in the compiler.!A type of the form p of kind  Constraint9 represents a value whose type is the Haskell predicate p/, where a predicate is what occurs before the => in a Haskell type.We use !K as documentation to mark those types that we guarantee to have this kind.0It can be expanded into its representation, but:(The type checker must treat it as opaque1The rest of the compiler treats it as transparentConsider these examples: ]f :: (Eq a) => a -> Int g :: (?x :: Int -> Int) => a -> Int h :: (r\l) => {r} => {l::Int | r} Here the Eq a and ?x :: Int -> Int and rl are all called "predicates""A "D represents an argument to a function. TyBinders can be dependent (N) or nondependent (N 9). They may also be visible or not. See Note [TyBinders]#Type & coercion substitutiontcvsubst_invariant* The following invariants must hold of a #: The in-scope set is needed only* to guide the generation of fresh uniquesIn particular, the kind; of the type variables in the in-scope set is not relevantqThe substitution is only applied ONCE! This is because in general such application will not reach a fixed point.$OFor simplicity, we have just one UnivCo that represents a coercion from some type to some other type, with (in general) no restrictions on the type. The UnivCoProvenance specifies more exactly what the coercion really is and why a program should (or shouldn't!) trust the coercion. It is reasonable to consider each constructor of $ as a totally independent coercion form; their only commonality is that they don't tell you what types they coercion between. (That info is in the N  constructor of %.%A %C is concrete evidence of the equality/convertibility of two types.&_A global typecheckable-thing, essentially anything that has a name. Not to be confused with a  TcTyThingH, which is also a typecheckable thing but in the *local* context. See TcEnv for how to retrieve a & given a s.A substitution of %s for sA substitution of 's for s and  s for sIA coercion to be filled in by the type-checker. See Note [Coercion holes]N From  unsafeCoerce#. These are unsound.N >See Note [Phantom coercions]. Only in Phantom roled coercionsN From the fact that any two coercions are considered equivalent. See Note [ProofIrrelProv]. Can be used in Nominal or Representational coercionsNeFrom a plugin, which asserts that this coercion is sound. The string is for the use of the plugin.N;See Note [Coercion holes] Only present during typecheckingN;Vanilla type or kind variable (*never* a coercion variable)N+Type application to something other than a  . Parameters:1) Function: must not be a N, must be another N, or N2) Argument typeNApplication of a , including newtypes and1 synonyms. Invariant: saturated applications of FunTyCon must use NC and saturated synonyms must use their own constructors. However,  unsaturated FunTyCons do appear as Ns. Parameters:%1) Type constructor being applied to.2) Type arguments. Might not have enough type arguments here to saturate the constructor. Even type synonyms are not necessarily saturated; for example unsaturated type synonyms can appear as the right hand side of a type synonym.N A  type.N4t1 -> t2 Very common, so an important special caseN/Type literals are similar to type constructors.NA kind cast. The coercion is always nominal. INVARIANT: The cast is never refl. INVARIANT: The cast is "pushed down" as far as it can go. See Note [Pushing down casts]NInjection of a Coercion into a type This should only ever be used in the RHS of an AppTy, in the list of a TyConApp, when applying a promoted GADT data constructor3The key representation of types within the compilerNIRemove the binder's variable from the set, if the binder has a variable.,Does this binder bind an invisible argument?)Does this binder bind a visible argument?Make an arrow typeMake nested arrow types/Wraps foralls over the type using the provided s from left to rightiDoes this type classify a core (unlifted) Coercion? At either role nominal or representational (t1 ~ t2) or (t1 ~R t2)ZCreate the plain type constructor type which has been applied to no type arguments at all.This version considers Constraint to be distinct from *. Returns True if the argument is equivalent to Type and False otherwise.Returns True if the kind classifies unlifted types and False otherwise. Note that this returns False for levity-polymorphic kinds, which may be specialized to a kind that classifies unlifted types.Is this the type ?Is a tyvar of type ?rReturns free variables of a type, including kind variables as a non-deterministic set. For type synonyms it does not expand the synonym.] that returns free variables of a type in a deterministic set. For explanation of why using 9 is not deterministic see Note [Deterministic FV] in FV.] that returns free variables of a type in deterministic order. For explanation of why using 9 is not deterministic see Note [Deterministic FV] in FV.The worker for  and tyCoFVsOfTypeList$. The previous implementation used  which is O(n+m) and can make the function quadratic. It's exported, so that it can be composed with other functions that compute free variables. See Note [FV naming conventions] in FV.nEta-expanded because that makes it run faster (apparently) See Note [FV eta expansion] in FV for explanation.qReturns free variables of types, including kind variables as a non-deterministic set. For type synonyms it does not expand the synonym.NqReturns free variables of types, including kind variables as a non-deterministic set. For type synonyms it does not expand the synonym.mReturns free variables of types, including kind variables as a deterministic set. For type synonyms it does not expand the synonym.zReturns free variables of types, including kind variables as a deterministically ordered list. For type synonyms it does not expand the synonym.6Get a deterministic set of the vars free in a coercionjAdd the kind variables free in the kinds of the tyvars in the given set. Returns a non-deterministic set.NGiven a list of tyvars returns a deterministic FV computation that returns the given tyvars with the kind variables free in the kinds of the given tyvars.sAdd the kind variables free in the kinds of the tyvars in the given set. Returns a deterministically ordered list.fAdd the kind variables free in the kinds of the tyvars in the given set. Returns a deterministic set.N Returns the free variables of a ( that are in injective positions. (See $Note [Kind annotations on TyConApps] in TcSplice7 for an explanation of what an injective position is.)N Returns the free variables of a '( that are in injective positions. (See $Note [Kind annotations on TyConApps] in TcSplice7 for an explanation of what an injective position is.)Returns True if this type has no free variables. Should be the same as isEmptyVarSet . tyCoVarsOfType, but faster in the non-forall case.NReturns True if this coercion has no free variables. Should be the same as isEmptyVarSet . tyCoVarsOfCo, but faster in the non-forall case.NReturns True if this UnivCoProv has no free variables. Should be the same as isEmptyVarSet . tyCoVarsOfProv, but faster in the non-forall case.(compose env1 env2)(x) is  env1(env2(x)) ; i.e. apply env2 then env14. It assumes that both are idempotent. Typically, env1* is the refinement to a base substitution env2bComposes two substitutions, applying the second one provided first, like in function composition.@Make a TCvSubst with specified tyvar subst and empty covar substcReturns the free variables of the types in the range of a substitution as a non-deterministic set.N]Generates an in-scope set from the free variables in a list of types and a list of coercions#Generates the in-scope set for the #@ from the types in the incoming environment. No CoVars, please!N #Generates the in-scope set for the #A from the types in the incoming environment. No TyVars, please!#Generates the in-scope set for the #@ from the types in the incoming environment. No CoVars, please!Type substitution, see Type substitution, see  . Disables sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.N!.Substitute tyvars within a type using a known . Pre-condition: the in_scopeh set should satisfy Note [The substitution invariant]; specifically it should include the free vars of tys , and of ty minus the domain of the subst.Coercion substitution, see Coercion substitution, see  . Disables sanity checks. The problems that the sanity checks in substCo catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substCoUnchecked to substCo and remove this function. Please don't use in new code.Substitute covars within a typeType substitution, see N"Type substitution, see Substitute within a ' after adding the free variables of the type to the in-scope set. This is useful for the case when the free variables aren't already in the in-scope set or easily available. See also Note [The substitution invariant].N# When calling  it should be the case that the in-scope set in the substitution is a superset of the free vars of the range of the substitution. See also Note [The substitution invariant].N$`This checks if the substitution satisfies the invariant from Note [The substitution invariant].Substitute within a 'a The substitution has to satisfy the invariants described in Note [The substitution invariant].Substitute within a ' disabling the sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.Substitute within several 'bs The substitution has to satisfy the invariants described in Note [The substitution invariant].Substitute within several 's disabling the sanity checks. The problems that the sanity checks in substTys catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTysUnchecked to substTys and remove this function. Please don't use in new code.Substitute within a a The substitution has to satisfy the invariants described in Note [The substitution invariant].Substitute within a  disabling the sanity checks. The problems that the sanity checks in substTys catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substThetaUnchecked to substTheta and remove this function. Please don't use in new code.Substitute within a %a The substitution has to satisfy the invariants described in Note [The substitution invariant].Substitute within a % disabling sanity checks. The problems that the sanity checks in substCo catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substCoUnchecked to substCo and remove this function. Please don't use in new code.Substitute within several %bs The substitution has to satisfy the invariants described in Note [The substitution invariant].N%Like N&, but disables sanity checks. The problems that the sanity checks in substCo catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substCoUnchecked to substCo and remove this function. Please don't use in new code.N'Like  but disables sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.N(WSubstitute a tyvar in a binding position, returning an extended subst and a new tyvar.;Print a user-level forall; see Note [When to print foralls]N)debugPprType is a simple pretty printer that prints a type without going through IfaceType. It does not format as prettily as the normal route, but it's much more direct, and that can be useful for debugging. E.g. with -dppr-debug it prints the kind on type-variable  occurrences1 which the normal route fundamentally cannot do. QThis tidies up a type for printing in an error message, or in an interface file.;It doesn't change the uniques at all, just the print names. Add the free Is to the env in tidy form, so that we can tidy the type they are free in Treat a new t as a binder, and give it a fresh tidy name using the environment if one has not already been allocated. See also :Grabs the free type variables, tidies them and then uses  to work over the type itselfCalls = on a top-level type (i.e. with an empty tidying environment)N(the subst function !"NN N*N+N,#$N N N N%N-N.N/N0N1N2N3N N4N5N6N7N8N9N:N;N<N&'NNNNNNNN();<=>?~  N=N>N?N@NNANBNCNDNNNNNENFNN N!N"N#N$N&NGN(NH  N)NI   NJ3NoneF\AThe (->) type constructor. ^(->) :: forall (rep1 :: RuntimeRep) (rep2 :: RuntimeRep). TYPE rep1 -> TYPE rep2 -> * EGGiven a RuntimeRep, applies TYPE to it. see Note [TYPE and RuntimeRep]F Convert a h to a '> of kind RuntimeRep Defined here to avoid (more) module loops !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ĥD')(+*,-./0123456789:;>?<=BCEFA@ HG!JI"PO#VU$XW%ZY&a`\[]^_cbgojpkqmrhsitlunvwxyz{|}~LKRQNMTSdef5NoneS:Does the given type "end" in the given tycon? For example  k -> [a] -> * ends in * and Maybe a -> [a] ends in [].5Tests whether the given kind (which should look like TYPE xT) is something other than a constructor tree (that is, constructors at every node).vDoes this classify a type allowed to have values? Responds True to things like *, #, TYPE Lifted, TYPE v, Constraint.$True of any sub-kind of OpenTypeKindIs this kind equivalent to *?Is this kind equivalent to *? Is the tycon  Constraint?    4None<5k+xAttempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor,Do a topological sort on a list of tyvars, so that binders occur before occurrences E.g. given [ a::k, k::*, b::k ] it'll return a well-scoped list [ k::*, a::k, b::k ]PThis is a deterministic sorting operation (that is, doesn't depend on Uniques).-+Get the free vars of a type in scoped order.*Get the free vars of types in scoped order/HGives the typechecker view of a type. This unwraps synonyms but leaves  Constraint alone. c.f. coreView, which turns Constraint into TYPE LiftedRep. Returns Nothing if no unwrapping happens. See also Note [coreView vs tcView] in Type.0This function Strips off the top layer only of a type synonym application (if any) its underlying representation type. Returns Nothing if there is nothing to look through. This function considers  Constraint to be a synonym of TYPE LiftedRep.By being non-recursive and inlined, this case analysis gets efficiently joined onto the case analysis that the caller is already doing15Type equality on source types. Does not look through newtypes or !s, but it does look through type synonyms. This first checks that the kinds of the types are equal and then checks whether the types are equal, ignoring casts and coercions. (The kind check is a recursive call, but since all kinds have type Typeo, there is no need to check the types of kinds.) See also Note [Non-trivial definitional equality] in TyCoRep.3Make a N. The Coercion must be nominal. Checks the Coercion for reflexivity, dropping it if it's reflexive. See Note [No reflexive casts in types]4&Applies a type to another, as in e.g. k a6CIs the type suitable to classify a given/wanted in the typechecker?NK!An ordering relation between two 's (known below as t1 :: k1 and t2 :: k2)NL t1 < t2NMt1 ~ t2> and there are no casts in either, therefore we can conclude k1 ~ k2NNt1 ~ t2B yet one of the types contains a cast so they may differ in kind.NO t1 > t2>A choice of equality relation. This is separate from the type  because 3 does not define a (non-trivial) equality relation.GThis describes how a "map" operation over a type/coercion should behave8Should the new type be created with smart constructors?FWhat to do with coercion holes. See Note [Coercion holes] in TyCoRep..The returned env is used in the extended scopeExpand out all type synonyms. Actually, it'd suffice to expand out just the ones that discard type variables (e.g. type Funny a = Int) But we don't know which those are currently, so we just expand all.u only expands out type synonyms mentioned in the type, not in the kinds of any TyCon or TyVar mentioned in the type.Keep this synchronized with synonymTyConsOfType2Attempts to obtain the type variable underlying a 'S, and panics with the given message if this is not a type variable type. See also 2Attempts to obtain the type variable underlying a '|If the type is a tyvar, possibly under a cast, returns it, along with the coercion. Thus, the co is :: kind tv ~N kind type2Attempts to obtain the type variable underlying a ', without any expansionAttempt to take a type application apart, whether it is a function, type constructor, or plain type application. Note that type family applications are NEVER unsaturated by this!Does the AppTy split as in 7, but assumes that any Core view stuff is already doneDoes the AppTy split as in tcSplitAppTy_maybeX, but assumes that any coreView stuff is already done. Refuses to look through (c => t)|Split a type constructor application into its type constructor and applied types. Note that this may fail in the case of a N# with an argument of unknown kind N (e.g. FunTy (a :: k) Int. since the kind of a isn't of the form TYPE repL). Consequently, you may need to zonk your type before using this function.If you only need the , consider using tcTyConAppTyCon_maybe.Like ( but doesn't look through type synonyms.1Attempts to take a type application apart, as in %, and panics if this is not possibleRecursively splits a type as far as is possible, leaving a residual type being applied to and the type arguments applied to it. Never fails, even if that means returning an empty list of type applications.Like (, but doesn't look through type synonyms>Is this a numeric literal. We also look through type synonyms.=Is this a symbol literal. We also look through type synonyms.QIs this type a custom user error? If so, give us the kind and the error message.=Render a type corresponding to a user type error into a SDoc.mAttempts to extract the argument and result types from a type, and panics if that is not possible. See also =Attempts to extract the argument and result types from a typeBExtract the function result type and panic if that is not possibleDExtract the function argument type and panic if that is not possibleNP Just like / but for a single argument Try not to iterate 2[, because it's inefficient to substitute one variable at a time; instead use 'piResultTys"W(piResultTys f_ty [ty1, .., tyn]) gives the type of (f ty1 .. tyn) where f :: f_ty " is interesting because: 1. f_ty4 may have more for-alls than there are args 2. Less obviously, it may have fewer for-alls For case 2. think of: piResultTys (forall a.a) [forall b.b, Int] This really can happen, but only (I think) in situations involving undefined. For example: undefined :: forall a. a Term: undefined (forall b. b->b) hInt This term should have type (Int -> Int), but notice that there are more type args than foralls in Ls type.A key function: builds a N or N` as appropriate to its arguments. Applies its arguments to the constructor from left to right.<Retrieve the tycon heading this type, if there is one. Does not look through synonyms. The same as fst . splitTyConApp  The same as snd . splitTyConApp Attempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor. Panics if that is not possible. See also + Like +], but doesn't look through synonyms. This assumes the synonyms have already been dealt with. sAttempts to tease a list type apart and gives the type of the elements if successful (looks through type synonyms) UWhat is the role assigned to the next parameter of this type? Usually, this will be , but if the type is a Nj, we may be able to do better. The type does *not* have to be well-kinded when applied for this to work!  Unwrap one layerZ of newtype on a type constructor and its arguments, using an eta-reduced version of the newtype2 if possible. This requires tys to have at least newTyConInstArity tycon elements. LMake a dependent forall over an Inferred (as opposed to Specified) variable VLike mkForAllTys, but assumes all variables are dependent and Inferred, a common case WLike mkForAllTys, but assumes all variables are dependent and specified, a common case ELike mkForAllTys, but assumes all variables are dependent and visible Makes a (->) type or an implicit forall type, depending on whether it is given a type variable or a term variable. This is used, for example, when producing the type of a lambda. Always uses Inferred binders.  % for multiple type or value arguments Given a list of type-level vars and a result kind, makes TyBinders, preferring anonymous binders if the variable is, in fact, not dependent. e.g. mkTyConBindersPreferAnon  k->k(k:*),(b:k),(c:k)- We want (k:*) Named, (a;k) Anon, (c:k) AnonAll binders are visible. Take a ForAllTy apart, returning the list of tyvars and the result type. This always succeeds, even if it returns only an empty list. Note that the result type returned may have free variables that were bound by a forall. Like   but split off only named binders. <Checks whether this is a proper forall (with a named binder) Is this a function or forall? <Take a forall type apart, or panics if that is not possible. Drops all ForAllTys \Attempts to take a forall type apart, but only if it's a proper forall, with a named binder NAttempts to take a forall type apart; works with proper foralls and functions $Takes a forall type apart, or panics OSplit off all TyBinders to a type, splitting both proper foralls and functions DGiven a tycon and its arguments, filters out any invisible arguments Given a tycon and a list of things (which correspond to arguments), partitions the things into Inferred or Specified ones and Required ones The callback function is necessary for this scenario: LT :: forall k. k -> k partitionInvisibles T [forall m. m -> m -> m, S, R, Q]After substituting, we get MT (forall m. m -> m -> m) :: (forall m. m -> m -> m) -> forall n. n -> n -> n'Thus, the first argument is invisible, S is visible, R is invisible again, and Q is visible.If you're absolutely sure that your tycon's kind doesn't end in a variable, it's OK if the callback function panics, as that's the only time it's consulted. "Make an anonymous binder #)Does this binder bind a variable that is not erased? Returns Lq for anonymous binders. &)Extract a relevant type, if there is one. 'Like L, but for binders. (Manufacture a new  from a " . Anonymous "s are still assigned names as 8s, so we need the extra gunk with which to construct a Nameg. Used when producing tyConTyVars from a datatype kind signature. Defined here to avoid module loops. 13Makes a lifted equality predicate at the given role 2TCreates a primitive type equality predicate. Invariant: the types are not Coercions 3=Creates a primite type equality predicate with explicit kinds 4QCreates a primitive representational type equality predicate with explicit kinds 5>Try to split up a coercion type into the types that it coerces B3Get the equality relation relevant for a pred type. CuExtract a well-scoped list of variables from a deterministic set of variables. The result is deterministic. NB: There used to exist varSetElemsWellScoped :: VarSet -> [Var] which took a non-deterministic set and produced a non-deterministic well-scoped list. If you care about the list being well-scoped you also most likely care about it being in deterministic order. D]Given a family instance TyCon and its arg types, return the corresponding family type. E.g: 1data family T a data instance T (Maybe b) = MkT b%Where the instance tycon is :RTL, so: +mkFamilyTyConApp :RTL Int = T (Maybe Int) ENGet the type on the LHS of a coercion induced by a type/data family instance. FPretty prints a M, using the family instance in case of a representation tycon. For example: data T [a] = ...In that case we want to print T [a], where T is the family  HReturns Just True if this type is surely lifted, Just False if it is surely unlifted, Nothing if we can't be sure (i.e., it is levity polymorphic), and panics if the kind does not have the shape TYPE r. ISee Type#type_classificationC for what an unlifted type is. Panics on levity polymorphic types. J3Is this a type of kind RuntimeRep? (e.g. LiftedRep) K+Drops prefix of RuntimeRep constructors in NVs. Useful for e.g. dropping 'LiftedRep arguments of unboxed tuple TyCon applications:LdropRuntimeRepArgs [ 'LiftedRep, 'IntRep , String, Int ] == [String, Int] L<Extract the RuntimeRep classifier of a type. For instance, #getRuntimeRep_maybe Int = LiftedRep . Returns Lx if this is not possible. M<Extract the RuntimeRep classifier of a type. For instance, #getRuntimeRep_maybe Int = LiftedRep!. Panics if this is not possible. NIExtract the RuntimeRep classifier of a type from its kind. For example, #getRuntimeRepFromKind * = LiftedRep!; Panics if this is not possible. OIExtract the RuntimeRep classifier of a type from its kind. For example, #getRuntimeRepFromKind * = LiftedRep ; Returns Lx if this is not possible. RSee Type#type_classification; for what an algebraic type is. Should only be applied to types;, as opposed to e.g. partially saturated type constructors S*Check whether a type is a data family type TComputes whether an argument (or let right hand side) should be computed strictly or lazily, based only on its type. Currently, it's just  I%. Panics on levity-polymorphic types. U1Returns true of types that are opaque to Haskell. VDetermine whether a type could be the type of a join point of given total arity, according to the polymorphism rule. A join point cannot be polymorphic in its return type, since given join j a b x y z = e1 in e2, the types of e1 and e2 must be the same, and a and b are not in scope for e2. (See Note [The polymorphism rule of join points] in CoreSyn.) Returns False also if the type simply doesn't have enough arguments.Note that we need to know how many arguments (type *and* value) the putative join point takes; for instance, if j :: forall a. a -> Int then j could be a binary join point returning an Int, but it could *not* be a unary join point returning a -> Int.4TODO: See Note [Excess polymorphism and join points] Y7Compare types with respect to a (presumably) non-empty . ZQType equality on lists of types, looking through type synonyms but not newtypes. ` Compare two s. NB: This should never see the "star synonyms", as recognized by Kind.isStarKindSynonymTyCon. See Note [Kind Constraint and kind *] in Kind. See Note [nonDetCmpType nondeterminism] bReturns True if a type is levity polymorphic. Should be the same as (isKindLevPoly . typeKind) but much faster. Precondition: The type has kind (TYPE blah) cLooking past all pi-types, is the end result potentially levity polymorphic? Example: True for (forall r (a :: TYPE r). String -> a) Example: False for (forall r1 r2 (a :: TYPE r1) (b :: TYPE r2). a -> b -> Type) dAll type constructors occurring in the type; looking through type synonyms, but not newtypes. When it finds a Class, it returns the class TyCon. eFind the result  . of a type synonym, after applying it to its arityj number of type variables Actually this function works fine on data types too, but they'd always return L,, so we never need to ask fRetrieve the free variables in this type, splitting them based on whether they are used visibly or invisibly. Invisible ones come first. 'binder to scrutinize named caseanonymous case: !"#&'();<=>?  +h+,-./0123456     A                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i:&'!+"4  +                  2  L O3  E 5   e h i  D : 2 6 1 7 3 4 8 ) * + , 0 - . / ; < = > ? @ A B " # $ % & '   (A 965    ! G V H I P Q R S U T J K M N a b ch f g C,-.1 Y Z \ ] ^ _ ` [ W X0/ d#(  ) F;<=>?   None+01<FTB q Follow the id+, but never beyond Name. This is used in a HsMatchContext&, for printing messages related to a Match r0used as place holder in PostTc and PostRn values q r s t u v w x y z r s t u v w x y z qzNoneN#oPattern SynonymXSee Note [Pattern synonym representation] See Note [Pattern synonym signature contexts]pThe s of the o+, giving it a unique, rooted identificationsArity of the pattern synonym |Build a new pattern synonym } Should the o be presented infix? 5Extract the type for any given labelled field of the DataCon GPrint the type of a pattern synonym. The foralls are printed explicitly |&Is the pattern synonym declared infix?<Universially-quantified type variables and required dicts=Existentially-quantified type variables and provided dictsOriginal argumentsOriginal result typeName of matcherName of builder/Names of fields for a record pattern synonymopqrs | } ~  o |ps } ~ q r  None1^  So-called   s are one of: An unboxed (machine ) literal ( ,  O, etc.), which is presumed to be surrounded by appropriate constructors (Int#/, etc.), so that the overall thing makes sense.#We maintain the invariant that the Lv the Mach{Int,Word}* constructors are actually in the (possibly target-dependent) range. The mkMach{Int,Word}*Wrap smart constructors ensure this by applying the target machine's wrapping semantics. Use these in situations where you know the wrapping semantics are correct.RThe literal derived from the label mentioned in a "foreign label" declaration ( ) Char#! - at least 31 bits. Create with  rA string-literal: stored and emitted UTF-8 encoded, we'll arrange to decode it at runtime. Also emitted with a '\0' terminator. Create with  The NULLU pointer, the only pointer value that can be represented as a Literal. Create with  Int# - according to target machine Int64# - exactly 64 bits Word# - according to target machine Word64# - exactly 64 bits Float#. Create with  Double#. Create with  A label literal. Parameters:61) The name of the symbol mentioned in the declarationX2) The size (in bytes) of the arguments the label expects. Only applicable with stdcall labels. Just x => <x>; will be appended to label name when emitting assembly.  Creates a   of type Int#  Creates a   of type Int#]. If the argument is out of the (target-dependent) range, it is wrapped. See Note [Word Int underflow overflow]  Creates a   of type Word#  Creates a   of type Word#]. If the argument is out of the (target-dependent) range, it is wrapped. See Note [Word Int underflow overflow]  Creates a   of type Int64#  Creates a   of type Int64#8. If the argument is out of the range, it is wrapped.  Creates a   of type Word64#  Creates a   of type Word64#8. If the argument is out of the range, it is wrapped.  Creates a   of type Float#  Creates a   of type Double#  Creates a   of type Char#  Creates a   of type Addr#], which is appropriate for passing to e.g. some of the "error" functions in GHC.Err such as GHC.Err.runtimeError BTests whether the literal represents a zero of whatever type it is  Returns the Lv contained in the  ', for when that makes sense, i.e. for Lr, Lu, L and  .  Returns the Lv contained in the  ', for when that makes sense, i.e. for Lr, Lu, L and  . Apply a function to the Lv contained in the  ', for when that makes sense, e.g. for Lr, Lu, L and  . For fixed-size integral literals, the result will be wrapped in accordance with the semantics of the target type. See Note [Word Int underflow overflow] Indicate if the   contains an Lv value, e.g. Lr, Lu, L and  . aTrue if there is absolutely no penalty to duplicating the literal. False principally of strings."Why?", you say? I'm glad you asked. Well, for one duplicating strings would blow up code sizes. Not only this, it's also unsafe.Consider a program that wants to traverse a string. One way it might do this is to first compute the Addr# pointing to the end of the string, and then, starting from the beginning, bump a pointer using eqAddr# to determine the end. For instance, s-- Given pointers to the start and end of a string, count how many zeros -- the string contains. countZeros :: Addr -> AddrN -> -> Int countZeros start end = go start 0 where go off n | off  `addrEq#`- end = n | otherwise = go (off  `plusAddr#` 1) n' where n' | isTrue (indexInt8OffAddr off 0 ==L 0#) = n + 1 | otherwise = n qConsider what happens if we considered strings to be trivial (and therefore duplicable) and emitted a call like countZeros "hello" ("hello" plusAddr# 5). The beginning and end pointers do not belong to the same string, meaning that an iteration like the above would blow up terribly. This is what happened in #12757.Ultimately the solution here is to make primitive strings a bit more structured, ensuring that the compiler can't inline in ways that will break user code. One approach to this is described in #8472. aTrue if code space does not go bad if we duplicate this literal Currently we treat it just like  Find the Haskell ' the literal occupies: :  6None<QV^ZGIf it is the case that c :: (t1 ~ t2)i.e. the kind of c relates t1 and t2, then coercionKind c = Pair t1 t2.liftCoSubst role lc ty produces a coercion (at role role) that coerces between  lc_left(ty) and  lc_right(ty) , where lc_left] is a substitution mapping type variables to the left-hand types of the mapped coercions in lc, and similar for lc_right.ZMakes a coercion type from two types: the types whose equality is proven by the relevant %mSlowly checks if the coercion is reflexive. Don't call this in a loop, as it walks over the entire coercion.Tests if this coercion is obviously reflexive. Guaranteed to work very quickly. Sometimes a coercion can be reflexive, but not obviously so. c.f. Make nested function %s$Make a "coercion between coercions".Given co :: (a :: k) ~ (b :: k') produce  co' :: k ~ k'.Instantiates a %.  Create a new % by composing the two given %s transitively. (co1 ; co2)!(Create a symmetric version of the given %_ that asserts equality between the same types but in the other "direction", so a kind of t1 ~ t2 becomes the kind t2 ~ t1."6Make a universal coercion between two arbitrary types.#jManufacture an unsafe coercion from thin air. Currently (May 14) this is used only to implement the  unsafeCoerce#C primitive. Optimise by pushing down through type constructors.$~Make a phantom coercion between two types. The coercion passed in must be a nominal coercion between the kinds of the types.'Build a function % from two other %s. That is, given  co1 :: a ~ b and  co2 :: x ~ y produce co :: (a -> x) ~ (b -> y).(Make a Coercion from a tyvar, a kind coercion, and a body coercion. The kind of the tyvar should be the left-hand kind of the kind coercion.)Apply a % to another %. The second coercion must be Nominal, unless the first is Phantom. If the first is Phantom, then the second can be either Phantom or Nominal.*Apply a type constructor to a list of coercions. It is the caller's responsibility to get the roles correct on argument coercions. 9The result of stepping in a normalisation function. See ! . Nothing more to do 2Utter failure. The outer function should fail too. VWe stepped, yielding new bits; ^ ev is evidence; Usually a co :: old type ~ new type DA function to check if we can reduce a type by one step. Used with ! . This breaks a % with type T A B C ~ T D E F into a list of % s of kinds A ~ D, B ~ E and E ~ F. Hence: -decomposeCo 3 c = [nth 0 c, nth 1 c, nth 2 c] 2Attempts to obtain the type variable underlying a % Attempts to tease a coercion apart into a type constructor and the application of a number of coercion arguments to that constructor -Attempt to take a coercion application apart.NQGiven a coercion &co1 :: (a :: TYPE r1) ~ (b :: TYPE r2), produce a coercion rep_co :: r1 ~ r2. Returns the type coerced if this coercion is reflexive. Guaranteed to work very quickly. Sometimes a coercion can be reflexive, but not obviously so. c.f.  Extracts the coerced type from a reflexive coercion. This potentially walks over the entire coercion, so avoid doing this in a loop. *Make a representational reflexive coercion !Make a nominal reflexive coercion Applies multiple % s to another % , from left to right. See also ). Like ), but allows the second coercion to be other than nominal. See Note [mkTransAppCo]. Role r3 cannot be more stringent than either r1 or r2. Make nested ForAllCos nMake a Coercion quantified over a type variable; the variable has the same type in both sides of the coercion Like  8, but doesn't check if the inner coercion is reflexive. Extract a covar, if possible. This check is dirty. Be ashamed of yourself. (It's dirty because it cares about the structure of a coercion, which is morally reprehensible.) [Return the left-hand type of the axiom, when the axiom is instantiated at the types given. 5Instantiate the left-hand side of an unbranched axiom $Make a coercion from a coercion hole @A CoherenceCo c1 c2 applies the coercion c2 to the left-hand type in the kind of c1. This function uses sym to get the coercion on the right-hand type of c1. Thus, if c1 :: s ~ t, then mkCoherenceRightCo c1 c2 has the kind (s ~ (t |> c2)) down through type constructors. The second coercion must be representational. _An explicitly directed synonym of mkCoherenceCo. The second coercion must be representational.NRIChanges a role, but only a downgrade. See Note [Role twiddling functions] Like NRR, but panics if the change isn't a downgrade. See Note [Role twiddling functions] wIf the EqRel is ReprEq, makes a SubCo; otherwise, does nothing. Note that the input coercion should always be nominal. TConverts a coercion to be nominal, if possible. See Note [Role twiddling functions] ;Make a phantom coercion between two types of the same kind.!ylike mkKindCo, but aggressively & recursively optimizes to avoid using a KindCo constructor. The output role is nominal.NSsay g = promoteCoercion h. Then, instCoercion g w yields Just g' , where g' = promoteCoercion (h w)%. fails if this is not possible, if g coerces between a forall and an -> or if second parameter has a representational role and can't be used with an InstCo. The result role matches is representational.!Creates a new coercion with both of its types casted by different casts castCoercionKind g h1 h2, where g :: t1 ~ t2, has type (t1 |> h1) ~ (t2 |> h2) The second and third coercions must be nominal.!Make a forall %W, where both types related by the coercion are quantified over the same type variable.! If co :: T ts ~ rep_ty then: +instNewTyCon_maybe T ts = Just (rep_ty, co)-Checks for a newtype, and for being saturated! Try one stepper and then try the next, if the first doesn't make progress. So if it returns NS_Done, it means that both steppers are satisfied! A  d that unwraps newtypes, careful not to fall into a loop. If it would fall into a loop, it produces  .! ^A general function for normalising the top-level of a type. It continues to use the provided  i until that function fails, and then this function returns. The roles of the coercions produced by the  D must all be the same, which is the role returned from the call to ! .Typically ev is Coercion.jIf topNormaliseTypeX step plus ty = Just (ev, ty') then ty ~ev1~ t1 ~ev2~ t2 ... ~evn~ ty' and ev = ev1 plus ev2 plus ... plusC evn If it returns Nothing then no newtype unwrapping could happen!$Sometimes we want to look through a newtype< and get its associated coercion. This function strips off newtype1 layers enough to reveal something that isn't a newtype&. Specifically, here's the invariant: 5topNormaliseNewType_maybe rec_nts ty = Just (co, ty') then (a) co : ty0 ~ ty'". (b) ty' is not a newtype.The function returns Nothing for non-newtypes, or unsaturated applications?This function does *not* look through type families, because it has no access to the type family environment. If you do have that at hand, consider to use topNormaliseType_maybe, which should be a drop-in replacement for topNormaliseNewType_maybe If topNormliseNewType_maybe ty = Just (co, ty'), then co : ty ~R ty'!Syntactic equality of coercions! Compare two %s, with respect to an RnEnv2!$Extend a lifting context with a new type mapping.NTExtend a lifting context with existential-variable bindings. This follows the lifting context extension definition in the "FC with Explicit Kind Equality" paper.!+Erase the environments in a lifting context!Like N& , but works on a lifting contextNUjThe "lifting" operation which substitutes coercions for type variables in a type to produce a coercion.For the inverse operation, see  liftCoMatch!,Is a var in the domain of a lifting context?!"Apply "sym" to all coercions in a  !";Extract the underlying substitution from the LiftingContext!#Get the  from a !$Apply  to multiple %s!%aGet a coercion's kind and role. Why both at once? See Note [Computing a coercion kind and role]!&"Retrieve the role from a coercion.!role of the created coercion, "r":: phi1 ~N phi2 g1 :: phi1 g2 :: phi2 :: g1 ~r g2"role of the built coercion, "r"t1 :: k1t2 :: k2 :: t1 ~r t2) :: t1 ~r t2%:: s1 ~N s2, where s1 :: k1, s2 :: k2:: t1 s1 ~r t2 s2 r1co1 :: ty1a ~r1 ty1bty1aty1br2co2 :: ty2a ~r2 ty2bty2aty2br3 :: ty1a ty2a ~r3 ty1b ty2bNR desired role current roleNSmust be nominal! original LCnew variable to map......to this lifted versionNToriginal lifting contextex. var / value pairs$%{|}~$/  !"#$%&'()*+ !!!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!! !!!"!#!$!%!&%${|}! !$!&!%+ & !!!!  ) *'( $ # "%  ! ! ! ! ! !! !!! ~  $/ !!!!!!!!!!!"!#  ! !!!!!!!!! !5 5 5None3V_!0tcMatchTy t1 t2) produces a substitution (over fvs(t1)) s such that s(t1) equals t2r. The returned substitution might bind coercion variables, if the variable is an argument to a GADT constructor.Precondition: typeKind ty1 1 typeKind ty2We don't pass in a set of "template variables" to be bound by the match, because tcMatchTy (and similar functions) are always used on top-level types, so we can bind any of the free variables of the LHS.!1Like !0N, but allows the kinds of the types to differ, and thus matches them as well.!2This is similar to !0, but extends a substitution!3Like !0 but over a list of types.!4Like !1 but over a list of types.!5Like !3, but extending a substitution!6Like !4, but extending a substitutionNV Worker for !5 and !6!7UThis one is called from the expression matcher, which already has a MatchEnv in hand!:Given a list of pairs of types, are any two members of a pair surely apart, even after arbitrary type function evaluation and substitution?!;kSimple unification of two types; all type variables are bindable Precondition: the kinds are already equal!<Like !;, but also unifies the kinds!=Unify two types, treating type family applications as possibly unifying with anything and looking through injective type family applications. Precondition: kinds are the same!?Like !> but also unifies the kinds!@tcUnifyTysFG bind_tv tys1 tys2 attepts to find a substitution s% (whose domain elements all respond !) to bind_tv ) such that s(tys1) and that of s(tys2) are equal, as witnessed by the returned Coercions. This version requires that the kinds of the types are the same, if you unify left-to-right.NWkThis function is actually the one to call the unifier -- a little too general for outside clients, though.NX(Converts any SurelyApart to a MaybeApart!A!A is sort of inverse to . In particular, if  liftCoMatch vars ty co == Just s, then listCoSubst s ty == co , where == there means that the result of  has the same type as the original co; but may be different under the hood. That is, it matches a type against a coercion of the same "shape", and returns a lifting substitution which could have been used to produce the given coercion from the given type. Note that this function is incomplete -- it might return Nothing when there does indeed exist a possible lifting context.HThis function is incomplete in that it doesn't respect the equality in 1V. That is, it's possible that this will succeed for t1 and fail for t2, even when t1 1 t2. That's because it depends on there being a very similar structure between the type and the coercion. This incompleteness shouldn't be all that surprising, especially because it depends on the structure of the coercion, which is a silly thing to do.The lifting context produced doesn't have to be exacting in the roles of the mappings. This is because any use of the lifting context will also require a desired role. Thus, this algorithm prefers mapping to nominal coercions where it can do so.NYNY does all the actual work for !A. !2Substitution to extendTemplateTarget!3TemplateTargetJOne-shot; in principle the template variables could be free in the target!4TemplateTargetOne-shot substitution!5Substitution to extendTemplateTargetOne-shot substitution!6Substitution to extendTemplateTargetOne-shot substitutionNV match kinds?!7template variablestype substitution to extendTemplateTarget!=True  =" do two-way unification; False  =: do one-way matching. See end of sec 5.2 from the paper!>_A regular one-shot (idempotent) substitution that unifies the erased types. See comments for !@NWTrue  = unify; False  = matchTrue  = doing an injectivity checkTrue  = treat the kinds as wellsubstitution to extendNYambient helpful infoincoming substty, type to matchco, coercion to match against/:: kind of L type of substed ty ~N L kind of co/:: kind of R type of substed ty ~N R kind of co!(!)!*!+!,!.!-!/!0!1!2!3!4!5!6!7!8!9!:!;!<!=!>!?!@!A!0!1!3!4!2!5!6!7!8!9!:!;!<!>!?!@!=!(!)!*!/!+!,!.!-!A|None1-@}An }T is a tyvar/type pair representing an equality made in rejigging a GADT constructor~Data Constructor RepresentationA data constructoru : u, u,uThe "full signature" of the  returns, in order:1) The result of !y2) The result of 3) The GADT equalities4) The result of dataConDictTheta&5) The original argument types to the ? (i.e. before any change of the representation of the type)#6) The original result type of the The "stupid theta" of the  , such as  data Eq a in: data Eq a => T a = ...Returns just the instantiated value argument types of a , (excluding dictionary args)-The labels for the fields of this particular *Source-level arity of the data constructorNs for the type variables of the constructor, in the order the user wrote themGThe type variables of the constructor, in the order the user wrote them>The existentially-quantified type variables of the constructorCThe type constructor that we are building via this data constructorThe s of the +, giving it a unique, rooted identification!RSource Unpackedness$What unpackedness the user requested!S{- UNPACK  -} specified!T{- NOUNPACK  -} specified!Uno unpack pragma!VSource Strictness)What strictness annotation the user wrote!W Lazy, ie '~'!X Strict, ie !!Yno strictness annotation!ZHaskell Implementation BangiBangs of data constructor arguments as generated by the compiler after consulting HsSrcBang, flags, etc.![(Lazy field, or one with an unlifted type!\Strict but not unpacked field!];Strict and unpacked field co :: arg-ty ~ product-ty HsBang!^Haskell Source BangOBangs on data constructor arguments as the user wrote them in the source code.(HsSrcBang _ SrcUnpack SrcLazy) and #(HsSrcBang _ SrcUnpack NoSrcStrict)c (without StrictData) makes no sense, we emit a warning (in checkValidDataCon) and treat it like !(HsSrcBang _ NoSrcUnpack SrcLazy)NZTag, used for ordering s!gMake an }!lSubstitute in an }{. Precondition: if the LHS of the EqSpec is mapped in the substitution, it is mapped to a type variable, not a full type.!mFilter out any s mentioned in an }.!nCompare strictness annotations!sBuild a new data constructor!tThe tag used for ordering s!vThe original type constructor used in the definition of this data constructor. In case of a data family instance, that will be the family type constructor.!wwThe representation type of the data constructor, i.e. the sort type that will represent values of this type at runtime!x Should the  be presented infix?!y<The universally-quantified type variables of the constructor!zDBoth the universal and existential type variables of the constructor!{Equalities derived from the result type of the data constructor, as written by the programmer in any GADT declaration. This includes *all* GADT-like equalities, including those written in by hand by the programmer.!|/The *full* constraints on the constructor type.!}Get the Id of the  worker: a function that is the "actual" constructor and has no top level binding in the program. The type may be different from the obvious one written in the source program. Panics if there is no such  for this !~Get the Id of the q wrapper: a function that wraps the "actual" constructor so it has the type visible in the source program: c.f. !}. Returns Nothing if there is no wrapper, which occurs for an algebraic data constructor and also for a newtype (whose constructor is inlined compulsorily)!fReturns an Id which looks like the Haskell-source constructor by using the wrapper if it exists (see !~') and failing over to the worker (see !})! Find all the Vs implicitly brought into scope by the data constructor. Currently, the union of the !} and the !!5Extract the type for any given labelled field of the !@Extract the label and type for any given labelled field of the  , or return Lx# if the field does not belong to it!Strictness/unpack annotations, from user; or, for imported DataCons, from the interface file The list is in one-to-one correspondence with the arity of the !)Gives the number of actual fields in the representation of the data constructor. This may be more than appear in the source code; the extra ones are the existentially quantified dictionaries!5Return whether there are any argument types for this 2s original source type See Note [DataCon arities]!5Return whether there are any argument types for this 9s runtime representation type See Note [DataCon arities]!RGive the demands on the arguments of a Core constructor application (Con dc args)!The "signature" of the  returns, in order:1) The result of !z, 2) All the s relating to the : (coercion, dictionary, implicit parameter - whatever)(3) The type arguments to the constructor4) The original result type of the !qInstantiate the universal tyvars of a data con, returning the instantiated existentials, constraints, and args!IThe user-declared type of the data constructor in the nice-to-read form:  T :: forall a b. a -> b -> T [a] rather than: 3T :: forall a c. forall b. (c~[a]) => a -> b -> T cNThe type variables are quantified in the order that the user wrote them. See )Note [DataCon user type variable binders].tNB: If the constructor is part of a data instance, the result type mentions the family tycon, not the internal one.!FFinds the instantiated types of the arguments required to construct a  representation NB: these INCLUDE any dictionary args but EXCLUDE the data-declaration context, which is discarded It's all post-flattening etc; this is a representation type!~Returns the argument types of the wrapper, excluding all dictionary arguments and without substituting for any type variables!Returns the arg types of the worker, including *all* evidence, after any flattening has been done and without substituting for any type variables! The string package:module.namet identifying a constructor, which is attached to its info table and used by the GHCi debugger and the heap profiler!Vanilla 8s are those that are nice boring Haskell 98 constructors!eShould this DataCon be allowed in a type even without -XDataKinds? Currently, only Lifted & Unlifted![Was this datacon promotable before GHC 8.0? That is, is it promotable without -XTypeInType!YWas this tycon promotable before GHC 8.0? That is, is it promotable without -XTypeInType!Were the type variables of the data con written in a different order than the regular order (universal tyvars followed by existential tyvars)?This is not a cheap test, so we minimize its use in GHC as much as possible. Currently, its only call site in the GHC codebase is in  mkDataConRep in MkId , and so !C is only called at most once during a data constructor's lifetime.!HExtract the type constructor, type argument, data constructor and it's representation4 argument types from a type if it is a product type.Precisely, we return Just for any type that is all of:$Concrete (i.e. constructors visible)Single-constructorNot existentially quantifiedWhether the type is a data type or a newtype!s"Is the constructor declared infix?#TyConRepName for the promoted TyCon(Strictness/unpack annotations, from userEField labels for the constructor, if it is a record, otherwise empty Universals. Existentials. User-written /s. These must be Inferred/Specified. See Note [TyVarBinders in DataCons]GADT equalities /Theta-type occuring before the arguments proper Original argument types Original result type See comments on  Representation type constructor:The "stupid theta", context of the data declaration e.g. data Eq a => T a ... Worker IdRepresentation!A datacon with no existentials or equality constraints However, it can have a dcTheta (notably it can be a class dictionary, with superclasses)Instantiated at these types!A product type, perhaps!!Kind variables and type variables Stupid thetaTrue  = was declared in GADT syntax!result kindgw}~!`!a!b!c!d!e!f!O!P!Q!R!S!T!U!V!W!X!Y!Z![!\!]!^!_!g!h!i!j!k!l!m!n!o!p!q!r!s!t!u!v!w!x!y!z!{!|!}!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!g~!`!a!b!c!d!e!f!V!W!X!Y!R!S!T!U!^!_!Z![!\!]!O!P!Qw}!g!h!i!j!k!l!m!s!!!w!!!!t!u!v!!y!z!{!|!!!!!!!!!x!}!!~!!!!!!!!!!!!!!!o!r!n!p!q!!!!None<Q !Gets rid of the stuff that prevents us from understanding the runtime representation of a type. Including: 1. Casts 2. Newtypes 3. Foralls 4. Synonyms But not type/data families, because we don't have the envs to hand.! True if the type has zero width.!^Given the arguments of a sum type constructor application, return the unboxed sum rep type.E.g.( Int | Maybe Int | ( Int, Float ) #)~We call `ubxSumRepType [ [IntRep], [LiftedRep], [IntRep, FloatRep] ]`, which returns [WordSlot, PtrSlot, WordSlot, FloatSlot]wINVARIANT: Result slots are sorted (via Ord SlotTy), except that at the head of the list we have the slot for the tag.N[AReturns the bigger type if one fits into the other. (commutative)!,Discovers the primitive representation of a '. Returns a list of hm: it's a list because of the possibility of no runtime representation (void) or multiple (unboxed tuple/sum)!Like !*, but assumes that there is precisely one h5 output; an empty list of PrimReps becomes a VoidRep!%Find the runtime representation of a W. Defined here to avoid module loops. Returns a list of the register shapes necessary.!Like !3, but assumed that there is precisely zero or one h outputN\Take a kind (of shape TYPE rr) and produce the h#s of values of types of this kind.!7Take a type of kind RuntimeRep and extract the list of h that it encodes.!Convert a PrimRep back to a Type. Used only in the unariser to give types to fresh Ids. Really, only the type's representation matters.%hsjklmnopqri!!!!!!!!!!!!!!!!!!!!!!!!!%!!!!!!!!!hsjklmnopqri!!!!!!!!!!!!!!!!None"#;=!Abstract counting of usages!Domain for genuine usage!?Call demand for absence. Used only for values of function type!]Product. Used only for values of product type See Note [Don't optimise UProd(Used) to Used]@Invariant: Not all components are Abs (in that case, use UHead)!bMay be used but its sub-components are definitely *not* used. Roughly U(AAA) e.g. the usage of x in x K e A polymorphic demand: used for values of all types, including a type variable Since (UCall _ Abs) is ill-typed, UHead doesn't make sense for lambdas!EMay be used and its sub-components may be used. (top of the lattice)N].How are exceptions handled for strict demands?N^Vanilla case, ordinary strictnessN_ Str ExnStr d means be strict like d but then degrade the N` info Na to Nb. e.g. the first argument of catch has this strictness.NcStrictness demand.NdLazy (top of the lattice)NeStrictNf"Strictness of a function argument.!Vanilla strictness domainNgJHyper-strict (bottom of the lattice). See Note [HyperStr and Use demands]Nh2Call demand Used only for values of function typeNiProduct Used only for values of product type Invariant: not all components are HyperStr (use HyperStr) not all components are Lazy (use HeadStr)NjqHead-Strict A polymorphic demand: used for values of all types, including a type variable"ABRemove all 1* information (but not C1 information) from the demand"BSRemove all 1* information (but not C1 information) from the strictness signaturev!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""" " " " " """"""""""""""""""" "!"""#"$"%"&"'"(")"*"+","-"."/"0"1"2"3"4"5"6"7"8"9":";"<"=">"?"@"A"B"C"D"Ev!!!!!!!!!!!!!!!!""!!!!!!!!!!!""!""!!!!!"""""""("!""!""'")!!""" " " """ ">"2"*""!!"+","3"4"5"6"/"0"-"1".""""7!!!"""" "%"#" "&!!"8"9":"=";"<"!!!!!""$"C"D"@"?"A"B"E}None(i A constructor-like thing"pNumber of arguments"q"Names of fields used for selectors"rReturns just the instantiated value argument types of a , (excluding dictionary args)"s'Existentially quantified type variables"tThe "stupid theta" of the  , such as  data Eq a in: data Eq a => T a = ...It is empty for $ as they do not allow such contexts."u Returns the  of the wrapper. This is also known as the builder in some contexts. The value is Nothing only in the case of unidirectional pattern synonyms."v7Returns the strictness information for each constructor"w%Returns the type of the whole pattern"xThe "full signature" of the  returns, in order:,1) The universally quantified type variables.2) The existentially quantified type variables3) The equality specification;4) The provided theta (the constraints provided by a match)<5) The required theta (the constraints required for a match)]6) The original argument types (i.e. before any change of the representation of the type)7) The original result type"y5Extract the type for any given labelled field of the "z-The ConLikes that have *all* the given fields"p"q"r"s"t"u"v"w"x"y"z"{"p"q"r"s"t"u"v"x"w"y"z"{None$1<|S"A clone of the #0 type but allowing annotation at every tree node"A clone of the # 0 type but allowing annotation at every tree node"A clone of the # 0 type but allowing annotation at every tree node";Annotated core: allows annotation at every node in the tree" Binders are tagged with a t"$Case alternatives where binders are "s"!Binding groups where binders are "s"'Argument expressions where binders are "s"Expressions where binders are "s"lThe common case for the type of binders and variables when we are manipulating the Core language within GHC""& says when unfolding should take place" Records the  unfolding of an identifier, which is approximately the form the identifier would have if we substituted its definition in for the identifier. This type should be treated as abstract everywhere except in  CoreUnfold"+We have no information about the unfolding.":We have no information about the unfolding, because this  came from an hi-bootT file. See Note [Inlining and hs-boot files] in ToIface for what this is used for."%It ain't one of these constructors.  OtherCon xsd also indicates that something has been evaluated and hence there's no point in re-evaluating it.  OtherCon []N is used even for non-data-type values to indicated evaluated-ness. Notably: 1data C = C !(Int -> Int) case x of { C f -> ... }Here, f gets an  OtherCon [] unfolding.";An unfolding with redundant cached information. Parameters:uf_tmpl: Template used to perform unfolding; NB: Occurrence info is guaranteed correct: see Note [OccInfo in unfoldings and rules]'uf_is_top: Is this a top level binding? uf_is_value:  exprIsHNF* template (cached); it is ok to discard a K on this variableuf_is_work_free: Does this waste only a little work if we expand it inside an inlining? Basically this is a cached version of exprIsWorkFree!uf_guidance: Tells us about the size of the unfolding template"A " is:]"Local" if the function it is a rule for is defined in the same module as the rule itself.R"Orphan" if nothing on the LHS is defined in the same module as the rule itself"Built-in rules are used for constant folding and suchlike. They have no free variables. A built-in rule is always visible (there is no such thing as an orphan built-in rule.)"1Name of the rule, for communication with the user"When the rule is active" Name of the  at the head of this rule"7Name at the head of each argument to the left hand side"Variables quantified over"Left hand side arguments"nRight hand side of the rule Occurrence info is guaranteed correct See Note [OccInfo in unfoldings and rules]"True  =U this rule is auto-generated (notably by Specialise or SpecConstr) False  =o generated at the user's behest See Note [Trimming auto-rules] in TidyPgm for the sole purpose of this field."H the rule was defined in, used to test if we should see an orphan rule."%Whether or not the rule is an orphan."Trueg iff the fn at the head of the rule is defined in the same module as the rule and is not an implicit [ (like a record selector, class operation, or data constructor). This is different from "x, where a rule can avoid being an orphan if *any* Name in LHS of the rule was defined in the same module as the rule."Number of arguments that "1 consumes, if it fires, including type arguments"eThis function does the rewrite. It given too many arguments, it simply discards them; the returned " is just the rewrite of " applied to the first " args"?A full rule environment which we can apply rules from. Like a ", but it also includes the set of visible orphans we use to filter out orphan rules which are not visible (even though we can see them...)"Gathers a collection of "s. Maps (the name of) an  to its rules"AIs this instance an orphan? If it is not an orphan, contains an t? witnessing the instance's non-orphanhood. See Note [Orphans]"_Governs the kind of expression that the tick gets placed on when annotating for example using mkTick. If we find that we want to put a tickish on an expression ruled out here, we try to float it inwards until we find a suitable expression."PPlace ticks exactly on run-time expressions. We can still move the tick through pure compile-time constructs such as other ticks, casts or type lambdas. This is the most restrictive placement rule for ticks, as all tickishs have in common that they want to track runtime processes. The only legal placement rule for counting ticks."As  PlaceRuntime, but we float the tick through all lambdas. This makes sense where there is little difference between annotating the lambda and annotating the lambda's code."In addition to floating through lambdas, cost-centre style tickishs can also be moved from constructors, non-function variables and literals. For example: let x = scc ... C (scc ... y) (scc ... 3) in ...Neither the constructor application, the variable or the literal are likely to have any cost worth mentioning. And even if y names a thunk, the call would not care about the evaluation context. Therefore removing all annotations in the above example is safe."Specifies the scoping behaviour of ticks. This governs the behaviour of ticks that care about the covered code and the cost associated with it. Important for ticks relating to profiling."No scoping: The tick does not care about what code it covers. Transformations can freely move code inside as well as outside without any additional annotation obligations"Soft scoping: We want all code that is covered to stay covered. Note that this scope type does not forbid transformations from happening, as as long as all results of the transformations are still covered by this tick or a copy of it. For example let x = tick ...6 (let y = foo in bar) in baz ===> let x = tick ... bar; y = tick ... foo in bazrIs a valid transformation as far as "bar" and "foo" is concerned, because both still are scoped over by the tick. Note though that one might object to the "let" not being covered by the tick any more. However, we are generally lax with this - constant costs don't matter too much, and given that the "let" was effectively merged we can view it as having lost its identity anyway.rAlso note that this scoping behaviour allows floating a tick "upwards" in pretty much any situation. For example:case foo of x -> tick ... bar ==> tick ... case foo of x -> barWhile this is always leagl, we want to make a best effort to only make us of this where it exposes transformation opportunities."%Cost centre scoping: We don't want any costs to move to other cost-centre stacks. This means we not only want no code or cost to get moved out of their cost centres, but we also object to code getting associated with new cost-centre ticks - or changing the order in which they get applied.}A rule of thumb is that we don't want any code to gain new annotations. However, there are notable exceptions, for example:let f = y -> foo in tick ... ... (f x) ... ==> tick ... ... foo[x/y] ...In-lining lambdas like this is always legal, because inlining a function does not change the cost-centre stack when the function is called.";Allows attaching extra information to points in expressions"An {- SCC -}t profiling annotation, either automatically added by the desugarer as a result of -auto-all, or added by the user."_A "tick" used by HPC to track the execution of each subexpression in the original source code."A breakpoint for the GHCi debugger. This behaves like an HPC tick, but has a list of free variables which will be available for inspection in GHCi when the program stops at the breakpoint.yNB. we must take account of these Ids when (a) counting free variables, and (b) substituting (don't substitute for them)"A source note.Source notes are pure annotations: Their presence should neither influence compilation nor execution. The semantics are given by causality: The presence of a source note means that a local change in the referenced source code span will possibly provoke the generated code to change. On the flip-side, the functionality of annotated code *must* be invariant against changes to all source code *except* the spans referenced in the source notes (see "Causality of optimized Haskell" paper for details).$Therefore extending the scope of any given source note is always valid. Note that it is still undesirable though, as this reduces their usefulness for debugging and profiling. Therefore we will generally try only to make use of this property where it is necessary to enable optimizations."the cost centre"bump the entry count?";scopes over the enclosed expression (i.e. not just a tick)"xthe order of this list is important: it matches the order of the lists in the appropriate entry in HscTypes.ModBreaks.CCareful about substitution! See Note [substTickish] in CoreSubst."Source covered"4Name for source location (uses same names as CCs)#IBinding, used for top level bindings in a module and local bindings in a let.#3A case alternative constructor (i.e. pattern match)#  A literal: case e of { 1 -> ... }J Invariant: always an *unlifted* literal See Note [Literal alternatives]# Trivial alternative: case e of { _ -> ... }# A case split alternative. Consists of the constructor leading to the alternative, the variables bound from the constructor, and the expression to be executed given that binding. The default alternative is (DEFAULT, [], rhs)# NType synonym for expressions that occur in function argument positions. Only #  should contain a ' at top level, general #  should not# eThis is the data type that represents GHCs core intermediate language. Currently GHC uses System FC  [https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions/V for this purpose, which is closely related to the simpler and better known System F  %http://en.wikipedia.org/wiki/System_F.GWe get from Haskell source to this Core language in a number of stages: bThe source code is parsed into an abstract syntax tree, which is represented by the data type  with the names being sThis syntax tree is renamed, which attaches a CC to every ss (yielding a s[) to disambiguate identifiers which are lexically identical. For example, this program: 3 f x = let f x = x + 1 in f (x - 2) Would be renamed by having Unique,s attached so it looked something like this: E f_1 x_2 = let f_3 x_4 = x_4 + 1 in f_3 (x_2 - 2) But see Note [Shadowing] below. |The resulting syntax tree undergoes type checking (which also deals with instantiating type class arguments) to yield a  type that has  as it's names.Finally the syntax tree is  desugared from the expressive  type into this # y type, which has far fewer constructors and hence is easier to perform optimization, analysis and code generation on.The type parameter b3 is for the type of binders in the expression tree.0The language consists of the following elements: VariablesPrimitive literals.Applications: note that the argument may be a 'X. See Note [CoreSyn let/app invariant] See Note [Levity polymorphism invariants]@Lambda abstraction See Note [Levity polymorphism invariants]Recursive and non recursive let{s. Operationally this corresponds to allocating a thunk for the things bound and then executing the sub-expression.top_level_invariant letrec_invariant4The right hand sides of all top-level and recursive lets must be of lifted type (see Type#type_classification for the meaning of lifted vs. unlifted6). There is one exception to this rule, top-level letbs are allowed to bind primitive string literals, see Note [CoreSyn top-level string literals].RSee Note [CoreSyn let/app invariant] See Note [Levity polymorphism invariants]type_let We allow a  non-recursive# let to bind a type variable, thus: Let (NonRec tv (Type ty)) bodygThis can be very convenient for postponing type substitutions until the next run of the simplifier.At the moment, the rest of the compiler only deals with type-let in a Let expression, rather than at top level. We may want to revist this choice.Case expression. Operationally this corresponds to evaluating the scrutinee (expression examined) to weak head normal form and then examining at most one level of resulting constructor (i.e. you cannot do nested pattern matching directly with this).AThe binder gets bound to the value of the scrutinee, and the '* must be that of all the case alternativescase_invariantst This is one of the more complicated elements of the Core language, and comes with a number of restrictions: PThe list of alternatives may be empty; See Note [Empty case alternatives]The # H case alternative must be first in the list, if it occurs at all.BThe remaining cases are in order of increasing tag (for DataAlts) or lit (for LitAltsc). This makes finding the relevant constructor easy, and makes comparison easier too.0The list of alternatives must be exhaustive. An  exhaustive; case does not necessarily mention all constructors:  data Foo = Red | Green | Blue ... case x of Red -> True other -> f (case x of Green -> ... Blue -> ... ) ... The inner case does not need a Red alternative, because x can't be Red at that program point. Floating-point values must not be scrutinised against literals. See Trac #9238 and Note [Rules for floating-point comparisons] in PrelRules for rationale.GCast an expression to a particular type. This is used to implement newtypes (a newtype. constructor or destructor just becomes a # in Core) and GADTs.XNotes. These allow general information to be added to expressions in the syntax tree;A type: this should only show up at the top level of an Arg A coercion#A "counting tick" (where tickishCounts is True) is one that counts evaluations in some way. We cannot discard a counting tick, and the compiler should preserve the number of counting ticks as far as possible.However, we still allow the simplifier to increase or decrease sharing, so in practice the actual number of ticks may vary, except that we never change the value from zero to non-zero or vice versa.#/Returns the intended scoping rule for a Tickish#[Returns whether the tick scoping rule is at least as permissive as the given scoping rule.#Returns Trued for ticks that can be floated upwards easily even where it might change execution counts, such as: Just (tick ... foo) ==> tick ... (Just foo)This is a combination of tickishSoftScope and  tickishCountsF. Note that in principle splittable ticks can become floatable using mkNoTickI -- even though there's currently no tickish for which that is the case.#Returns True" for a tick that is both counting and> scoping and can be split into its (tick, scope) parts using # and mkNoTick respectively.#Return True if this source annotation compiles to some backend code. Without this flag, the tickish is seen as a simple annotation that does not have any associated evaluation code.What this means that we are allowed to disregard the tick if doing so means that we can skip generating any code in the first place. A typical example is top-level bindings: foo = tick ...% y -> ... ==> foo = y -> tick ... ...Here there is just no operational difference between the first and the second version. Therefore code generation should simply translate the code as if it found the latter.# )Placement behaviour we want for the ticks#!_Returns whether one tick "contains" the other one, therefore making the second tick redundant.#"Returns true if " is orphan.##Returns true if " is not an orphan.#)The number of arguments the "4 must be applied to before the rule can match on it#-The s of the ' at the head of the rule left hand side#/Set the s of the ' at the head of the rule left hand side#4There is no known "#5<This unfolding marks the associated thing as being evaluated#6There is no known "*, because this came from an hi-boot file.#9?Retrieves the template of an unfolding: panics if none is known#:Retrieves the template of an unfolding if possible maybeUnfoldingTemplate is used mainly wnen specialising, and we do want to specialise DFuns, so it's important to return a template for DFunUnfoldings#;=The constructors that the unfolding could never be: returns [] if no information is available#<jDetermines if it is certainly the case that the unfolding will yield a value (something in HNF): returns False if unsure#=RDetermines if it possibly the case that the unfolding will yield a value. Unlike #< it returns True for "#>TrueZ if the unfolding is a constructor application, the application of a CONLIKE function or "#?1Is the thing we will unfold into certainly cheap?#DHOnly returns False if there is no unfolding information available at all#K Compares #s within a single list of alternatives DEFAULT comes out smallest, so that sorting by AltCon puts alternatives in the order required by case_invariants#MbApply a list of argument expressions to a function expression in a nested fashion. Prefer to use ' if possible#NZApply a list of coercion argument expressions to a function expression in a nested fashion#OTApply a list of type or value variables to a function expression in a nested fashion#P_Apply a list of argument expressions to a data constructor in a nested fashion. Prefer to use ' if possible#QVApply a list of type argument expressions to a function expression in a nested fashion#T4Create a machine integer literal expression of type Int# from an Integer%. If you want an expression of type Int use '#U4Create a machine integer literal expression of type Int# from an Int%. If you want an expression of type Int use '#V2Create a machine word literal expression of type Word# from an Integer%. If you want an expression of type Word use '#W2Create a machine word literal expression of type Word# from a Word%. If you want an expression of type Word use '#Z6Create a machine character literal expression of type Char#%. If you want an expression of type Char use '#[3Create a machine string literal expression of type Addr#%. If you want an expression of type String use '#\=Create a machine single precision literal expression of type Float# from a Rational%. If you want an expression of type Float use '#]=Create a machine single precision literal expression of type Float# from a Float%. If you want an expression of type Float use '#^=Create a machine double precision literal expression of type Double# from a Rational%. If you want an expression of type Double use '#_=Create a machine double precision literal expression of type Double# from a Double%. If you want an expression of type Double use '#`[Bind all supplied binders over an expression in a nested lambda expression. Prefer to use ' if possible#aBind all supplied binding groups over an expression in a nested let expression. Assumes that the rhs satisfies the let/app invariant. Prefer to use '1 if possible, which does guarantee the invariant#cmkLetNonRec bndr rhs body wraps body in a let binding bndr.#dmkLetRec binds body wraps body in a let rec with the given set of binds if binds is non-empty.#eECreate a binding group where a type variable is bound to a type. Per CoreSyn#type_let>, this can only be used to bind something in a non-recursive let expression#fECreate a binding group where a type variable is bound to a type. Per CoreSyn#type_let>, this can only be used to bind something in a non-recursive let expression#gConvert a binder into either a  or ' #  appropriately#iiDetermines the type resulting from applying an expression with given type to a given argument expression#jIf the expression is a '., converts. Otherwise, panics. NB: This does not convert % to  CoercionTy.#kIf the expression is a % , converts.#l$Extract every variable by this group#m#l$ applied to a list of binding groups#ppCollapse all the bindings in the supplied groups into a single list of lhs/rhs pairs suitable for binding in a # binding group#qZWe often want to strip off leading lambdas before getting down to business. Variants are #r, Nk, and #s#tTStrip off exactly N leading lambdas (type or value). Good for use with join points.#uzTakes a nested application expression and returns the the function being applied and the arguments to which it is applied#vLike  collectArgs_, but also collects looks through floatable ticks if it means that we can find more arguments.#w$Will this variable exist at runtime?#x/Will this argument expression exist at runtime?#yReturns True for value arguments, false for type args NB: coercions are value arguments (zero width, to be sure, like State#, but still value args).#zReturns True iff the expression is a ' or % expression at its top level#{Returns True iff the expression is a '; expression at its top level. Note this does NOT include %s.#|8The number of binders that bind values rather than types#}WThe number of argument expressions that are values rather than types at their top level#~zTakes a nested application expression and returns the the function being applied and the arguments to which it is applied#As #q but for " rather than # #As #t but for " rather than # c.""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""########## # # # # ################### #!#"###$#%#&#'#(#)#*#+#,#-#.#/#0#1#2#3#4#5#6#7#8#9#:#;#<#=#>#?#@#A#B#C#D#E#F#G#H#I#J#K#L#M#N#O#P#Q#R#S#T#U#V#W#X#Y#Z#[#\#]#^#_#`#a#b#c#d#e#f#g#h#i#j#k#l#m#n#o#p#q#r#s#t#u#v#w#x#y#z#{#|#}#~######## ########### ###### # # """"""""""""""""""""""""""""""""""#L#"""###"""""""""#b#a#c#d#`#M#Q#N#O#S#T#U#V#W#X#Y#Z#[#\#]#^#_#P#R#e#f#g#h.#K#I#J#l#m#n#o#q#r#s#t#u#v#p#j#k#i#y#{#z#}#|#x#w######### #!"""""""""""""""""""""""""""""""#4#6#5#7#1#0#2#3#9#A#:#;#<#=#?#@#>#B#C#G#D#E#H#F#8""""""""""""""""#~#######"""#"###$"""""""""""""""""c"""""""#%#&#)#*#-#,#/#+#'#.#(""""""#4#M4#N4#O4#Q4None ;<=FQTV NlA Nl is a Nm| which allows us to distinguish between binding forms whose binders have different types. For example, if we are doing a # lookup on (x :: Int) -> ()), we should not pick up an entry in the # for (x :: Bool) -> ()i: we can disambiguate this by matching on the type (or kind, if this a binder in a type) of the binder.Nn DeBruijn a represents aI modulo alpha-renaming. This is achieved by equipping the value with a #O, which tracks an on-the-fly deBruijn numbering. This allows us to define an L instance for  DeBruijn a., even if this was not (easily) possible for an. Note: we purposely don't export the constructor. Make a helper function if you find yourself needing it.#A # doesn't do a kind-check. Thus, when lookup up (t |> g), you'll find entries inserted under (t), even if (g) is non-reflexive.# TypeMap a is a map from ' to ab. If you are a client, this is the type you want. The keys in this map may have different kinds.No TypeMapX a is the base map from  DeBruijn Type to a, but without the Np optimization.Nm TypeMapG a is a map from  DeBruijn Type to a. The extended key makes it suitable for recursive traversal, since it can track binders, but it is strictly internal to this module. If you are including a # inside another #, this is the type you want. Note that this lookup does not do a kind-check. Thus, all keys in this map must have the same kind. Also note that this map respects the distinction between Type and  ConstraintC, despite the fact that they are equivalent type synonyms in Core.Nq CoreMapX a is the base map from DeBruijn CoreExpr to a, but without the Np optimization.Nr CoreMapG a is a map from DeBruijn CoreExpr to a. The extended key makes it suitable for recursive traversal, since it can track binders, but it is strictly internal to this module. If you are including a # inside another #, this is the type you want.# CoreMap a is a map from " to a3. If you are a client, this is the type you want.NsySqueeze out any synonyms, and change TyConApps to nested AppTys. Why the last one? See Note [Equality on AppTys] in TypeNote, however, that we keep Constraint and Type apart here, despite the fact that they are both synonyms of TYPE 'LiftedRep (see #11715).# Extend a #$ with a type in the given context. 8extendTypeMapWithScope m (mkDeBruijnContext [a,b,c]) t v is equivalent to #extendTypeMap m (forall a b c. t) v<, but allows reuse of the context over multiple insertions.#JConstruct a deBruijn environment with the given variables in scope. e.g. mkDeBruijnEnv [a,b,c] constructs a context  forall a b c.NtSynthesizes a  DeBruijn a from an a9, by assuming that there are no bound binders (an empty #<). This is usually what you want if there isn't already a # in scope.#########################################################################1#1#1None&'V Nu1a monad for the normalisation functions, reading #, a , and a .#;Result of testing two type family equations for injectiviy.#MEither RHSs are distinct or unification of RHSs leads to unification of LHSs#RHSs unify but LHSs don't unify under that substitution. Relevant for closed type families where equation after unification might be overlpapped (in which case it is OK if they don't unify). Constructor stores axioms after unification.#JCheck whether two type family axioms don't violate injectivity annotation.#HCreate a coercion constructor (axiom) suitable for the given newtype . The s% should be that of a new coercion , the  s the arguments expected by the newtype8 and the type the appropriate right hand side of the newtype/, with the free variables a subset of those s.$Check whether an open type family equation can be added to already existing instance environment without causing conflicts with supplied injectivity annotations. Returns list of conflicting axioms (type instance declarations).$Do an apartness check, as described in the "Closed Type Families" paper (POPL '14). This should be used when determining if an equation (Z) of a closed type family can be used to reduce a certain target type family application.$LGet rid of *outermost* (or toplevel) * type function redex * data family redex * newtypes returning an appropriate Representational coercion. Specifically, if topNormaliseType_maybe env ty = Just (co, ty') then (a) co :: ty ~R ty' (b) ty' is not a newtype, and is not a type-family or data-family redexLHowever, ty' can be something like (Maybe (F ty)), where (F ty) is a redex.$Normalise arguments to a tyconNvuGet the set of all type variables mentioned anywhere in the list of types. These variables are not necessarily free.Nw?Get the set of all type variables mentioned anywhere in a type.$ flattened target arguments. Make sure they're flattened! See Note [Flattening]. (NB: This "flat" is a different "flat" than is used in TcFlatten.)Lthe candidate equation we wish to use Precondition: this matches the targetTrue  = equation can fire$env't with family instancesdesired role of output coerciontctysco :: tc tys ~ tc new_tys:###############################################$$$$$$$$$$ $ :##########################################$#$$###$#$$$ $$$$ >None<-Identifier DetailsThe  of an Id7 give stable, and necessary, information about the Id.Identifier InformationAn  gives optional information about an Id. If present it never lies, but it may not be present, in which case there is always a conservative assumption which can be made.Two Id:s may have different info even though they have the same Unique (and are hence the same IdE); for example, one might lack the properties attached to the other. Most of the ; gives information about the value, or definition, of the Id4, independent of its usage. Exceptions to this are $%, $#, $! and $&.!Performance note: when we update n, we have to reallocate this entire record, so it is a good idea not to let this data structure get too big. Check if an  says $4.Just a synonym for $4@. Written separately so it can be exported in the hs-boot file.Basic . that carries no useful information whatsoever$Tick box for Hpc-style coverage$%Constant applicative form InformationRecords whether an Id+ makes Constant Applicative Form references$Indicates that the Id is for either: HA function or static constructor that refers to one or more CAFs, orA real live CAF$9A function or static constructor that refers to no CAFs.$Rule Information$Records the specializations of this Id, that we know about in the form of rewrite "s that target them$Inline Pragma InformationlTells when the inlining is active. When it is active the thing may be inlined, depending on how big it is.If there was an INLINEb pragma, then as a separate matter, the RHS will have been made to look small with a Core inline Note The default $ is L, so the info serves entirely as a way to inhibit inlining until we want it$Arity InformationAn $ of n, tells us that partial application of this Id to up to n-1* value arguments does essentially no work.7That is not necessarily the same as saying that it has n6 leading lambdas, because coerces may get in the way.mThe arity might increase later in the compilation process, if an extra lambda floats up to the binding site.$Id arity$Specialisations of the IdFs function which exist See Note [Specialisations and RULES in IdInfo]$The Id s unfolding$ Id CAF info$!+Info about a lambda-bound variable, if the Id is one$"!Any inline pragma atached to the Id$#How the Id occurs in the program$%ID demand information$&How this is called. n  =$ all calls have at least n arguments$'?when applied, will this Id ever have a levity-polymorphic type?$(Recursive Selector Parent$,The Id for a record selector$-The Id is for a data constructor worker$.The Id is for a data constructor wrapper$/The Id9 is a superclass selector, or class operation of a class$0The Id is for a primitive operator$1The IdM is for a foreign call. Type will be simple: no type families, newtypes, etc$2The Id4 is for a HPC tick box (both traditional and binary)$3$A dictionary function. Bool = True  = the class has only one method, so may be implemented with a newtype, so it might be bad to be strict on this dictionary$4&A coercion variable This only covers  un-lifted coercions, of type (t1 ~ t2) or (t1 ~R t2), not their lifted variants$5An IdC for a join point taking n arguments Note [Join points] in CoreSyn$CMore informative  we can use when we know the Id has no CAF references$D$It is always safe to assume that an Id has an arity of 0$G0Assume that no specilizations exist: always safe$InRetrieve the locally-defined free variables of both the left and right hand sides of the specialization rules$KCChange the name of the function the rule is keyed on on all of the "sNxAssumes that the Id$ has CAF references: definitely safe$NThis is used to remove information on lambda binders that we have setup as part of a lambda group, assuming they will be applied all at once, but turn out to be part of an unsaturated lambda as in e.g: (\x1. \x2. e) arg1$ORemove all demand info on the $P.Remove usage (but not strictness) info on the $QCRemove usage environment info from the strictness signature on the $S'Zap info that depends on free variables$VMarks an IdInfo describing an Id that is never levity polymorphic (even when applied). The Type is only there for checking that it's really never levity polymorphick$5$3$+$,$-$.$/$0$1$2$4$6$7$'$ $$#$"$$%$$$&$$!#%$&')*+,-./012rstx$$$$$$$$$$$$($)$*$8$9$:$;$<$=$>$?$@$A$B$C$D$E$F$G$H$I$J$K$L$M$N$O$P$Q$R$S$T$U$V$W$Xk$5$3$+$,$-$.$/$0$1$2$4$6$7x$8$($)$*$Crst$!$@$N$S$O$P$Q$R$T$U$$D$$=$E$&$>$$$B$%$A$F$$<$$"$:)*+,-./012$#$;'&#%$$$$G$H$I$J$K$$9$$$$M$L$ $?$$$$$'$V$W$X $91$:1$;1$<1$=1$?1$@1$A1$B1$V1$W1NoneM$gNot only does this set the  ';, it also evaluates the type to try and reduce space usage$o'For an explanation of global vs. local s, see Var#globalvslocal$pMake a global % without any extra information at all$qMake a global - with no global information but some generic $r'For an explanation of global vs. local s, see Var#globalvslocal$sMake a local CoVar$tLike $r6, but checks the type to see if it should make a covar$uMMake a local id, with the IdDetails set to CoVarId if the type indicates so.$wCreate a local  that is marked as exported. This prevents things attached to it from being removed as dead code. See Note [Exported LocalIds]$yCreate a system local . These are local s (see Var#globalvslocal3) that are created by the compiler out of thin air$zLike $y+, but checks to see if we have a covar type$}Create a user local . These are local s (see Var#globalvslocal8) with a name and location that the user might recognize$~Like $}', but checks if we have a coercion type$Workers get local names. CoreTidy$ will externalise these if necessary$ Create a template local: a family of system local s in bijection with Ints, typically used in unfoldings$-Create a template local for a series of types$WCreate a template local for a series of type, but start from a specified template local$If the , is that for a record selector, extract the $6. Panic otherwise.$*Get from either the worker or the wrapper  to the '. Currently used only in the desugarer. INVARIANT: idDataCon (dataConWrapId d) = d : remember, !, can return either the wrapper or the worker$Returns True of an I which may not have a binding, even though it is defined in this module.$$ tells whether an s info is implied by other declarations, so we don't need to put its signature in an interface file, even if it's mentioned in some other interface unfolding.$6Returns true if an application to n args would diverge$ This predicate says whether the  has a strict demand placed on it or has a type such that it can always be evaluated strictly (i.e an unlifted type, as of GHC 7.6). We need to check separately whether the D has a so-called "strict type" because if the demand for the given id hasn't been computed yet but id# has a strict type, we still want  isStrictId id to be True.$Like $f, but taking the Horrible State Hack in to account See Note [The state-transformer hack] in CoreArity$/Returns whether the lambda associated with the  is certainly applied at most once This one is the "business end", called externally. It works on type variables as well as Ids, returning True Its main purpose is to encapsulate the Horrible State Hack See Note [The state-transformer hack] in CoreArity$1Should we apply the state hack to values of this '? !(.135$b$c$d$e$f$g$h$i$j$k$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ӂ.$o$p$q$r$s$t$u$v$w$x$y${$z$|$}$~$$$$$b$d$c !$$e$f$g$h$i($j$l$k$m$n$$$$$$$$$$$$$513$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $1$1$1$1$1$1$1$1$1$1$1$1$1NoneRJ$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$yNonexDMake a *promoted* list.ESpecialization of Ny for tuplesiFBuild the type of a small tuple that holds the specified type of thing% DBuilt-in syntax isn't "in scope" so these OccNames map to wired-in Names with BuiltInSyntax. However, this should only be necessary while resolving names produced by Template Haskell splices since we take care to encode built-in syntax names specially in interface files. See Note [Symbol table representation of names].Moreover, there is no need to include names of things that the user can't write (e.g. type representation bindings like $tc(,,,)).NyMGiven the TupleRep/SumRep tycon and list of RuntimeReps of the unboxed tuple;sum arguments, produces the return kind of an unboxed tuplesum type constructor. WunboxedTupleSumKind [IntRep, LiftedRep] --> TYPE (TupleRep/SumRep [IntRep, LiftedRep])Nz/OccName for n-ary unboxed sum type constructor.N{COccName for i-th alternative of n-ary unboxed sum data constructor.%'Type constructor for n-ary unboxed sum.%=Data constructor for i-th alternative of a n-ary unboxed sum.N|Cached type and data constructors for sums. The outer array is indexed by the arity of the sum and the inner array is indexed by the alternative.%Specialization of Ny for sumsN}DCreate type constructor and data constructors for n-ary unboxed sum.%R,Make a tuple type. The list of types should not( include any RuntimeRep specifications.%UOConstruct a type representing the application of the parallel array constructor%V2Represents the type constructor of parallel arrays"This must match the definition in PrelPArrNB: Although the constructor is given here, it will not be accessible in user code as it is not in the environment of any compiled module except PrelPArr.%WGCheck whether a type constructor is the constructor for parallel arrays%XFake array constructorsThese constructors are never really used to represent array values; however, they are very convenient during desugaring (and, in particular, in the pattern matching compiler) to treat array pattern just like yet another constructor pattern%YKChecks whether a data constructor is a fake constructor for parallel arraysN~SExtract the elements of a promoted list. Panics if the type is not a promoted listDof the elements of the listelementsNdeclared infix? datacon name univ tyvars ex tyvarsuser-written tyvarsargsN~The promoted listLDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b$$nm$% %?%@$$%B%D%%A%C%%[%Z%E%F%I%G%J%H%K%^%_%`%+%-%.%%,%/$%=%>%<$%:%;%9$%1%2%%$%0%4%5$%3%7%8$%6l%$%M$L%%N$%b%a%LD%O$%P$%\%Q$%]%Ri%%%%%%%%S%%%%E%% % %%%$$F%T%%%j% khg%&$%'$%%% %U%V%X%W%Y%$%% %!%"$%$%#defc%*%)`ab%(WXYZ[\]^_QRSTUVGHIJKLMNOP'None~<&%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&&&&&&&& & & & & &&&&&&&&&&&&&&&&&&& &!&"&#&$&%&&&'&(&)&*&+&,&-&.&/&0&1&2&3&4&5&6&7&8&9&:&;&<&=&>&?&@&A&B&C&D&E&F&G&H&I&J&K&L&M&N&O&P&Q&R&S&T&U&V&W&X&Y&Z&[&\&]&^&_&`&a&b&c&d&e&f&g&h&i&j&k&l&m&n&o&p&q&r&s&t&u&v&w&x&y&z&{&|&}&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'''''''''' ' ' ' ' ''''''''''''''''''' '!'"'#'$'%'&'''(')'*'+','-'.'/'0'1'2'3'4'5'6'7'8%c%d%e%f%g%h%i%j%k'9':';'<'='>'?'@'A'B'C'D'E'F'G&%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&&&&&&&& & & & & &&&&&&&&&&&&&&&&&&& &!&"&#&$&%&&&'&(&)&*&+&,&-&.&/&0&1&2&3&4&5&6&7&8&9&:&;&<&=&>&?&@&A&B&C&D&E&F&G&H&I&J&K&L&M&N&O&P&Q&R&S&T&U&V&W&X&Y&Z&[&\&]&^&_&`&a&b&c&d&e&f&g&h&i&j&k&l&m&n&o&p&q&r&s&t&u&v&w&x&y&z&{&|&}&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'''''''''' ' ' ' ' ''''''''''''''''''' '!'"'#'$'%'&'''(')'*'+','-'.'/'0'1'2'3'4'5'6'7'8%h%i%j%k';'C'F':'9'D'<'>'B'?'@'A'='G'E%e%f%g%c%dNoneQVL'LThe NameCache makes sure that there is just one Unique assigned for each original name; i.e. (module-name, occ-name) pair and provides something of a lookup mechanism for those names.'NSupply of uniques'O.Ensures that one original name gets one unique'PPer-module cache of original ts given ss'T6Return a function to atomically update the name cache. 'L'M'N'O'P'Q'R'S'T 'Q'R'S'T'L'M'N'O'PdNoneGet the s associated with a known-key 4.None'x stepping mode'yfilename (for errors)'zline number (for errors)('U'V'X'Y'W'Z'['\']'^'_'`'a'b'c'd'e'f'g'h'j'i'k'l'm'n'o'p'q'r't's'u'v'w'x'y'z'{'|('Z'['\']'^'_'`'a'b'c'd'e'f'U'V'X'Y'W'k'l'm'n'o'p'q'r't's'u'|'v'w'x'y'z'{'g'h'j'iNone"#DK '}6All the information about the breakpoints for a module'RThe array of flags, one per breakpoint, indicating which breakpoints are enabled.'3An array giving the source span of each breakpoint.'CAn array giving the names of the free variables at each breakpoint.'HAn array giving the names of the declarations enclosing each breakpoint.'1Array pointing to cost centre for each breakpoint'6info about each breakpoint from the bytecode generator'C CostCentre type'Breakpoint index'CInformation about a breakpoint that we know at code-generation time'Construct an empty ModBreaks.'}'~''''''''''''''''''''''''''''''''''''''''''''.''''''''''''''''''''''''''''''''''''}'~'''''''''Noner'A measure of the size of the expressions, strictly greater than 0 Counts *leaves*, not internal nodes. Types and coercions are not counted. ''''''''''' '''''''''''None^UN?A function to produce an annotation for a given right-hand-sideN-Annotate with the size of the right-hand-sideN No annotationN4Pretty print the argument in a function application.N3generate an annotation to place before the bindingbindings to showthe pretty result ''''''''' '''''''''None'(A top-level binding.( zDoes this constructor application refer to anything in a different *Windows* DLL? If so, we can't allocate it statically(  Type of an StgArg8Very half baked because we have lost the type arguments.( 2Strip ticks of a given type from an STG expressionE'''''''''''''''''''''''''''''''''''''('''''''((((((((( ( ( ( ( (((((((((((E((((( ( ((('('''''''('''''''''''''('(((((''''''''''''''''''''''(((( ( ( ((None( ( None?Nhave we run the unariser yet?NCompare types. We used to try a crude comparison of the type themselves, but this is essentially impossible in STG as we have discarded both casts and type applications, so types might look different but be the same. Now we simply compare their runtime representations. See #14120.(#have we run Unarise yet?(#(#NoneFTԿN.The CSE environment. See note [CseEnv Example]NiThe main component of the environment is the trie that maps data constructor applications (with their  arguments) to an in-scope name that can be used instead. This name is always either a let-bound variable or a case binder.N_This substitution is applied to the code as we traverse it. Entries have one of two reasons:vThe input might have shadowing (see Note [Shadowing]), so we have to rename some binders as we traverse the tree.cIf we remove `let x = Con z` because `let y = Con z` is in scope, we note this here as x ! y.NIf we come across a case expression case x as b of & with a trivial binder, we add b ! x to this. This map is *only* used when looking something up in the ce_conAppMap. See Note [Trivial case scrutinee]NOThe third component is an in-scope set, to rename away any shadowing bindersNNote [CseEnv Example] ~~~~~~~~~~~~~~~~~~~~~ The following tables shows how the CseEnvironment changes as code is traversed, as well as the changes to that code.'InExpr OutExpr conAppMap subst in_scope %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- empty {} {} case & as a of {Con x y -> case & as a of {Con x y -> -- Con x y ! a {} {a,x,y} let b = Con x y (removed) -- Con x y ! a b!a {a,x,y,b} let c = Bar a let c = Bar a -- Con x y ! a, Bar a ! c b!a {a,x,y,b,c} let c = some expression let c' = some expression -- Con x y ! a, Bar a ! c b!a, c!c', {a,x,y,b,c,c'} let d = Bar b (removed) -- Con x y ! a, Bar a ! c b!a, c!c', d!c {a,x,y,b,c,c',d} (a, b, c d) (a, a, c' c)N;This function short-cuts let-bindings that are now obsolete('('None(+ Header information only, not rhs(,,Show only some sub-components. Specifically, @[@] Print all sub-components.(n:ns)Print sub-component n with  ShowSub = ns!; elide other sub-components to ...6 May 14: the list is max 1 element long at the moment(-DEverything including GHC-internal information (used in --show-iface)(This corresponds to HsSrcBang(mThis corresponds to an HsImplBang; that is, the final implementation decision about the data constructor arg(HName of associated axiom and branches for pretty printing purposes, or Lx, for an empty closed family without an axiom(A binding top-level s, in an interface file (e.g. the name of an ().(Pretty Print an IfaceExpresThe first argument should be a function that adds parens in context that need an atomic value (e.g. function args)Etuv@ABCDEFGHIJKLMNOPQRwfgx_`ayjklmnopqrstz{|bcd89:;<=>?STUVWXYZ[\^]ehiuwvxyz|{}~!R!S!T!U!V!W!X!Y(*(+(,(-(.(/(0(1(2(3(4(5(6(7(8(9(:(;(<(=(>(?(@(A(B(C(D(E(H(F(G(I(J(K(L(M(N(O(P(Q(R(S(T(U(V(W(X(Y(Z([(\(](^(_(`(a(b(c(d(e(f(g(h(i(j(k(l(m(n(o(p(q(r(s(t(u(v(w(x(y(z({(|(}(~(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((E(H(F(G(I(J(K(L(M(N(O(P(Q(R(S(@(7(8(4(5(6(9(:(;(<(=(>(?(d(e(f(T(U(V(W(X(Y(Z([(\(](^(_(`(a(b(c(n(o(p(q(r(s(t(u(v(w(j(k(l(m(i(~(((((((x(y(z({(|(}(A(B(C(D((((((((((((((!R!S!T!U!V!W!X!Y((((((((((((g(h((((((((((((.(/(0(1(2(3(*(+(,(-((N3NoneH9NWhat type of Cmm label we're dealing with. Determines the suffix appended to the name when a CLabel.CmmLabel is pretty printed.N'misc rts info tables, suffix _infoN(misc rts entry points, suffix _entryN'misc rts ret info tables, suffix _infoN&misc rts return points, suffix _retN'misc rts data bits, eg CHARLIKE_closureN misc rts codeNclosures eg CHARLIKE_closureN)a prim call to some hand written Cmm codeNSelector thunksN AP thunksN_fast versions of generic applyNLabel for closureNStatic reference table (TODO: could be removed with the old code generator, but might be needed when we implement the New SRT Plan)N*Info tables for closures; always read-onlyN Entry pointNSlow entry pointN)Like InfoTable but not externally visibleN%Like Entry but not externally visibleN4Label of place to keep Ticky-ticky info for this IdNConstructor entry pointNCorresponding info tableN!Table of closures for Enum tyconsN5Content of a string literal. See Note [Bytes label].NLike LocalInfoTable but for a proc-point block instead of a closure entry-point. See Note [Proc-point local block entry-point].)#'Record where a foreign label is stored.)$Label is in a named package)%Label is in some external, system package that doesn't also contain compiled Haskell code, and is not associated with any .hi files. We don't have to worry about Haskell code being inlined from external packages. It is safe to treat the RTS package as "external".)&$Label is in the package currenly being compiled. This is only used for creating hacky tmp labels during code generation. Don't use it in any code that might be inlined across a package boundary (ie, core code) else the information will be wrong relative to the destination module.)')'< is an abstract type that supports the following operations:Pretty printingIn a C file, does it need to be declared before use? (i.e. is it guaranteed to be already in scope in the places we need to refer to it?)WIf it needs to be declared, what type (code or data) should it be declared to have?.Is it visible outside this object file or not?#Is it "dynamic" (see details below)Eq and Ord, so that we can make sets of CLabels (currently only used in outputting C as far as I can tell, to avoid generating more than one declaration for any given label).3Converting an info table label into an entry label.XCLabel usage is a bit messy in GHC as they are used in a number of different contexts:!By the C-- AST to identify labels(By the unregisterised C code generator (PprC+) for naming functions (hence the name )')9By the native and LLVM code generators to identify labelsVFor extra fun, each of these uses a slightly different subset of constructors (e.g. N and N/ are used only in the NCG and LLVM backends).In general, we use N to represent Haskell things early in the pipeline. However, later optimization passes will often represent blocks they create with N where there is no obvious s to hang off the label.NJA label related to the definition of a particular Id or Con in a .hs file.NDA label from a .cmm file that is not associated with a .hs level Id.N A label with a baked-in / algorithmically generated name that definitely comes from the RTS. The code for it must compile into libHSrts.a / libHSrts.so If it doesn't have an algorithmically generated name then use a CmmLabel instead and give it an appropriate UnitId argument.NA label associated with a block. These aren't visible outside of the compilation unit in which they are defined. These are generally used to name blocks produced by Cmm-to-Cmm passes and the native code generator, where we don't have a s4 to associate the label to and therefore can't use N.NA C (or otherwise foreign) label.NLocal temporary label used for native (or LLVM) code generation; must not appear outside of these contexts. Use primarily for debug informationNA label "derived" from another )'Y by the addition of a suffix. Must not occur outside of the NCG or LLVM code generators.NThese labels are generated and used inside the NCG only. They are special variants of a label used for dynamic linking see module PositionIndependentCode for details.NThis label is generated and used inside the NCG only. It is used as a base for PIC calculations on some platforms. It takes the form of a local numeric assembler label '1'o; and is pretty-printed as 1b, referring to the previous definition of 1: in the assembler source file.NJA label before an info table to prevent excessive dead-stripping on darwinN"Per-module table of tick locationsNStatic reference tableNLabel of an StgLargeSRTN"A bitmap (function or case return))(For debugging problems with the CLabel representation. We can't make a Show instance for CLabel because lots of its components don't have instances. The regular Outputable instance only shows the label name, and not its other info.)SMake a foreign label)T-Update the label size field in a ForeignLabel)U+Whether label is a top-level string literal)V8Whether label is a non-haskell label (defined in C code))WFWhether label is a static closure label (can come from haskell or cmm))X Whether label is a .rodata label)Y,Get the label size field from a ForeignLabel)iXConstruct a label for a DWARF Debug Information Entity (DIE) describing another symbol.)q7If a label is a local block label then return just its   , otherwise Lx.)rCheck whether a label corresponds to a C function that has a prototype in a system header somehere, or is built-in to the C compiler. For these labels we avoid generating our own C prototypes.)sIs a CLabel visible outside this object file or not? From the point of view of the code generator, a name is externally visible if it has to be declared as exported in the .o file's symbol table; that is, made non-static.NqWork out the general type of data at the address of this label whether it be code, data, or static GC object.Z))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6)7)8)9):);)<)=)>)?)@)A)B)C)D)E)F)G)H)I)J)K)L)M)N)O)P)Q)R)S)T)U)V)W)X)Y)Z)[)\)])^)_)`)a)b)c)d)e)f)g)h)i)j)k)l)m)n)o)p)q)r)s)t)u)v)wZ)')#)$)%)&)().)))/)0)*)2)Z)Q)P)1)3)L)+),)-)4)[)e)f)g)h)i)6)5)7)8)9):);)<)=)A)B)C)D)@)>)?)M)_)N)O)E)F)G)H)I)J)K)^)R)S)T)Y)U)V)X)W)\)]))) )!)")a)b)c)d)`)o)p)q)s)r)t)u)v)j)k)l)m)n)wNoneK))VNone;K  )))  )))None;<=>?O)Sets of registers)'Parameters: 1. Identifier 2. Type)A stack area is either the stack slot where a variable is spilled or the stack space where function arguments and results are passed.H      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))T))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))NoneV6))))NoneV))****))****NoneV****** ****** NoneW`* * * * ** * * * *NoneW**********NoneX,**********NoneX**********NoneX*** *!*"*** *!*"NoneY^*#*$*%*&*'*#*$*%*&*'None`5*(Returns LqG if this global register is stored in a caller-saves machine register.*)HHere is where the STG register map is defined for each target arch. The order matters (for the llvm backend anyway)! We must make sure to maintain the order here with the order used in the LLVM calling conventions. Note that also, this isn't all registers, just the ones that are currently possbily mapped to real registers.*(*)***+*,*(*)***+*,None &'0;<=>?V*-Tick scope identifier, allowing us to reason about what annotations in a Cmm block should scope over. We especially take care to allow optimisations to reorganise blocks without losing tick association in the process.*.The global scope is the "root" of the scope graph. Every scope is a sub-scope of the global scope. It doesn't make sense to add ticks to this scope. On the other hand, this means that setting this scope on a block means no ticks apply to it.*/lConstructs a new sub-scope to an existing scope. This allows us to translate Core-style scoping rules (see  tickishScoped2) into the Cmm world. Suppose the following code:tick 1# case ... of A -> tick 2 ... B -> tick 3 ...We want the top-level tick annotation to apply to blocks generated for the A and B alternatives. We can achieve that by generating tick 1~ into a block with scope a, while the code for alternatives A and B gets generated into sub-scopes a/b and a/c respectively.*0A combined scope scopes over everything that the two given scopes cover. It is therefore a sub-scope of either scope. This is required for optimisations. Consider common block elimination: A -> tick 2, case ... of C -> [common] B -> tick 3 case ... of D -> [common]We will generate code for the C and D alternatives, and figure out afterwards that it's actually common code. Scoping rules dictate that the resulting common block needs to be covered by both tick 2 and tick 3z, therefore we need to construct a scope that is a child to *both* scope. Now we can do that - if we assign the scopes ac and bOd to the common-ed up blocks, the new block could have a combined tick scope ac+bd, which both tick 2 and tick 3 apply to.*1)Tickish in Cmm context (annotations only)*:jA convention maps a list of values (function arguments or return values) to registers or stack locations.*; top-level Haskell functions use NativeDirectCall, which maps arguments to registers starting with R2, according to how many registers are available on the platform. This convention ignores R1, because for a top-level function call the function closure is implicit, and doesn't need to be passed.*<non-top-level Haskell functions, which pass the address of the function closure in R1 (regardless of whether R1 is a real register or not), and the rest of the arguments in registers or on the stack.*=%a native return. The convention for returns depends on how many values are returned: for just one value returned, the appropriate register is used (R1, F1, etc.). regardless of whether it is a real register or not. For multiple values returned, they are mapped to registers or the stack.*>/Slow entry points: all args pushed on the stack*?\Entry to the garbage collector: uses the node reg! (TODO: I don't think we need this --SDM)NOutput all scope paths.NRReturns the head uniques of the scopes. This is based on the assumption that the Unique of SubScope` identifies the underlying super-scope. Used for efficient equality and comparison, see below.*l_Checks whether two tick scopes are sub-scopes of each other. True if the two scopes are equal.*mCombine two tick scopes. The new scope should be sub-scope of both parameters. We simplfy automatically if one tick scope is a sub-scope of the other already.A*-*.*/*0*1*2*3*4*5*6*7*8*9*:*>*;*<*=*?*@*A*B*C*M*D*E*F*G*H*I*J*K*L*N*O*]*[*\*P*Q*R*S*T*U*V*W*X*Y*Z*^*_*`*a*b*c*d*e*f*g*h*i*j*k*l*mA*C*M*D*E*F*G*H*I*J*K*L*N*O*]*[*\*P*Q*R*S*T*U*V*W*X*Y*Z*^*_*`*A*B*1*@*:*>*;*<*=*?*8*9*2*3*4*a*5*6*7*c*d*b*i*j*h*f*g*e*k*-*.*/*0*l*mNoneDE6*|*}*~***************************************************6*|*}*~***************************************************None&'W*!Info table as a haskell data type*A top-level chunk, abstracted over the type of the contents of the basic blocks (Cmm or instructions are the likely instantiations).*4Should a data in this section be considered constant*aThe branch block id is that of the first block in the branch, which is that branch's entry point&')(*+,-      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))*-*.*/*0*1*2*3*4*5*6*7*8*9*:*>*;*<*=*?*@*A*B*C*M*D*E*F*G*H*I*J*K*L*N*O*]*[*\*P*Q*R*S*T*U*V*W*X*Y*Z*^*_*`*a*b*c*d*e*f*g*h*i*j*k*l*m**************************************************************F*******************************************************')(*+,-*******&None-*An immediate value. Not all of these are directly representable by the machine. Things like ImmLit are slurped out and put in a data segment instead.+'Create a ImmLit containing this string.+Convert a CmmLit to an Imm. Narrow to the width: a CmmInt might be out of range, but we assume that ImmInteger only contains in-range values. A signed value should be fine here.***********+++***********+++None+wRepresents a memory address in an instruction. Being a RISC machine, the SPARC addressing modes are very regular.+4Add an integer offset to the address in an AddrMode.++++++++None+++ + + +++ + + NoneK++++++++++NoneK+Llvm cast operations.+Integer truncate+Integer extend (zero fill)+Integer extend (sign fill)+Float truncate+ Float extend+Float to unsigned Integer+Float to signed Integer+Unsigned Integer to Float+ Signed Int to Float+!Pointer to Integer+"Integer to Pointer+#6Cast between types where no bit manipulation is needed+$Llvm compare operations.+%Equal (Signed and Unsigned)+&Not equal (Signed and Unsigned)+'Unsigned greater than+(Unsigned greater than or equal+)Unsigned less than+*Unsigned less than or equal++Signed greater than+,Signed greater than or equal+-Signed less than+.Signed less than or equal+/ Float equal+0Float not equal+1Float greater than+2Float greater than or equal+3Float less than+4Float less than or equal+5)Llvm binary operators machine operations.+61add two integer, floating point or vector values.+7subtract two ...+8 multiply ..+9$unsigned integer or vector division.+:signed integer ..+;*unsigned integer or vector remainder (mod)+< signed ...+=(add two floating point or vector values.+>subtract two ...+? multiply ...+@ divide ...+A remainder ...+B Left shift+C3Logical shift right Shift right, filling with zero+DsArithmetic shift right The most significant bits of the result will be equal to the sign bit of the left operand.+EAND bitwise logical operation.+FOR bitwise logical operation.+GXOR bitwise logical operation.+HLinkage type of a symbol.`The description of the constructors is copied from the Llvm Assembly Language Reference Manual  -http://www.llvm.org/docs/LangRef.html#linkage5, because they correspond to the Llvm linkage types.+IjGlobal values with internal linkage are only directly accessible by objects in the current module. In particular, linking code into a module with an internal global value may cause the internal to be renamed as necessary to avoid collisions. Because the symbol is internal to the module, all references can be updated. This corresponds to the notion of the static keyword in C.+J Globals with linkonce linkage are merged with other globals of the same name when linkage occurs. This is typically used to implement inline functions, templates, or other code which must be generated in each translation unit that uses it. Unreferenced linkonce globals are allowed to be discarded.+KweakI linkage is exactly the same as linkonce linkage, except that unreferenced weak globals may not be discarded. This is used for globals that may be emitted in multiple translation units, but that are not guaranteed to be emitted into every translation unit that uses them. One example of this are common globals in C, such as int X; at global scope.+L appending linkage may only be applied to global variables of pointer to array type. When two global variables with appending linkage are linked together, the two global arrays are appended together. This is the Llvm, typesafe, equivalent of having the system linker append together sections/ with identical names when .o files are linked.+MThe semantics of this linkage follow the ELF model: the symbol is weak until linked, if not linked, the symbol becomes null instead of being an undefined reference.+N[The symbol participates in linkage and can be used to resolve external symbol references.+O Alias for +N3 but with explicit textual form in LLVM assembly.+PISymbol is private to the module and should not appear in the symbol table+QFFunctions can have a fixed amount of parameters, or a variable amount.+T1Different calling conventions a function can use.+UHThe C calling convention. This calling convention (the default if no other calling convention is specified) matches the target C calling conventions. This calling convention supports varargs function calls and tolerates some mismatch in the declared prototype and implemented declaration of the function (as does normal C).+V/This calling convention attempts to make calls as fast as possible (e.g. by passing things in registers). This calling convention allows the target to use whatever tricks it wants to produce fast code for the target, without having to conform to an externally specified ABI (Application Binary Interface). Implementations of this convention should allow arbitrary tail call optimization to be supported. This calling convention does not support varargs and requires the prototype of al callees to exactly match the prototype of the function definition.+WThis calling convention attempts to make code in the caller as efficient as possible under the assumption that the call is not commonly executed. As such, these calls often preserve all registers so that the call does not break any live ranges in the caller side. This calling convention does not support varargs and requires the prototype of all callees to exactly match the prototype of the function definition.+XThe GHC-specific  registerised calling convention.+YAny calling convention may be specified by number, allowing target-specific calling conventions to be used. Target specific calling conventions start at 64.+Z X86 Specific +\R convention. LLVM includes a specific alias for it rather than just using CC_Ncc.+[#Different types to call a function.+\(Normal call, allocate a new stack frame.+]7Tail call, perform the call in the current stack frame.+^Llvm Function Attributes.)Function attributes are set to communicate additional information about a function. Function attributes are considered to be part of the function, not of the function type, so functions with different parameter attributes can have the same function type. Functions can have multiple attributes.Descriptions taken from )http://llvm.org/docs/LangRef.html#fnattrs+_This attribute indicates that the inliner should attempt to inline this function into callers whenever possible, ignoring any active inlining size threshold for this caller.+`This attribute indicates that the source code contained a hint that inlining this function is desirable (such as the "inline" keyword in C/C++). It is just a hint; it imposes no requirements on the inliner.+aThis attribute indicates that the inliner should never inline this function in any situation. This attribute may not be used together with the alwaysinline attribute.+bThis attribute suggests that optimization passes and code generator passes make choices that keep the code size of this function low, and otherwise do optimizations specifically to reduce code size.+cThis function attribute indicates that the function never returns normally. This produces undefined behavior at runtime if the function ever does dynamically return.+dThis function attribute indicates that the function never returns with an unwind or exceptional control flow. If the function does unwind, its runtime behavior is undefined.+eThis attribute indicates that the function computes its result (or decides to unwind an exception) based strictly on its arguments, without dereferencing any pointer arguments or otherwise accessing any mutable state (e.g. memory, control registers, etc) visible to caller functions. It does not write through any pointer arguments (including byval arguments) and never changes any state visible to callers. This means that it cannot unwind exceptions by calling the C++ exception throwing methods, but could use the unwind instruction.+f4This attribute indicates that the function does not write through any pointer arguments (including byval arguments) or otherwise modify any state (e.g. memory, control registers, etc) visible to caller functions. It may dereference pointer arguments and read state that may be set in the caller. A readonly function always returns the same value (or unwinds an exception identically) when called with the same set of arguments and global state. It cannot unwind an exception by calling the C++ exception throwing methods, but may use the unwind instruction.+gRThis attribute indicates that the function should emit a stack smashing protector. It is in the form of a "canary" a random value placed on the stack before the local variables that's checked upon return from the function to see if it has been overwritten. A heuristic is used to determine if a function needs stack protectors or not.If a function that has an ssp attribute is inlined into a function that doesn't have an ssp attribute, then the resulting function will have an ssp attribute.+hThis attribute indicates that the function should always emit a stack smashing protector. This overrides the ssp function attribute.If a function that has an sspreq attribute is inlined into a function that doesn't have an sspreq attribute or which has an ssp attribute, then the resulting function will have an sspreq attribute.+iThis attribute indicates that the code generator should not use a red zone, even if the target-specific ABI normally permits it.+j>This attributes disables implicit floating point instructions.+kxThis attribute disables prologue / epilogue emission for the function. This can have very system-specific consequences.+lLLVM Parameter Attributes.qParameter attributes are used to communicate additional information about the result or parameters of a function+mThis indicates to the code generator that the parameter or return value should be zero-extended to a 32-bit value by the caller (for a parameter) or the callee (for a return value).+nThis indicates to the code generator that the parameter or return value should be sign-extended to a 32-bit value by the caller (for a parameter) or the callee (for a return value).+oThis indicates that this parameter or return value should be treated in a special target-dependent fashion during while emitting code for a function call or return (usually, by putting it in a register as opposed to memory).+p\This indicates that the pointer parameter should really be passed by value to the function.+qThis indicates that the pointer parameter specifies the address of a structure that is the return value of the function in the source program.+rRThis indicates that the pointer does not alias any global or any other parameter.+sfThis indicates that the callee does not make any copies of the pointer that outlive the callee itself+tZThis indicates that the pointer parameter can be excised using the trampoline intrinsics.+wAn LLVM Function+y!Unique identifier of the function+zLinkageType of the function+{&The calling convention of the function+|Type of the returned value+}'Indicates if this function uses varargs+~Parameter types and attributes+(Function align value, must be power of 2+Llvm Static Data.BThese represent the possible global level variables and constants.+A comment in a static section+#A static variant of a literal value+For uninitialised data+Defines a static ++A static array+A static structure type+A pointer to other data+Pointer to Pointer conversion+Pointer to Integer conversion+Constant addition operation+Constant subtraction operation+Llvm Literal Data.(These can be used inline in expressions.+'Refers to an integer constant (i64 42).+Floating point literal+.Literal NULL, only applicable to pointer types+Vector literal+>Undefined value, random bit pattern. Useful for optimisations.+LLVM Variables+Variables with a global scope.+,Variables local to a function or parameters.+oNamed local variables. Sometimes we need to be able to explicitly name variables (e.g for function arguments).+A constant variable+Mutable global variable+Constant global variable+Alias of another variable+GAn LLVM section definition. If Nothing then let LLVM decide the section+ Llvm Types+&An integer with a given width in bits.+32 bit floating point+64 bit floating point+ 80 bit (x86 only) floating point+128 bit floating point+A pointer to a ++ An array of ++ A vector of ++A + can represent a label (address)+ Void type+Packed structure type+Unpacked structure type+ A type alias+ LLVM Metadata+3Function type, used to create pointers to functions+ A type alias+A String in LLVM+4A global mutable variable. Maybe defined or external+Returns the variable of the ++Return the value of the ++)Return the variable name or value of the +* in Llvm IR textual representation (e.g. @x, %y or 42).+)Return the variable name or value of the +* in a plain textual representation (e.g. x, y or 42).+Print a literal value. No type.+ Return the + of the ++ Return the + of a ++ Return the + of the ++ Return the +H for a ++0Add a pointer indirection to the supplied type. + and + cannot be lifted.+Lift a variable to + type.+:Remove the pointer indirection of the supplied type. Only + constructors can be lowered.+Lower a variable of + type.+Test if the given + is an integer+Test if the given + is a floating point type+Test if the given + is an + construct+Test if the given + is an + construct+ Test if a + is global.+Width in bits of an +, returns 0 if not applicable+"The target architectures word size+"The target architectures word size+Convert a Haskell Double to an LLVM hex encoded floating point form. In Llvm float literals can be printed in a big-endian hexadecimal format, regardless of underlying architecture.See Note [LLVM Float Types].+BReverse or leave byte data alone to fix endianness on this target.++#+"+!+ +++++++++$+4+3+2+1+0+/+.+-+,+++*+)+(+'+&+%+5+G+F+E+D+C+B+A+@+?+>+=+<+;+:+9+8+7+6+H+P+N+M+L+J+O+I+K+Q+R+S+T+Z+Y+X+W+V+U+[+]+\+^+k+j+i+h+g+e+d+c+b+`+_+f+a+l+s+r+q+p+o+n+m+t+u+v+w+x++~+}+|+{+z+y++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++w+x++~+}+|+{+z+y+v+u+l+s+r+q+p+o+n+m+t+^+k+j+i+h+g+e+d+c+b+`+_+f+a+[+]+\+T+Z+Y+X+W+V+U+Q+R+S+H+P+N+M+L+J+O+I+K+5+G+F+E+D+C+B+A+@+?+>+=+<+;+:+9+8+7+6+$+4+3+2+1+0+/+.+-+,+++*+)+(+'+&+%++#+"+!+ +++++++++++++++NoneK+EMetadata declarations. Metadata can only be declared in global scope.+XNamed metadata. Only used for communicating module information to LLVM. ('!name = !{ [! n ] }' form).+/Metadata node declaration. ('!0 = metadata !{  metadata expression }' form).+PAssociates some metadata with a specific label for attaching to an instruction.+LLVM metadata expressions+)A reference to an un-named metadata node. ++++++++++++ ++++++++++++Noned;,Llvm Expressions,Allocate amount * sizeof(tp) bytes on the stack * tp: LlvmType to reserve room for * amount: The nr of tp's which must be allocated, Perform the machine operator op on the operands left and right * op: operator * left: left operand * right: right operand, Perform a compare operation on the operands left and right * op: operator * left: left operand * right: right operand, uExtract a scalar element from a vector * val: The vector * idx: The index of the scalar within the vector, Extract a scalar element from a structure * val: The structure * idx: The index of the scalar within the structure Corresponds to "extractvalue" instruction., Insert a scalar element into a vector * val: The source vector * elt: The scalar to insert * index: The index at which to insert the scalar,Allocate amount * sizeof(tp) bytes on the heap * tp: LlvmType to reserve room for * amount: The nr of tp's which must be allocated,Load the value at location ptr,(Atomic load of the value at location ptr,Navigate in a structure, selecting elements * inbound: Is the pointer inbounds? (computed pointer doesn't overflow) * ptr: Location of the structure * indexes: A list of indexes to select the correct value.,Cast the variable from to the to type. This is an abstraction of three cast operators in Llvm, inttoptr, ptrtoint and bitcast. * cast: Cast type * from: Variable to cast * to: type to cast to,Atomic read-modify-write operation * op: Atomic operation * addr: Address to modify * operand: Operand to operation * ordering: Ordering requirement, Compare-and-exchange operation * addr: Address to modify * old: Expected value * new: New value * suc_ord: Ordering required in success case * fail_ord: Ordering required in failure case, can be no stronger than suc_ord Result is an i1, true if store was successful.,Call a function. The result is the value of the expression. * tailJumps: CallType to signal if the function should be tail called * fnptrval: An LLVM value containing a pointer to a function to be invoked. Can be indirect. Should be LMFunction type. * args: Concrete arguments for the parameters * attrs: A list of function attributes for the call. Only NoReturn, NoUnwind, ReadOnly and ReadNone are valid here.,Call a function as above but potentially taking metadata as arguments. * tailJumps: CallType to signal if the function should be tail called * fnptrval: An LLVM value containing a pointer to a function to be invoked. Can be indirect. Should be LMFunction type. * args: Arguments that may include metadata. * attrs: A list of function attributes for the call. Only NoReturn, NoUnwind, ReadOnly and ReadNone are valid here.,^Merge variables from different basic blocks which are predecessors of this basic block in a new variable of type tp. * tp: type of the merged variable, must match the types of the predecessor variables. * predecessors: A list of variables and the basic block that they originate from.,Inline assembly expression. Syntax is very similar to the style used by GCC. * assembly: Actual inline assembly code. * constraints: Operand constraints. * return ty: Return type of function. * vars: Any variables involved in the assembly code. * sideeffect: Does the expression have side effects not visible from the constraints list. * alignstack: Should the stack be conservatively aligned before this expression is executed.,/A LLVM expression with metadata attached to it.,Llvm Statements,kAssign an expression to a variable: * dest: Variable to assign to * source: Source expression,Memory fence operation,!Always branch to the target label,Branch to label targetTrue if cond is true otherwise to label targetFalse * cond: condition that will be tested, must be of type i1 * targetTrue: label to branch to if cond is true * targetFalse: label to branch to if cond is false,Comment Plain comment., \Set a label on this position. * name: Identifier of this label, unique for this module,!Store variable value in pointer ptr. If value is of type t then ptr must be of type t*. * value: Variable/Constant to store. * ptr: Location to store the value in,"Multiway branch * scrutinee: Variable or constant which must be of integer type that is determines which arm is chosen. * def: The default label if there is no match in target. * target: A list of (value,label) where the value is an integer constant and label the corresponding label to jump to if the scrutinee matches the value.,#CReturn a result. * result: The variable or constant to return,$IAn instruction for the optimizer that the code following is not reachable,%`Raise an expression to a statement (if don't want result or want to use Llvm unnamed values.,&tA nop LLVM statement. Useful as its often more efficient to use this then to wrap LLvmStatement in a Just or [].,'.A LLVM statement with metadata attached to it.,('LLVM atomic operations. Please see the  atomicrmwC instruction in the LLVM documentation for a complete description.,4LLVM ordering types for synchronization purposes. (Introduced in LLVM 3.0). Please see the LLVM documentation for a better description.,5(Some partial order of operations exists.,6?A single total order for operations at a single address exists.,7"Acquire synchronization operation.,8"Release synchronization operation.,9,Acquire + Release synchronization operation.,:&Full sequential Consistency operation.,=An LLVM Function,?(The signature of this declared function.,@The functions arguments,AThe function attributes.,B%The section to put the function into,,C Prefix data,DThe body of the functions.,E6An LLVM Module. This is a top level container in LLVM.,G/Comments to include at the start of the module.,HLLVM Alias type definitions.,ILLVM meta data.,J*Global variables to include in the module.,K@LLVM Functions used in this module but defined in other modules.,L&LLVM Functions defined in this module.,NA block of LLVM code.,PThe code label for this block,QrA list of LlvmStatement's representing the code for this block. This list must end with a control flow statement.,R Block labelsL,,,,,,,,,,,,, , , , ,, ,,,',&,$,#,",!, ,,,,,,%,(,3,2,1,0,/,.,-,,,+,*,),4,:,9,8,7,6,5,;,<,=,>,D,C,B,A,@,?,E,F,L,K,J,I,H,G,M,N,O,Q,P,RL,R,N,O,Q,P,M,E,F,L,K,J,I,H,G,=,>,D,C,B,A,@,?,<,;,4,:,9,8,7,6,5,(,3,2,1,0,/,.,-,,,+,*,),,',&,$,#,",!, ,,,,,,%,,,,,,,,,,,,, , , , ,, ,None ,YPrint out a whole LLVM module.,ZFPrint out a multi-line comment, can be inside a function or on its own,[;Print out a comment, can be inside a function or on its own,\7Print out a list of global mutable variable definitions,].Print out a global mutable variable definition,^&Print out a list of LLVM type aliases.,_Print out an LLVM type alias.,`"Print out a list of LLVM metadata.,a&Print out an LLVM metadata definition.,b)Print out a list of function definitions.,c Print out a function definition.N'Print out a function definition header.,d)Print out a list of function declaration.,e{Print out a function declaration. Declarations define the function type but don't define the actual body of the function.N Print out a list of LLVM blocks.NCPrint out an LLVM block. It must be part of a function definition.NPrint out an LLVM block label.NPrint out an LLVM statement.NPrint out an LLVM expression.NShould always be a function pointer. So a global var of function type (since globals are always pointers) or a local var of pointer function type.N Blank line.NExclamation point. ,Y,Z,[,\,],^,_,`,a,b,c,d,e ,Y,Z,[,\,],^,_,`,a,d,e,b,cNone ++++++++++ +!+"+#+$+%+&+'+(+)+*+++,+-+.+/+0+1+2+3+4+5+6+7+8+9+:+;+<+=+>+?+@+A+B+C+D+E+F+G+H+K+I+O+J+L+M+N+P+Q+S+R+T+U+V+W+X+Y+Z+[+\+]+^+a+f+_+`+b+c+d+e+g+h+i+j+k+l+t+m+n+o+p+q+r+s+u+v+w+x+y+z+{+|+}+~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,, ,, , , , ,,,,,,,,,,,,,%,,,,,, ,!,",#,$,&,',(,),*,+,,,-,.,/,0,1,2,3,4,5,6,7,8,9,:,<,=,>,?,@,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,Y,Z,[,\,],^,_,`,a,b,c,d,e,E,F,G,H,I,J,K,L,=,>,?,@,A,B,C,D+w+x+y+z+{+|+}+~+,<+v,,%,,,,,, ,!,",#,$,&,',,, ,, , , , ,,,,,,,,,,,,M,N,O,P,Q,R+l+t+m+n+o+p+q+r+s+u,(,),*,+,,,-,.,/,0,1,2,3,4,5,6,7,8,9,:+T+U+V+W+X+Y+Z+[+\+]+Q+S+R+H+K+I+O+J+L+M+N+P+^+a+f+_+`+b+c+d+e+g+h+i+j+k+$+%+&+'+(+)+*+++,+-+.+/+0+1+2+3+4+5+6+7+8+9+:+;+<+=+>+?+@+A+B+C+D+E+F+G++++++++++ +!+"+#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,Y,Z,[,\,],d,e,b,c,_,^,`,aNone.< ,f;Get the LlvmVar function variable storing the real register,g;Get the LlvmVar function argument storing the real register,h>A list of STG Registers that should always be considered alive,i'STG Type Based Alias Analysis hierarchyNId values The N node is the root (there can be more than one) of the TBAA hierarchy and as of LLVM 4.0 should *only* be referenced by other nodes. It should never occur in any LLVM instruction statement.,jId values The N node is the root (there can be more than one) of the TBAA hierarchy and as of LLVM 4.0 should *only* be referenced by other nodes. It should never occur in any LLVM instruction statement.,kId values The N node is the root (there can be more than one) of the TBAA hierarchy and as of LLVM 4.0 should *only* be referenced by other nodes. It should never occur in any LLVM instruction statement.,lId values The N node is the root (there can be more than one) of the TBAA hierarchy and as of LLVM 4.0 should *only* be referenced by other nodes. It should never occur in any LLVM instruction statement.,mId values The N node is the root (there can be more than one) of the TBAA hierarchy and as of LLVM 4.0 should *only* be referenced by other nodes. It should never occur in any LLVM instruction statement.,nId values The N node is the root (there can be more than one) of the TBAA hierarchy and as of LLVM 4.0 should *only* be referenced by other nodes. It should never occur in any LLVM instruction statement.,oThe TBAA metadata identifier,p@Get the correct TBAA metadata information for this register type ,f,g,h,i,j,k,l,m,n,o,p ,g,f,h,i,n,k,l,m,j,o,pNoneay;,qThe Llvm monad. Wraps LlvmEnv state as well as the IO monadN LLVM versionN Dynamic flagsN Output bufferNSupply of unique valuesNSupply of fresh metadata IDsNGlobal metadata nodesN"Global functions so far, with typeN;Globals that we had to alias, see [Llvm Forward References]N'Pointers to be added to llvm.used (see cmmUsedLlvmGens)N!Local variables so far, with typeN9Non-constant registers (alloca'd in the function prelude),rLLVM Version Number,tAn unresolved Label.Labels are unresolved when we haven't yet determined if they are defined in the module we are currently compiling, or an external one.,u.Top level LLVM Data (globals and type aliases),vGUnresolved code. Of the form: (data label, data type, unresolved data),w#Global registers live on proc entry,z)Translate a basic CmmType to an LlvmType.,{*Translate a Cmm Float Width to a LlvmType.,|(Translate a Cmm Bit Width to a LlvmType.NGHC Call Convention for LLVM,}#Llvm Function type for Cmm function,~Llvm Function signature,Alignment to use for functions, Alignment to use for into tables,Section to use for a function,A Function's arguments,Llvm standard fun attributes,]Convert a list of types to a list of function parameters (each with no parameter attributes), Pointer width,-The LLVM Version that is currently supported.NBLifting of IO actions. Not exported, as we want to encapsulate IO.,Get initial Llvm environment.NGet environment (internal)NModify environment (internal),"Lift a stream into the LlvmM monad,9Clear variables from the environment for a subcomputation,3Insert variables or functions into the environment.,3Insert variables or functions into the environment.,1Lookup variables or functions in the environment.,1Lookup variables or functions in the environment.,(Set a register as allocated on the stack,2Check whether a register is allocated on the stack,1Allocate a new global unnamed metadata identifier,/Get the LLVM version we are generating code for,+Get the platform we are generating code for,+Get the platform we are generating code for,EDumps the document if the corresponding flag has been set by the user,.Prints the given contents to the output handle,Marks a variable as "used",,Return all variables marked as "used" so farNsSaves that at some point we didn't know the type of the label and generated a reference to a type variable instead,%Sets metadata node for a given unique,#Gets metadata node for given unique, Here we pre-initialise some functions that are used internally by GHC so as to make sure they have the most general type in the case that user code also uses these functions but with a different type than GHC internally. (Main offender is treating return type as void) instead of 'void *'). Fixes trac #5486.,Pretty print a )'.,Create/get a pointer to a global value. Might return an alias if the value in question hasn't been defined yet. We especially make no guarantees on the type of the returned pointer.,7Generate definitions for aliases forward-referenced by  getGlobalPtr.fMust be called at a point where we are sure that no new global definitions will be generated anymore!,=Here we take a global variable definition, rename it with a $def, suffix, and generate the appropriate alias.2 ,q,r,s,t,u,v,w,x,y,z,{,|,},~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,y,x,w,v,u,t,s,r,,,q,,,,,,,,,, ,,,,,,,,,,,z,{,|,},~,,,,,,,,,,,,,NoneVg,8Run the linker with some arguments and return the output,Run the LLVM Optimiser,Run the LLVM Compiler,~Run the clang compiler (used as an assembler for the LLVM backend on OS X as LLVM doesn't support the OS X system assembler),<Figure out which version of LLVM we are running this session,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Nonei,Return the "link info" stringSee Note [LinkInfo section] ,,,,,,,,, ,,,,,,,,,NoneV^l,7Some platforms require that we explicitly link against libmV if any math-y things are used (which we assume to include all programs). See #14022.% ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,, ,,,NonesNIThe string appended to a variable name to create its structure type alias,4Pass a CmmStatic section to an equivalent Llvm code.N-Format the section type part of a Cmm SectionN-Format a Cmm Section into a LLVM section name,Handle static dataN(Generate Llvm code for a static literal.@Will either generate the code or leave it unresolved if it is a )' which isn't yet known.,,,,Nonev,Pretty print LLVM data code,Pretty print LLVM code,The section we are putting info tables and their entry code into, should be unique since we process the assembly pattern matching this.,,,,,,Nonex,Common things that we can do with instructions, on all architectures. These are used by the shared parts of the native code generator, specifically the register allocators.,IGet the registers that are being used by this instruction. regUsage doesn't need to do any trickery for jumps and such. Just state precisely the regs read and written by that insn. The consequences of control flow transfers, as far as register allocation goes, are taken care of by the register allocator.,OApply a given mapping to all the register references in this instruction.,Checks whether this instruction is a jump/branch instruction. One that can change the flow of control in a way that the register allocator needs to worry about.,lGive the possible destinations of this jump instruction. Must be defined for all jumpish instructions.,Change the destination of this jump instruction. Used in the linear allocator when adding fixup blocks for join points.,5An instruction to spill a register into a spill slot.,6An instruction to reload a register from a spill slot.,?See if this instruction is telling us the current C stack delta,pCheck whether this instruction is some meta thing inserted into the instruction stream for other purposes.jNot something that has to be treated as a real machine instruction and have its registers allocated. eg, comments, delta, ldata, etc.,VCopy the value in a register to another one. Must work for all register classes.,fTake the source and destination from this reg -> reg move instruction or Nothing if it's not one,Make an unconditional jump instruction. For architectures with branch delay slots, its ok to put a NOP after the jump. Don't fill the delay slot with an instruction that references regs or you'll confuse the linear allocator.,XHolds a list of source and destination registers used by a particular instruction.Machine registers that are pre-allocated to stgRegs are filtered out, because they are uninteresting from a register allocation standpoint. (We wouldn't want them to end up on the free list!)kAs far as we are concerned, the fixed registers simply don't exist (for allocation purposes, anyway).,No regs read or written to.,JReturns the info table associated with the CmmDecl's entry point, if any.,Return the list of BlockIds in a CmmDecl that are entry points for this proc (i.e. they may be jumped to from outside this proc).,the reg to spillthe current stack deltaspill slot to use,the reg to reload.the current stack deltathe spill slot to use,source registerdestination register*****,,,,,,,,,,,,,,,,,,,,,,,,,,*****,,,,,,,,,,,,,,,,,,,,None &'>?FQTV ,@Function for rewrtiting and analysis combined. To be used with  rewriteCmm.Currently set to work with UniqSM monad, but we could probably abstract that away (if we do that, we might want to specialize the fixpoint algorithms to the particular monads through SPECIALIZE).,*The result of joining OldFact and NewFact.,!Result is different than OldFact.,Result is the same as OldFact.NSort the blocks into the right order for analysis. This means reverse postorder for a forward analysis. For the backward one, we simply reverse that (see Note [Backward vs forward analysis]).,Note: We're using Hoopl's confusingly named  but AFAICS it returns the *reverse* postorder of the blocks (it visits blocks in the postorder and uses (:) to collect them, which gives the reverse of the visitation order).NConstruct a mapping from a LabelG to the block indexes that should be re-analyzed if the facts at that Label change.7Note that we're considering here the entry point of the block, so if the facts change at the entry: * for a backward analysis we need to re-analyze all the predecessors, but * for a forward analysis, we only need to re-analyze the current block (and that will in turn propagate facts into its successors).NAfter some new facts have been generated by analysing a block, we fold this function over them to generate (a) a list of block indices to (re-)analyse, and (b) the new FactBase.,_Returns the result of joining the facts from all the successors of the provided node or block.,(Returns the joined facts for each label.,PFolds backward over all nodes of an open-open block. Strict in the accumulator.,Folds backward over all the nodes of an open-open block and allows rewriting them. The accumulator is both the block of nodes and f> (usually dataflow facts). Strict in both accumulated parts.  ,,,,,,,,,,,,,,,,,,,,,,,  ,,,,,,,,,,,,,,,,,,,,,,,None-%Get the integer format of this width.-#Get the float format of this width.- 4Check if a format represents a floating point value.- Convert a Cmm type to a Format.- Get the Width of a Format.,---------- - - - ,---------- - - - None:-8Get the standard name for the register with this number.-regSqueeze_class reg Calculate the maximum number of register colors that could be denied to a node of this class due to having this reg as a neighbour.-MAll the allocatable registers in the machine, including register pairs.-"Get the regno for this sort of reg-"Get the regno for this sort of reg-"Get the regno for this sort of reg-"Get the regno for this sort of reg-"Get the regno for this sort of reg-.Some specific regs used by the code generator.-.Some specific regs used by the code generator.-.Some specific regs used by the code generator.-.Some specific regs used by the code generator.-.Some specific regs used by the code generator.-.Some specific regs used by the code generator.-.Some specific regs used by the code generator.- .Some specific regs used by the code generator.-!.Some specific regs used by the code generator.-".Some specific regs used by the code generator.-#.Some specific regs used by the code generator.-$.Some specific regs used by the code generator.-%.Some specific regs used by the code generator.-&.Some specific regs used by the code generator.-'BProduce the second-half-of-a-double register given the first half.dAll the regs that the register allocator can allocate to, with the the fixed use regs removed.-(XThe registers to place arguments for function calls, for some number of arguments.-);All all the regs that could possibly be returned by argRegs-+$Make a virtual reg with this format.------------------ -!-"-#-$-%-&-'-(-)-*-+-,-----------!-"--- -#-$-%-&------'-(-)-*-+-,None--Get an AddrMode relative to the address in sp. This gives us a stack relative addressing mode for volatile temporaries and for excess call arguments.-.Get an address relative to the frame pointer. This doesn't work work for offsets greater than 13 bits; we just hope for the best-/=Convert a spill slot number to a *byte* offset, with no sign.-0tThe maximum number of spill slots available on the C stack. If we use up all of the slots, then we're screwed.WWhy do we reserve 64 bytes, instead of using the whole thing?? -- BL 20090215--+stack offset in words, positive or negative---.-/-0---.-/-0Nonef-31A reg map where no regs are free to be allocated.-4The initial set of free regs.-5)Get all the free registers of this class.-6Grab a register.-7Release a register from allocation. The register liveness information says that most regs die after a C call, but we still don't want to allocate to some of them. -1-2-3-4-5-6-7-8-9 -1-2-3-4-5-6-7-8-9None-MregSqueeze_class reg Calculate the maximum number of register colors that could be denied to a node of this class due to having this reg as a neighbour.3-;-<-=->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l-m3-M-N-O-P->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-Q-R-;-<-=-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-m-i-j-k-lNonej-n-o-p-q-r-s-t-n-o-p-q-r-s-tNone&'QV R-Useful for creating an index into an array, with a statically known offset. The type is the element type; used for making the multiplier-CUseful for creating an index into an array, with an unknown offset.-Returns True if the two STG registers overlap on the specified platform, in the sense that writing to one will clobber the other. This includes the case that the two registers are the same STG register. See Note [Overlapping global registers] for details.-Returns True if the STG register is used by the expression, in the sense that a store to the register might affect the value of the expression.We must check for overlapping registers and not just equal registers here, otherwise CmmSink may incorrectly reorder assignments that conflict due to overlap. See Trac #10521 and Note [Overlapping global registers].-like -(, but the entry block always comes first-Like -!, but we strive to ensure that we order blocks so that the false case of a conditional jumps to the next block in the output list of blocks. This matches the way OldCmm blocks were output since in OldCmm the false case was a fallthrough, whereas in Cmm conditional branches have both true and false successors. Block ordering can make a big difference in performance in the LLVM backend. Note that we rely crucially on the order of successors returned for CmmCondBranch by the NonLocal instance for CmmNode defined in cmm/CmmNode.hs. -GBM-1Extract all tick annotations from the given blockL-v-w-x-y-z-{-|-}-~-------------------------------------------------------------------L-v-w-z-x-{-y-~-|-------}-------------------------------------------------------------None &';<=FT 0))+++ + + None<FTV>-(A basic block with liveness information.-NStash regs live on entry to each basic block in the info part of the cmm code.-*Liveness information. The regs which die are ones which are no longer live in the *next* instruction in this sequence. (NB. if the instruction is a jump, these registers might still be live at the jump target(s) - you have to check the liveness at the destination block to find out).-=registers that died because they were clobbered by something.-?registers born in this instruction (written to for first time).-=registers that died because they were read for the last time.-)An instruction with liveness information.-eThe register allocator also wants to use SPILL/RELOAD meta instructions, so we'll keep those here.-A real machine instruction-spill this reg to a stack slot-!reload this reg from a stack slot-5A top level thing which carries liveness information.-7map a function across all the basic blocks in this code-Imap a function across all the basic blocks in this code (monadic version)-Imap a function across all the basic blocks in this code (monadic version)-Slurp out the list of register conflicts and reg-reg moves from this top level thing. Slurping of conflicts and moves is wrapped up together so we don't have to make two passes over the same code when we want to build the graph.-For spill/reloads+SPILL v1, slot1 ... RELOAD slot1, v2If we can arrange that v1 and v2 are allocated to the same hreg it's more likely the spill/reload instrs can be cleaned and replaced by a nop reg-reg move.-4Strip away liveness information, yielding NatCmmDecl-Strip away liveness information from a basic block, and make real spill instructions out of SPILL, RELOAD pseudos along the way.-Erase Delta instructions.-Patch the registers in this code according to this register mapping. also erase reg -> reg moves when the reg is the same. also erase reg -> reg moves when the destination dies in this instr.-FPatch registers in this LiveInstr, including the liveness information.-FConvert a NatCmmDecl to a LiveCmmDecl, with empty liveness informationNHCheck ordering of Blocks The computeLiveness function requires SCCs to be in reverse dependent order. If they're not the liveness information will be wrong, and we'll get a bad allocation. Better to check for this precondition explicitly or some other poor sucker will waste a day staring at bad assembly code..-If we've compute liveness info for this code already we have to reverse the SCCs in each top to get them back to the right order so we can do it again.NComputing livenessnOn entry, the SCCs must be in "reverse" order: later blocks may transfer control to earlier ones only, else .aThe SCCs returned are in the *opposite* order, which is exactly what we want for the next pass.N:Annotate a basic block with register liveness information.NCCalculate liveness going forwards, filling in when regs are bornNoCalculate liveness going backwards, filling in when regs die, and what regs are live across each instructionNDSCCs of blocks that we're about to run the liveness determinator on.$BlockIds that fail the test (if any)#.----------------------------------#----.------------------------------None[.-The register allocator state-gthe current mapping from basic blocks to the register assignments at the beginning of that block.-free machine registers- assignment of temps to locations-current stack delta-free stack slots for spilling-?unique supply for generating names for join point fixup blocks.-Record why things were spilled, for -ddrop-asm-stats. Just keep a list here instead of a map of regs -> reasons. We don't want to slow down the allocator if we're not going to emit the stats.->Used to carry interesting stats out of the register allocator..qReasons why instructions might be inserted by the spiller. Used when generating stats for -ddrop-asm-stats..Rvreg was spilled to a slot so we could use its current hreg for another vreg.-vreg was moved because its hreg was clobbered.!vreg was loaded from a spill slot.,reg-reg move inserted during join to targets.,reg-mem move inserted during join to targets._Where a vreg is currently stored A temporary can be marked as living in both a register and memory (InBoth), for example if it was recently loaded from a spill location. This makes it cheap to spill (no save instruction required), but we have to be careful to turn this into InReg if the value in the register is changed.. vreg is in a register. vreg is held in a stack slot. 0vreg is held in both a register and a stack slot. Used to store the register assignment on entry to a basic block. We use this to handle join points, where multiple branch instructions target a particular label. We have to insert fixup code to make the register assignments from the different sources match up.. 'Get the reg numbers stored in this Loc.-----------.......... . . . . . .. . . . ......-..----------None^.JBuild a map of how many times each reg was alloced, clobbered, loaded etc..+Count reg-reg moves remaining in this code..Pretty print some RegAllocStats......Noneb*."The register allocator monad type..7Run a computation in the RegM register allocator monad.N3Make register allocator stats from its final state.."<Record that a spill instruction was inserted, for profiling.----------............ .!."----------............ .!."None .'Map of .(.(0Records the expected cost to spill some regster..)An empty map of spill costs..*Add two spill cost infos..+Add two spill cost records..,7Slurp out information used for determining spill costs.For each vreg, the number of times it was written to, read from, and the number of instructions it was live on entry to (lifetime)N-Take all the virtual registers from this set..-&Choose a node to spill from this graphN Chaitins spill cost function is:cost = sum loadCost * freq (u) + sum storeCost * freq (d) u <- uses (v) d <- defs (v)LThere are no loops in our code at the moment, so we can set the freq's to 1.If we don't have live range splitting then Chaitins function performs badly if we have lots of nested live ranges and very few registers.v1 v2 v3 def v1 . use v1 . def v2 . . def v3 . . . use v1 . . . use v3 . . . use v2 . . use v1 .defs uses degree cost v1: 1 3 3 1.5 v2: 1 2 3 1.0 v3: 1 1 3 0.666v3 has the lowest cost, but if we only have 2 hardregs and we insert spill code for v3 then this isn't going to improve the colorability of the graph.When compiling SHA1, which as very long basic blocks and some vregs with very long live ranges the allocator seems to try and spill from the inside out and eventually run out of stack slots.zWithout live range splitting, its's better to spill from the outside in so set the cost of very long live ranges to zero..+Extract a map of register lifetimes from a .'.NUDetermine the degree (number of neighbors) of this node which have the same class../`Show a spill cost record, including the degree from the graph and final calulated spill cost. .'.(.).*.+.,.-.../ .(.+./.'.).*.,.-..NoneDNCleaner state.N0Regs which are valid at the start of each block.NCollecting up what regs were valid across each jump. in the next pass we can collate these and write the results to sJumpValid.NMap of (slot -> blocks which reload from this slot) used to decide if whether slot spilled to will ever be reloaded from on this path.N6Spills and reloads cleaned each pass (latest at front)N>Spills and reloads that have been cleaned in this pass so far.NCleaner monad.NThe identification number of a spill slot. A value is stored in a spill slot when we don't have a free register to hold it..0;Clean out unneeded spill/reloads from this top level thing.NDo one pass of cleaning.NOClean out unneeded reload instructions, while walking forward over the code.N'Clean out unneeded reload instructions.Walking forwards across the code On a reload, if we know a reg already has the same value as a slot then we don't need to do the reload.N?Try and rewrite a reload instruction to something more pleasingNPClean out unneeded spill instructions, while walking backwards over the code.If there were no reloads from a slot between a spill and the last one then the slot was never read and we don't need the spill.SPILL r0 -> s1 RELOAD s1 -> r2 SPILL r3 -> s1 <--- don't need this spill SPILL r4 -> s1 RELOAD s1 -> r5WMaintain a set of "slots which were spilled to but not reloaded from yet"]Walking backwards across the code: a) On a reload from a slot, remove it from the set.a) On a spill from a slot If the slot is in set then we can erase the spill, because it won't be reloaded from until after the next spill.Cotherwise keep the spill and add the slot to the setnTODO: This is mostly inter-block we should really be updating the noReloads set as we cross jumps also..TODO: generate noReloads from liveSlotsOnEntryN@Combine the associations from all the inward control flow edges.NOSee if we have a reg with the same value as this slot in the association table.N$Construct the initial cleaner state.N(Remember the associations before a jump.NCheck if this is a reg store.NAn empty associationN,Add an association between these two things.N"Delete all associations to a node.N*Delete a single association edge (a -> b).N)Check if these two things are associated.NAFind the refl. trans. closure of the association from this point.NIntersect two associations.N!Iteration number for the cleaner.!Liveness annotated code to clean.N!the block that we're currently inCtwo store locations are associated if they have the same valueacc$instrs to clean (in backwards order)$cleaned instrs (in forward order)N!Slots live on entry to each block3Slots that have been spilled, but not reloaded fromacc#Instrs to clean (in forwards order)$Cleaned instrs (in backwards order).0.0NoneF.3<Spiller statistics. Tells us what registers were spilled.NSpill code generator state.N)Unique supply for generating fresh vregs.N:Spilled vreg vs the number of times it was loaded, stored.O)State monad for the spill code generator..6,Spill all these virtual regs to stack slots.TODO: See if we can split some of the live ranges instead of just globally spilling the virtual reg. This might make the spill cleaner's job easier.TODO: On CISCy x86 and x86_64 we don't necessarily have to add a mov instruction when making spills. If an instr is using a spilled virtual we may be able to address the spill slot directly.O9Spill some registers to stack slots in a top-level thing.O5Spill some registers to stack slots in a basic block.OSpill some registers to stack slots in a single instruction. If the instruction uses registers that need to be spilled, then it is prefixed (or postfixed) with the appropriate RELOAD or SPILL meta instructions.OqAdd a RELOAD met a instruction to load a value for an instruction that writes to a vreg that is being spilled.OpAdd a SPILL meta instruction to store a value for an instruction that writes to a vreg that is being spilled.O}Add both RELOAD and SPILL meta instructions for an instruction that both reads and writes to a vreg that is being spilled.OORewrite uses of this virtual reg in an instr to use a different virtual reg.OCreate a new spiller state.O +Allocate a new unique in the spiller monad..7:Add a spill/reload count to a stats record for a register.O 2Extract spiller statistics from the spiller state..6the codeavailable stack slotsthe regs to spillO/map of vregs to slots they're being spilled to.the top level thing.O/map of vregs to slots they're being spilled to.O/map of vregs to slots they're being spilled to..3.4.5.6.7.6.3.4.5.7None֜.9.Do register coalescing on this top level thingFor Reg -> Reg moves, if the first reg dies at the same time the second reg is born then the mov only serves to join live ranges. The two regs can be renamed to be the same and the move instruction safely erased.O |Add a v1 = v2 register renaming to the map. The register with the lowest lexical name is set as the canonical version.O ZDetermine the canonical name for a register by following v1 = v2 renamings in this map..:?Slurp out mov instructions that only serve to join live ranges.During a mov, if the source reg dies and the destination reg is born then we can rename the two regs to the same thing and eliminate the move..9.:.9.:None&'.;.<.;.<None&')9O GA more convenient way of accumulating LLVM statements and declarations.OValues which can be passed to O6 to configure its behaviour in certain circumstances.Currently just used for determining if a comparison should return a boolean (i1) or a word. See Note [Literals and branch conditions].OAn expression conversion return data: * LlvmVar: The var holding the result of the expression * LlvmStatements: Any statements needed to evaluate the expression * LlvmCmmDecl: Any global data needed for this expression.@)Top-level of the LLVM proc Code generatorOGenerate code for a list of blocks that make up a complete procedure. The first block in the list is expected to be the entry point and will get the prologue.OGenerate code for one blockO.Convert a list of CmmNode's to LlvmStatement'sO.Convert a CmmStmt to a list of LlvmStatement'sOBWrapper function to declare an instrinct function by function typeO<Declares an instrinct function by return and parameter typesO*Memory barrier instruction for LLVM >= 3.0O Foreign CallsOLGenerate a call to an LLVM intrinsic that performs arithmetic operation with overflow bit (i.e., returns a struct containing the actual result of the operation and an overflow bit). This function will also extract the overflow bit and zero-extend it (all the corresponding Cmm PrimOps represent the overflow "bit" as a usual Int or Word).OA helper function for genCallWithOverflow that handles generating the call to the LLVM intrinsic and extracting the result from the struct to LlvmVars.O(Create a function pointer from a target.O(Create a function pointer from a target.OConversion of call arguments.OConversion of call arguments.O6Cast a collection of LLVM variables to specific types.O 6Cast a collection of LLVM variables to specific types.O!GCast an LLVM variable to a specific type, panicing if it can't be done.O":Decide what C function to use to implement a CallishMachOpO#Tail function callsO$CmmAssign operationlWe use stack allocated variables for CmmReg. The optimiser will replace these with registers when possible.O%CmmStore operationO&nCmmStore operation This is a special case for storing to a global register pointer offset such as I32[Sp+8].O'NCmmStore operation Generic case. Uses casts and pointer arithmetic if needed.O(Unconditional branchO)Conditional branchO*HGenerate call to llvm.expect.x intrinsic. Assigning result to a new var.O+ Switch branchO,'i1 type expected (condition scrutinee).O-Word type expected (usual).OvConvert a CmmExpr to a list of LlvmStatements with the result of the expression being stored in the returned LlvmVar.O.Handle CmmMachOp expressionsO/Handle CmmMachOp expressions This is a specialised method that handles Global register manipulations like 'Sp - 16', using the getelementptr instruction.O0fHandle CmmMachOp expressions This handles all the cases not handle by the specialised genMachOp_fast.O1Handle CmmLoad expression.O2xHandle CmmLoad expression. This is a special case for loading from a global register pointer offset such as I32[Sp+8].O3WHandle Cmm load expression. Generic case. Uses casts and pointer arithmetic if needed.O4Handle CmmReg expression. This will return a pointer to the stack location of the register. Throws an error if it isn't allocated on the stack.O5]Return the value of a given register, as well as its type. Might need to be load from stack.O6$Allocate a local CmmReg on the stackO7Generate code for a literalO8=Find CmmRegs that get assigned and allocate them on the stackAny register that gets written needs to be allcoated on the stack. This avoids having to map a CmmReg to an equivalent SSA form and avoids having to deal with Phi node insertion. This is also the approach recommended by LLVM developers.On the other hand, this is unnecessarily verbose if the register in question is never written. Therefore we skip it where we can to save a few lines in the output and hopefully speed compilation up a bit.O9hFunction epilogue. Load STG variables to use as argument for call. STG Liveness optimisation done here.O:6A series of statements to trash all the STG registers.In LLVM we pass the STG registers around everywhere in function calls. So this means LLVM considers them live across the entire function, when in reality they usually aren't. For Caller save registers across C calls the saving and restoring of them is done by the Cmm code generator, using Cmm local vars. So to stop LLVM saving them as well (and saving all of them since it thinks they're always live, we trash them just before the call by assigning the undefy value to them. The ones we need are restored from the Cmm local var and the ones we don't need are fine to be trashed.O;/Get a function pointer to the CLabel specified.aThis is for Haskell functions, function type is assumed, so doesn't work with foreign functions.O<Create a new local varO=0Execute an expression, assigning result to a varO>Expand CmmRegOffO?0Convert a block id into a appropriate Llvm labelO@Create Llvm int LiteralOA1Convert int type to a LLvmVar of word or i32 sizeOBError functionsOC Returns TBAA meta data by uniqueOD)Returns TBAA meta data for given registerOPrimOpWidth of the operands.Actual arguments."LLVM types of the returned struct..@.@None&'B.E(Expressions, used for unwind information.F literal value.Gregister plus offset.Hpointer dereferencing.MzMaps registers to expressions that yield their "old" values further up the stack. Most interesting for the stack pointer Sp_, but might be useful to document saved registers, too. Note that a register's value will be Lx= when the register's previous value cannot be reconstructed..NA label associated with an .MOEVIntermediate data structure holding debug-relevant context information about a block..PIDebug information about a block of code. Ticks scope over nested blocks..REntry label of containing proc.S Hoopl label.T Output label.UHas an info table?.V9The parent of this proc. See Note [Splitting DebugBlocks].WTicks defined in this block.XBest source tick covering block.Y+Output position relative to other blocks. Nothing# means the block was optimized out.[ Nested blocks.\Is this the entry block?.]Extract debug data from a group of procedures. We will prefer source notes that come from the given module (presumably the module that we are currently compiling).OF1Build a map of blocks sorted by their tick scopesThis involves a pre-order traversal, as we want blocks in rough control flow order (so ticks have a chance to be sorted in the right order).._bSets position and unwind table fields in the debug block tree according to native generated code..`9Converts debug blocks into a label map for easier lookups.aConversion of Cmm expressions to unwind expressions. We check for unsupported operator usages and simplify the expression as far as possible..E.G.F.H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y.Z.[.\.].^._.`.a.P.Q.R.S.T.U.V.W.X.Y.Z.[.\.].^._.`.M.N.O.E.G.F.H.I.J.K.L.aNoneC.f.g.h.i.f.g.h.iNone&'<VH>OG:A mapping from block labels to the variables live on entryOH&The variables live on entry to a block.kThe dataflow lattice.l'Calculated liveness info for a CmmGraphOIJOn entry to the procedure, there had better not be any LocalReg's live-in..j.k.l.m.n.j.l.m.k.nNone&'JOJconflicts (r,e) node is False if and only if the assignment r = e' can be safely commuted past statement node..o.oNone&'J.p.q.p.qNoneN.yAValue of the srt field of an info table when using an StgLargeSRTOKWrap a ) in an alignment check when -falignment-sanitisation is enabled.OLWReturns: 1. The bitmap (literal value or label) 2. Large bitmap CmmData if needed.v.w.x.y.z.{.|.}.~...................v.w.x.y.z.{.|.}.~..................None"&'P ......... .........None&'Q.Traverses the *, making sure that *M# are suitable for code generation...None&'R6........None&'VpOM$Ignore these node types for equalityONGiven a block map, ensure that all "target" blocks are covered by the same ticks as the respective "source" blocks. This not only means copying ticks, but also adjusting tick scopes where necessary...NoneX.vGiven a list of arguments, and a function that tells their types, return a list showing where each argument is passed............None&'iJ .Unlabeled graph with tick scope.+CmmAGraph is a chunk of code consisting of:.ordinary statements (assignments, stores etc.)jumpslabelsout-of-line labelled blocksThe semantics is that control falls through labels and out-of-line blocks. Everything after a jump up to the next label is by definition unreachable code, and will be discarded.*Two CmmAGraphs can be stuck together with  *D, with the meaning that control flows from the first to the second.A . can be turned into a *X (closed at both ends) by providing a label for the entry point and a tick scope; see ....created a sequence "goto id; id:" as an AGraph.(creates an open AGraph from a given node.)created a closed AGraph from a given node.0A labelled code block; should end in a last node.*allocate a fresh label for the entry point.5use the given BlockId as the label of the entry point.aA jump where the caller says what the live GlobalRegs are. Used for low-level hand-written Cmm.. Construct a *G7 node for the given register and unwinding expression.*..........................................*..........................................None&'kx.An analysis to find live CAFs.................None&'qnOOWe map STG registers onto appropriate CmmExprs. Either they map to real machine registers or stored as offsets from BaseReg. Given a GlobalReg, get_GlobalReg_addr always produces the register table address for it..zFixup global registers so that they assign to locations within the RegTable if they aren't pinned for the current target...NoneFTyp.$Top-level of the LLVM Code generatorOP8Do LLVM code generation on all these Cmms data sections.OQLLVM can't handle entry blocks which loop back to themselves (could be seen as an LLVM bug) so we rearrange the code to keep the original entry label which branches to a newly generated second label that branches back to itself. See: Trac #11649ORHComplete LLVM code generation phase for a single top-level chunk of Cmm.OSGenerate meta data nodesOT'Marks variables as used where necessaryf..fNonez.Evaluate all the fields of the - that are generally demanded by the compiler..............None&.kEvery node in an expression annotated with its (non-global) free variables, both Ids and TyVars, and type..kEvery node in an expression annotated with its (non-global) free variables, both Ids and TyVars, and type..mEvery node in a binding group annotated with its (non-global) free variables, both Ids and TyVars, and type..hFind all locally-defined free Ids or type variables in an expression returning a non-deterministic set.OUFind all locally-defined free Ids or type variables in an expression returning a composable FV computation. See Note [FV naming conventions] in FV for why export it..dFind all locally-defined free Ids or type variables in an expression returning a deterministic set..qFind all locally-defined free Ids or type variables in an expression returning a deterministically ordered list..2Find all locally-defined free Ids in an expression.RFind all locally-defined free Ids in an expression returning a deterministic set.._Find all locally-defined free Ids in an expression returning a deterministically ordered list..XFind all locally-defined free Ids in several expressions returning a deterministic set..eFind all locally-defined free Ids in several expressions returning a deterministically ordered list..nFind all locally-defined free Ids or type variables in several expressions returning a non-deterministic set.OVFind all locally-defined free Ids or type variables in several expressions returning a composable FV computation. See Note [FV naming conventions] in FV for why export it..wFind all locally-defined free Ids or type variables in several expressions returning a deterministically ordered list..4Find all locally defined free Ids in a binding group.=Finds free variables in an expression selected by a predicate.jFinds free variables in an expression selected by a predicate returning a deterministically ordered list.OW]Finds free variables in an expression selected by a predicate returning a deterministic set..CFinds free variables in several expressions selected by a predicate.pFinds free variables in several expressions selected by a predicate returning a deterministically ordered list.OXcFinds free variables in several expressions selected by a predicate returning a deterministic set.OYFinds the free externalo names of an expression, notably including the names of type constructors (which of course do not show up in .)..Finds the free external# names of several expressions: see OY for details/orphNamesOfAxiom collects the names of the concrete types and type constructors that make up the LHS of a type family instance, including the family name itself.mFor instance, given `type family Foo a b`: `type instance Foo (F (G (H a))) b = ...` would yield [Foo,F,G,H].Used in the implementation of ":info" in GHCi./ZThose variables free in the right hand side of a rule returned as a non-deterministic set/iThose variables free in the both the left right hand sides of a rule returned as a non-deterministic setOZ`Those variables free in the both the left right hand sides of a rule returned as FV computationO[_Those variables free in the both the left right hand sides of rules returned as FV computation/dThose variables free in the both the left right hand sides of rules returned as a deterministic set/<Those variables free in the right hand side of several rules/tThis finds all locally-defined free Ids on the left hand side of a rule and returns them as a non-deterministic set/}This finds all locally-defined free Ids on the left hand side of a rule and returns them as a determinisitcally ordered listO\fThis finds all locally-defined free Ids on the left hand side of a rule and returns an FV computation/-Free variables of a vectorisation declaration/ Inverse function to // $Extract the vars reported in a FVAnn/ Annotate a "G with its (non-global) free type and value variables at every tree node. Says which s are interesting. Says which s are interestingOW Says which s are interestingOX Says which s are interesting2...........................////////// / / / / ////////2.............../ / // /////////////......./...../// / 7None<V^./?LWhat to expect for an argument to a rebindable-syntax operator. Quite like ', but allows for holes to be filled in by tcSyntaxOp. The callback called from tcSyntaxOp gets a list of types; the meaning of these types is determined by a left-to-right depth-first traversal of the /? tree. So if you pass in >SynAny `SynFun` (SynList `SynFun` SynType Int) `SynFun` SynAny/you'll get three types back: one for the first /@, the element) type of the list, and one for the last /@". You don't get anything for the /DO, because you've said positively that it should be an Int, and so it shall be.<This is defined here to avoid defining it in TcExpr.hs-boot./@Any type/A<A rho type, deeply skolemised or instantiated as appropriate/B6A list type. You get back the element type of the list/C A function./D A known type./M|An expected type to check against during type-checking. See Note [ExpType] in TcMType, where you'll also find manipulators./`Make an /M suitable for checking./aLike /D but accepts a regular TcType/bLike  but for /?/oEFinds outermost type-family applications occuring in a type, after expanding synonyms. In the list (F, tys) that is returned we guarantee that tys matches F's arity. For example, given type family F a :: * -> * (arity 1) calling tcTyFamInsts on (Maybe (F Int Bool) will return (F, [Int]), not (F, [Int,Bool])This is important for its use in deciding termination of type instances (see Trac #11581). E.g. type instance G [Int] = ...(F Int  bigtype)... we don't need to take  bigtypeK into account when asking if the calls on the RHS are smaller than the LHS/p@Check that a type does not contain any type family applications./tdFind all variables bound anywhere in a type. See also Note [Scope-check inferred kinds] in TcHsType/v Worker for splitDepVarsOfType. This might output the same var in both sets, if it's used in both a type and a kind. See Note [CandidatesQTvs determinism and order] See Note [Dependent type variables]/wLike splitDepVarsOfType, but over a list of types/;True of both given and wanted flatten-skolems (fak and usk)/-Make a sigma ty where all type variables are >. That is, they cannot be used with visible type application./rMake a sigma ty where all type variables are "specified". That is, they can be used with visible type application/$Splits a forall type into a list of "Is and the inner type. Always succeeds, even if it returns an empty list./GSplits a type into a TyBinder and a body, if possible. Panics otherwise/Like /B, but splits off only named binders, returning just the tycovars./Like /$, but splits off only named binders./'Is this a ForAllTy with a named binder?/"Split a sigma type into its parts./<Split a sigma type into its parts, going underneath as many ForAllTy5s as possible. For example, given this type synonym: Ktype Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t if you called tcSplitSigmaTy on this type: 2forall s t a b. Each s t a b => Traversal s t a b then it would return .([s,t,a,b], [Each s t a b], Traversal s t a b). But if you instead called tcSplitNestedSigmaTys on the type, it would return D([s,t,a,b,f], [Each s t a b, Applicative f], (a -> f b) -> s -> f t)./Like , but only returns the ./Like , but returns Lx if, ?the type is structurally not a type constructor application, or1the type is a function type (e.g. application of Au), but we currently don't even enough information to fully determine its RuntimeRep variables. For instance, FunTy (a :: k) Int. By contrast  panics in the second case.The behavior here is needed during canonicalization; see Note [FunTy and decomposing tycon applications] in TcCanonical for details./WSplit off exactly the specified number argument types Returns (Left m) if there are m] missing arrows in the type (Right (tys,res)) if the type looks like t1 -> ... -> tn -> res/?Strips off n *visible* arguments and returns the resulting type/Returns the number of arguments in the given type, without looking through synonyms. This is used only for error reporting. We don't look through synonyms because of #11313./|If the type is a tyvar, possibly under a cast, returns it, along with the coercion. Thus, the co is :: kind tv ~N kind type/ Just like /j, but will return True for types of different kinds as long as their non-coercion structure is identical./Like /_, but returns information about whether the difference is visible in the case of a mismatch. Nothing : the types are equal  Just True> : the types differ, and the point of difference is visible  Just False= : the types differ, and the point of difference is invisibleO]Real worker for /. No kind check!/Like pickyEqTypeVis$, but returns a Bool for convenience/HWhen inferring types, should we quantify over a given predicate? Generally true of classes; generally false of equality constraints. Equality constraints that mention quantified type variables and implicit variables complicate the story. See Notes [Inheriting implicit parameters] and [Quantifying over equality constraints]/Like /, but also says Lq for /O types/.Does a type represent a floating-point number?/ Is a type L?/ Is a type a  CallStack?/Is a ! a  CallStack implicit parameter?(If so, return the name of the parameter./UDoes the given tyvar appear at the head of a chain of applications (a t1 ... tn)/Is the equality a ~r ...a.... definitely insoluble or not? a ~r Maybe a -- Definitely insoluble a ~N ...(F a)... -- Not definitely insoluble -- Perhaps (F a) reduces to Int a ~R ...(N a)... -- Not definitely insoluble -- Perhaps newtype N a = MkN Int See Note [Occurs check error] in TcCanonical for the motivation for this function./For every arg a tycon can take, the returned list says True if the argument is taken visibly, and False otherwise. Ends with an infinite tail of Trues to allow for oversaturation./CIf the tycon is applied to the types, is the next argument visible?/2Should this type be applied to a visible argument?O]tcView, if you want unwrappingZ !"#'()*/9/:/;/</=/>+/7/8,-gh,/0146     ! ) * + , 8 : I P U Y Z \ ] a..../////////// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1/2/3/4/5/6/?/@/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/[/\/]/^/_/`/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/{/|/}/~//////////////////////////////////////////////////////////////////////////////////////////////////////////////////Z/]/W/V/U/Y/X/_/S/Q/R/P/T/^/\/[/Z/M/N/O/G/H/I/J/K/L/F/E/`/?/@/A/B/C/D/a/b///h/j/i/k/l/g/n/m/f//// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1/d/e*/9/:/;/</=/>-,/c+/7/8/2/3/4/5/6/{//////|/~/}///////////y/x/z/////////////////////////////////// ///1 Z \ ] Y////////////////////// !//6///////....//////////o/p/q/r/v/w/////s/t/u/////////// ahg'!"   4 ) * + , 8 :///# I P U/0//)( ///,////C0O^3None1Bq / Evidence for  CallStack implicit parameters./EvCsPushCall name loc stk represents a call to name, occurring at loc, in a calling context stk.0Instructions on how to make a Typeable0 dictionary. See Note [Typeable evidence terms]0Dictionary for  Typeable T where TF is a type constructor with all of its kind variables saturated. The [EvTerm] is Typeable" evidence for the applied kinds..0Dictionary for Typeable (s t), given a dictionaries for s and t.0Dictionary for Typeable (s -> t), given a dictionaries for s and t.0%Dictionary for a type literal, e.g. Typeable "foo" or  Typeable 3 The 0 is evidence of, e.g.,  KnownNat 3 (see Trac #10348)0I\This version does a slow check, calculating the related types and seeing if they are equal.0L5mkWpFuns [(ty1, wrap1), (ty2, wrap2)] ty_res wrap_res , where wrap1 :: ty1 "->" ty1' and wrap2 :: ty2 "->" ty2', wrap3 :: ty3 "->" ty3' and ty_res is either ty3 or ty3', gives a wrapper /(ty1' -> ty2' -> ty3) "->" (ty1 -> ty2 -> ty3'). Notice that the result wrapper goes the other way round to all the others. This is a result of sub-typing contravariance. The SDoc is a description of what you were doing when you called mkWpFuns.0hDo SCC analysis on a bag of 0s.0j Create a %s that unwraps an implicit-parameter or overloaded-label dictionary to expose the underlying value. We expect the 'A to have the form `IP sym ty` or `IsLabel sym ty`, and return a % `co :: IP sym ty ~ ty` or `co :: IsLabel sym ty ~ Proxy# sym -> ty`. See also Note [Type-checking overloaded labels] in TcExpr.0k Create a %> that wraps a value in an implicit-parameter dictionary. See 0j.{{|}~//////00000000 0 0000 0 0 000000000000000000 0!0"0#0$0%0&0'0(0)0*0+0,0-0.0/000102030405060708090:0;0<0=0>0?0@0A0B0C0D0E0F0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0[0\0]0^0_0`0a0b0c0d0e0f0g0h0i0j0k{0 0!0"0#0$0%0&0'0(0)0J0O0P0Q0R0S0T0N0M0W0K0L0U0V0i000000000000X0Y0[0\0]0^0Z000000d0e0a0`0h0_000 0 0000 0 0 00b0g0c///0f///000000-0+0,0*{|}~0.0102030405060708090/000:0;0<0=0>0?0@0A0B0C0E0G0D0H0I0F0j0kNone+-01;<=>?AFT] 0|1Constraint type to bundle up the requirement for 7 on both the id and the  q type for it0~KA constraint capturing all the extension points that can be converted via instance Convertable a a0Conversion of annotations from one type index to another. This is required where the AST is converted from one pass to another, and the extension values need to be brought along if possible. So for example a  is converted via L=, but needs a type signature to keep the type checker happy.0iProvide a single constraint that captures the requirement for a default across all the extension points.0NDefaults for each annotation, used to simplify creation in arbitrary contexts0PProvide a summary constraint that lists all the extension points requiring the 0b class, so that it can be changed in one place as the named extensions change throughout the AST.0The s fields have been moved into the extension fields, thus placing a requirement in the extension field to contain a T so that the pretty printing and round tripping of source can continue to operate.The 09 class captures this requirement for the relevant fields.0hHelper to apply a constraint to all extension points. It has one entry per extension point type family.0*Maps the "normal" id type for a given pass0/Types that are not defined until after renaming04Types that are not defined until after type checking0+Used as a data type index for the hsSyn AST0 trivially implements 0(0|0}0~0000000000000000000000000000000000000(00000000000000000000000000000000000000~0}0|None01<y0Imported or Exported Wildcard0Imported or exported entity.0Imported or Exported Variable0+Imported or exported Thing with Absent list+The thing is a Class/Type (can't tell) - us : u, u,u08Imported or exported Thing with All imported or exportedThe thing is a Class"Type and the All refers to methods constructorsus : u , u,u#, u0:Imported or exported Thing With given imported or exportedThe thing is a Class/Type and the imported or exported things are methods/constructors and record fields; see Note [IEThingWith] - us : u%, u%, u%, u0$Imported or exported module contents (Export Only)us : u0Doc section heading0Some documentation0+Reference to named doc deriving (Eq, Data)0Located Import or Export0(Located name with possible adornment - us : u , u0A name in an import or export specification which may have adornments. Used primarily for accurate pretty printing of ParsedSource, and API Annotation placement.0no extra0 pattern X0 type (:+:)0Import DeclarationA single Haskell import declaration.0usuu, u for ideclSourceu,u, u,u, uu,u, u) attached to location in ideclHiding0 Module name.0Package qualifier.0True  = {-# SOURCE #-} import0True => safe import0True => qualified0$True => implicit import (of Prelude)0 as Module0(True => hiding, names)0Located Import Declaration0When in a list this may haveu : u0When in a list this may haveu : u&00000000000000000000000000000000000000&00000000000000000000000000000000000000None+01;<=@0Ambiguous Field OccurrenceRepresents an *occurrence* of a field that is potentially ambiguous after the renamer, with the ambiguity resolved by the typechecker. We always store the  that the user originally wrote, and store the selector function after the renamer (for unambiguous occurrences) or the typechecker (for ambiguous occurrences).See Note [HsRecField and HsRecUpdField] in HsPat and Note [Disambiguating record fields] in TcExpr. See Note [Located RdrNames] in HsExpr0Field OccurrenceHRepresents an *occurrence* of an unambiguous field. We store both the J the user originally wrote, and after the renamer, the selector function.0%See Note [Located RdrNames] in HsExpr0Located Field Occurrence0Haskell Constructor Details0Constructor Declaration Field0u : u0See Note [ConDeclField passs]0%Located Constructor Declaration Field0Promoted data types.1Haskell Tuple Sort1Haskell Application Type1  Located Haskell Application Type1 Haskell Type Literal1 Haskell Type1u : u , u ,u B For details on above see note [Api annotations] in ApiAnnotation1u : None1u : None1u : None1u : u ,1u : u '[' , u ']'1u : u '[:' , u ':]'1u : u  '(' or '(#' , u  ')' or '#)'1u : u '(#' , u '#)'@1u : None1u : u '(' , u ')'1  (?x :: ty)u : u1  ty1 ~ ty2u : u1  (ty :: kind)u : u '(' , u,u ')'1u : u '$(' , u ')'1 u : None1!u : u '{-# UNPACK' or '{-# NOUNPACK' , u '#-}' u  '!'1"u : u '{' , u '}'1#u : None1$u : u "'[" , u ']'1%u : u "'(" , u ')'1&u : None1'u : None1+Haskell Type Variable Binder1-u : u , u, u1.yThese names are used early on to store the names of implicit parameters. They completely disappear after type-checking.10'Located Haskell Signature Wildcard Type11Located Haskell Wildcard Type12Located Haskell Signature Type13Haskell Wildcard Binders17Haskell Implicit Binders1<)Located Haskell Quantified Type Variables1A$Located Haskell Type Variable Binder1BLocated Haskell Kind1C Haskell Kind1DLocated Haskell Type1EHaskell Context1FLocated Haskell Context1G Bang Type1HLocated Bang Type1X Does this 1+' come with an explicit kind annotation?1YDo all type variables in this 1< come with kind annotations?1c0Convert a LHsTyVarBndr to an equivalent LHsType.1dYConvert a LHsTyVarBndrs to a list of types. Works on *type* variable only, no kind vars.1mcRetrieves the head of an HsAppsTy, if this can be done unambiguously, without consulting fixities.1n}Splits a [HsAppType pass] (the payload of an HsAppsTy) into regions of prefix types (normal types) and infix operators. If $splitHsAppsTy tys = (non_syms, syms), then tys# starts with the first element of non_syms" followed by the first element of syms" followed by the next element of non_symsX, etc. It is guaranteed that the non_syms list has one more element than the syms list.1 Version of 1~: that can also print an extra-constraints wildcard, e.g. _ => a -> Bool or (Show a, _) => a -> StringJ. This underscore will be printed when the 'Maybe SrcSpan' argument is a Ly containing the location of the extra-constraints wildcard. A special function for this is needed, as the extra-constraints wildcard is removed from the actual context and type, and stored in a separate field, thus just printing the type will not print the extra-constraints wildcard.1Return LqR for compound types that will need parentheses when used in an argument position.11 ty checks if 1 ty is true, and if so, surrounds ty with an 1 . Otherwise, it simply returns ty.0 May have u : u when in a list1 u : u 1Bu : u1D May have u : u when in a list1Fu : u1ZOriginal detailsOriginal result type!R!S!T!U!V!W!X!Y!Z![!\!]!^!_000000000000000000001111111111 1 1 1 1 111&11!1111111111111111 1"1#1$1%1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~11111111111&11!1111111111111111 1"1#1$1%1'1(1)1*1D1C1B1+1,1-1A1<1=1>1?1@1718191:1;13141516121011111110011E1F1 1 11.1/1W1111 1H1G!^!_!Z![!\!]!V!W!X!Y!R!S!T!U1I1J00000011Z0000000001x0001y1z1{1|1}1 1 1h1e1f1S1T1O1U1V1K1L1M1N1X1Y1\1[1R1]1`1b1^1a1_1u1v1w1q1s1t1r1l1n1p1m1o1i1j1k1g1P1Q1c1d11~1111111None +01;<=FTo1Overloaded Literal Value1Integer-looking literals;1Frac-looking literals1String-looking literals1Haskell Overloaded Literal1Haskell Literal1 Character1Unboxed character1String1 Packed bytes1Genuinely an Int; arises from  TcGenDeriv, and from TRANSLATION1literal Int#1literal Word#1literal Int64#1literal Word64#1bGenuinely an integer; arises only from TRANSLATION (overloaded literals are done with HsOverLit)1bGenuinely a rational; arises only from TRANSLATION (overloaded literals are done with HsOverLit)1 Unboxed Float1Unboxed Double1fConvert a literal from one index type to another, updating the annotations according to the relevant 0 instance1XpmPprHsLit pretty prints literals and is used when pretty printing pattern match warnings. All are printed the same (i.e., without hashes if they are primitive and not wrapped in constructors if they are boxed). This happens mainly for too reasons: * We do not want to expose their internal representation * The warnings become too messy1Returns Lq2 for compound literals that will need parentheses.1Returns Lq` for compound overloaded literals that will need parentheses when used in an argument position.11111111111111111111111111111111111111111111111111111111111111None+01< a -> aAfter renaming, this list of Names contains the named and unnamed wildcards brought into scope by this signature. For a signature _ -> _a -> Bool-, the renamer will give the unnamed wildcard _! a freshly generated name, e.g. _w. _w and the named wildcard _a are then both replaced with fresh meta vars in the type. Their names are stored in the type signature that brought them into scope, in this third field to be more specific.u : u , u1 A pattern synonym type signature ,pattern Single :: () => (Show a) => a -> [a]u : u , u,u u ,u 1A signature for a class method False: ordinary class-method signature True: generic-default class method signature e.g. class C a where op :: a -> a -- Ordinary default op :: Eq a => a -> a -- Generic default No wildcards allowed hereu : u , u1A type signature in generated code, notably the code generated for record selectors. We simply record the desired Id itself, replete with its name, type and IdDetails. Otherwise it's just like a type signature: there should be an accompanying binding1An ordinary fixity declaration  infixl 8 ***u : u , u1An inline pragma {#- INLINE f #-}u : u  '{-# INLINE' and '[' , u,u , u,u , u1A specialisation pragma "{-# SPECIALISE f :: Int -> Int #-}u : u, u '{-# SPECIALISE' and '[', u, u, u ']' and '#-}', u16A specialisation pragma for instance declarations only ${-# SPECIALISE instance Eq [Int] #-}L(Class tys); should be a specialisation of the current instance declarationu : u, u,u1$A minimal complete definition pragma ${-# MINIMAL a | (b, c | (d | e)) #-}u : u, u,u, u1+A "set cost centre" pragma for declarations {-# SCC funName #-}or &{-# SCC funName "cost_centre_name" #-}1A complete match pragma {-# COMPLETE C, D [:: T] #-}Used to inform the pattern match checker about additional complete matchings which, for example, arise from pattern synonym definitions.1Located Signature1Implicit parameter bindings.These bindings start off as (Left "x") in the parser and stay that way until after type-checking when they are replaced with (Right d), where "d" is the name of the dictionary holding the evidence for the implicit parameter.u : u1"Located Implicit Parameter Binding May have u : u when in a list1#Haskell Implicit Parameter Bindings1u : u, u,u u,u '{', u '}',Pattern Synonym binding1Name of the pattern synonym1See Note [Bind free vars]1Formal parameter names1Right-hand side1Directionality2Abtraction Bindings Export2(Any INLINE pragma is attached to this Id2XSee Note [ABExport wrapper] Shape: (forall abs_tvs. abs_ev_vars => abe_mono) ~ abe_poly2SPECIALISE pragmas21Haskell Binding with separate Left and Right id's2Function-like Binding'FunBind is used for both functions f x = e) and variables  f = x -> e) and strict variables  !x = x + 1/Reason 1: Special case for type inference: see m.Reason 2: Instance decls can only have FunBinds, which is convenient. If you change this, you'll need to change e.g. rnMethodBinds'But note that the form f :: a->a = ...Q parses as a pattern binding, just like (f :: a -> a) = ... 6Strict bindings have their strictness recorded in the !V of their  MatchContext`. See Note [FunBind vs PatBind] for details about the relationship between FunBind and PatBind.usu), attached to each element of fun_matchesu,u, u,u,2Pattern BindingThe pattern is never a simple variable; That case is done by FunBind. See Note [FunBind vs PatBind] for details about the relationship between FunBind and PatBind.2 Variable BindingQDictionary binding and suchlike. All VarBinds are introduced by the type checker2 Abstraction Bindings2 u : u , u,u , u u '{',u '}'2  The payload2JCoercion from the type of the MatchGroup to the type of the Id. Example: 1 f :: Int -> forall a. a -> a f x y = y Then the MatchGroup will have type (Int -> a' -> a') (with a free type variable a'). The coercion will take a CoreExpr of this type and convert it to a CoreExpr of type Int -> forall a'. a' -> a' Notice that the coercion captures the free a'.2mAfter the renamer, this contains the locally-bound free variables of this defn. See Note [Bind free vars]2Ticks to put on the rhs, if any2Type of the GRHSs2JTicks to put on the rhs, if any, and ticks to put on the bound variables.2Located only for consistency2True  =H inline this binding regardless (used for implication constraints only)2Includes equality constraints2AbsBinds only gets used when idL = idR after renaming, but these need to be idL's for the collect... code in HsUtil to have the right type2aEvidence bindings Why a list? See TcInstDcls Note [Typechecking plan for instance declarations]2Typechecked user bindings2ELocated Haskell Binding with separate Left and Right identifier types2FLocated Haskell Bindings with separate Left and Right identifier types2 Haskell Binding2!Located Haskell Bindings2"Located Haskell Binding2#Haskell Value bindings with separate Left and Right identifier types (not implicit parameters) Used for both top level and nested bindings May contain pattern synonym bindings2$Value Bindings InYBefore renaming RHS; idR is always RdrName Not dependency analysed Recursive by default2%Value Bindings OutvAfter renaming RHS; idR can be Name or Id Dependency analysed, later bindings in the list may depend on earlier ones.2&Haskell Value Bindings2(DHaskell Local Bindings with separate Left and Right identifier typesBindings in a 'let' expression or a 'where' clause2)Haskell Value Bindings2*#Haskell Implicit Parameter Bindings2+Empty Local Bindings2,Located Haskell local bindings2-Haskell Local Bindings2LOUsing SourceText in case the pragma was spelled differently or used mixed case|111111111111111111111111111111111111111111122222222 2 222 2222222222222222 2 2222 2!2"2#2%2$2&2'2(2+2*2)2,2-2.2/202122232425262728292:2;2<2=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P|2-2,2(2+2*2)2'2&2#2%2$2"2!2 2222 2 222 2222222222222222 2 222222211111112.2/202122232425262728292:2;112<11111111111111111111111112=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P111111111None +01345<FTh$0Patternu : u 2lHaskell Record Fieldu : u,@For details on above see note [Api annotations] in ApiAnnotation2o!Filled in by renamer when punning2pNote [Punning]2qHaskell Record Update Field2rHaskell Record Field2s#Located Haskell Record Update Field2tLocated Haskell Record Field2uLocated Haskell Record Field2vHaskell Record FieldsSHsRecFields is used only for patterns and expressions (not data type declarations)2z#Haskell Constructor Pattern Details2{dWildcard Pattern The sole reason for a type on a WildPat is to support hsPatType :: Pat Id -> Type2|Variable Pattern2}Lazy Pattern ^ - u : u2~As pattern ^ - u : u2AParenthesised pattern See Note [Parens in HsSyn] in HsExpr ^ - u : u '('&, u ')'2Bang pattern ^ - u : u 2Syntactic Listu : u '['&, u ']'2Tuple sub-patternsu : u '(' or '(#', u ')' or '#)'2Anonymous sum patternu : u '(#', u '#)'2u : u '[:'&, u ':]'2Constructor Pattern In2Constructor Pattern Out2 View Pattern2&Splice Pattern (Includes quasi-quotes)2ALiteral Pattern Used for *non-overloaded* literal patterns: Int, Char, Int, Char, String, etc.2Natural Patternu : u L-2 n+k pattern2Pattern with a type signature2Pattern with a type signature2Coercion Pattern2Returns LqB if a pattern must be parenthesized in order to parse (e.g., the  (x :: Int) in f (x :: Int) = x).O_Returns LqC if a constructor pattern must be parenthesized in order to parse.2Returns LqP for compound patterns that need parentheses when used in an argument position.!Note that this is different from 2F, which only says if a pattern needs to be parenthesized to parse in any position, whereas  isCompountPat3 says if a pattern needs to be parenthesized in an argument position. In other words, 2 x implies 2 x+, but not necessarily the other way around.O`Returns Lq\ for compound constructor patterns that need parentheses when used in an argument position.!Note that this is different from O_R, which only says if a constructor pattern needs to be parenthesized to parse in any position, whereas isCompountConPat4 says if a pattern needs to be parenthesized in an argument position. In other words, O_ x implies O` x+, but not necessarily the other way around.22 p checks if 2 p is true, and if so, surrounds p with a 2. Otherwise, it simply returns p.B002{2|2}2~222222222222222222222222l2m2o2n2p2q2r2s2t2u2v2w2x2y2z2222222222222222222222B02{2|2}2~222222222222222222222222202z22v2w2x2y2l2m2o2n2p2u2r2t2q2s2222222222222222222None"#r2Used in places where some invariant ensures that all these Ids are non-void; e.g. constructor field binders in case expressions. See Note [Post-unarisation invariants] in UnariseStg.2Used in places where some invariant ensures that all these arguments are non-void; e.g. constructor arguments. See Note [Post-unarisation invariants] in UnariseStg.OaEFaster version of isSmallFamily if you haven't computed the size yet.2 Convert from 2 to *.C22222222222222222222222222222222222222222222222222222222222222222C22222222222222222222222222222222222222222222222222222222222222222None&'y39@The current tick scope. We will assign this to generated blocks.3:Places blocks generated by the given code into a fresh (sub-)scope. This will make sure that Cmm annotations in our scope will apply to the Cmm blocks generated therein - but not the other way around.3AEGenerate code into a fresh tick (sub-)scope and gather generated code^v 2223333333333 3 3 3 3 3333333333333333333 3!3"3#3$3%3&3'3(3)3*3+3,3-3.3/303132333435363738393:3;3<3=3>3?3@3A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3T3U3V3W3X^3333 3-3C3I3J3N3M3L3K3G3H3D3E3F3O3X3?3@3A3B3P3T3R3Q3U3S3V3W3;3<3>3=v3 3 33 3 3 333438373:3935363!223323#3&3'3"3(3)3*323$3%3/303. 31333333+3,3333333333333333None~HOb0lower bound (inclusive), upper bound (exclusive)OcUse signed comparisons4*(----------------------------3`3a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v43`3a3m-3n-3h3i3j3q3r3s3t3v3u3g3f*(3k3l------------------------3d3e3c3b-3o3p-None3~.The profiling header words in a static closure3+Profiling header words in a dynamic closure31Initialise the profiling field of an update frame3pRecord the allocation of a closure. The CmmExpr is the cost centre stack to which to attribute the allocation.3Record the allocation of a closure (size is given by a CmmExpr) The size must be in words, because the allocation counter in a CCS counts in words.3Called when a closure is entered, marks the closure as having been "used". The closure is not an "inherently used" one. The closure is not IND2 because that is not considered for LDV profiling.3w3x3y3z3{3|3}3~333333333333333x3w3{3|3333~3333}3y3z333333None3Does a computation in the FCode monad, with a current environment and a list of local declarations. Returns the resulting list of declarations.Od<Local declarations that are in scope during code generation.3An environment of named things.3:The environment contains variable definitions or blockids.3eHolds CmmLit(CmmLabel ..) which gives the label type, eg, RtsLabel, ForeignLabel, CmmLabel etc.3!A function name from this package3A blockid of some code or data.3OTakes the variable decarations and imports from the monad and makes an environment, which is looped back into the computation. In this way, we can have embedded declarations that scope over the whole procedure, and imports that scope over the entire module. Discards the local declaration contained within decl'3+Get the current environment from the monad.3+Get the current context name from the monad3 Set context name for a sub-parseOegAdd a new variable to the list of local declarations. The CmmExpr says where the value is stored.Of2Add a new label to the list of local declarations.3.Create a fresh local variable of a given type.3Allocate a fresh label.3,Add add a local function to the environment.3Add an imported foreign label to the list of local declarations. If this is done at the start of the module the declaration will scope over the whole module.3Lookup the BlockId bound to the label with this name. If one hasn't been bound yet, create a fresh one based on the Unique of the name.3]Lookup the location of a named variable. Unknown names are treated as if they had been 'import'ed from the runtime system. This saves us a lot of bother in the RTS sources, at the expense of deferring some errors to link time.31Lift an FCode computation into the CmmParse monad3 data typename of variableregister holding the value3name of the functionpackage of the current module)33333333333333333333333333333333333333333)333333333333333None)3333333333333333333333333333333333None33333333333333333333333333333333NoneX3static updateable3 updateable3!size of the full header, in bytessize of the payload, in bytes!333333333333333333333333333333333!333333333333333333333333333333333None3$Return multiple values to the sequelIf the sequel is Return  return (x,y)If the sequel is AssignTo [p,q]  p=x; q=y;3emitCall conv fun args# makes a call to the entry-code of fun$, using the call/return convention conv , passing args3, and returning the results to the current sequel.Og*emitCallWithExtraStack conv fun args stack$ makes a call to the entry-code of fun#, using the call/return convention conv , passing args0, pushing some extra stack frames described by stack2, and returning the results to the current sequel.OhOh takes a list of function arguments and prepares them for pushing on the stack for "extra" arguments to a function which requires fewer arguments than we currently have.31Just like mkVirtHeapOffsets, but for constructors3Just like mkVirtConstrOffsets, but used when we don't have the actual arguments. Useful when e.g. generating info tables; we just need to know sizes of pointer and non-pointer fields.33333333333333333333333333333333333333333333333333333333None<4!Low-level heap object allocation.4 lower-level version for CmmParseOi/The generic GC procedure; no params, no resultsOj;Create a CLabel for calling a garbage collector entry point4representation of the object info pointer cost centrepayload!returns the address of the object3(3)3*34444444444 4 4 3)3(3*3444 4 4 4444444None4 Cemit code for a foreign call, and return the results to the sequel.41Produce code to save the current thread state to  CurrentTSOOkcloseNursery dflags tsoK produces code to close the nursery. A local register holding the value of  CurrentTSO is expected for efficiency.6Closing the nursery corresponds to the following code:  tso = CurrentTSO; cn = CurrentNuresry; // Update the allocation limit for the current thread. We don't // check to see whether it has overflowed at this point, that check is // made when we run out of space in the current heap block (stg_gc_noregs) // and in the scheduler when context switching (schedulePostRunThread). tso->alloc_limit -= Hp + WDS(1) - cn->start; // Set cn->free to the next unoccupied word in the block cn->free = Hp + WDS(1); 43Produce code to load the current thread state from  CurrentTSOOlopenNursery dflags tsoJ produces code to open the nursery. A local register holding the value of  CurrentTSO is expected for efficiency.6Opening the nursery corresponds to the following code:  tso = CurrentTSO; cn = CurrentNursery; bdfree = CurrentNuresry->free; bdstart = CurrentNuresry->start; // We *add* the currently occupied portion of the nursery block to // the allocation limit, because we will subtract it again in // closeNursery. tso->alloc_limit += bdfree - bdstart; // Set Hp to the last occupied word of the heap block. Why not the // next unocupied word? Doing it this way means that we get to use // an offset of zero more often, which might lead to slightly smaller // code on some architectures. Hp = bdfree - WDS(1); // Set HpLim to the end of the current nursery block (note that this block // might be a block group, consisting of several adjacent blocks. HpLim = bdstart + CurrentNursery->blocks*BLOCK_SIZE_W - 1; 4 4 44444444 4 44 4444444None3OmtInterpret the argument as an unsigned value, assuming the value is given in two-complement form in the given width. Example: asUnsigned W64 (-1) is 18446744073709551615.This function is used to work around the fact that many array primops take Int# arguments, but we interpret them as unsigned quantities in the code gen. This means that we have to be careful every time we work on e.g. a CmmInt literal that corresponds to the array size, as it might contain a negative Integer value if the user passed a value larger than 2^(wORD_SIZE_IN_BITS-1) as the Int# literal.4Decide whether an out-of-line primop should be replaced by an inline implementation. This might happen e.g. if there's enough static information, such as statically know arguments, to emit a more efficient implementation inline.Returns LxS if this primop should use its out-of-line implementation (defined elsewhere) and Ly^ together with a code generating function that takes the output regs as arguments otherwise.On?Translate byte array prefetch operations into proper primcalls.OoGTranslate mutable byte array prefetch operations into proper primcalls.Op<Translate address prefetch operations into proper primcalls.Oq:Translate value prefetch operations into proper primcalls.Or%helper to generate prefetch primcallsOsrTakes a register to return the newly allocated array in and the size of the new array in bytes. Allocates a new 'MutableByteArray#'.OtTakes a source  'ByteArray#'0, an offset in the source array, a destination 'MutableByteArray#', an offset into the destination array, and the number of bytes to copy. Copies the given number of bytes from the source array to the destination array.OuTakes a source 'MutableByteArray#'0, an offset in the source array, a destination 'MutableByteArray#', an offset into the destination array, and the number of bytes to copy. Copies the given number of bytes from the source array to the destination array.OvTakes a source  'ByteArray#'0, an offset in the source array, a destination 'Addr#'}, and the number of bytes to copy. Copies the given number of bytes from the source array to the destination memory region.OwTakes a source 'MutableByteArray#'0, an offset in the source array, a destination 'Addr#'}, and the number of bytes to copy. Copies the given number of bytes from the source array to the destination memory region.OxTakes a source 'Addr#', a destination 'MutableByteArray#', an offset into the destination array, and the number of bytes to copy. Copies the given number of bytes from the source memory region to the destination array.OyTakes a 'MutableByteArray#'v, an offset into the array, a length, and a byte, and sets each of the selected bytes in the array to the character.OzAllocate a new array.O{Takes a source 'Array#'0, an offset in the source array, a destination 'MutableArray#', an offset into the destination array, and the number of elements to copy. Copies the given number of elements from the source array to the destination array.O|Takes a source 'MutableArray#'0, an offset in the source array, a destination 'MutableArray#', an offset into the destination array, and the number of elements to copy. Copies the given number of elements from the source array to the destination array.O}Takes an info table label, a register to return the newly allocated array in, a source array, an offset in the source array, and the number of elements to copy. Allocates a new array and initializes it from the source array.O~Takes an info table label, a register to return the newly allocated array in, a source array, an offset in the source array, and the number of elements to copy. Allocates a new array and initializes it from the source array.OTakes and offset in the destination array, the base address of the card table, and the number of elements affected (*not* the number of cards). The number of elements may not be zero. Marks the relevant cards as dirty.OEmit an atomic modification to a byte array element. The result reg contains that previous value of the element. Implies a full memory barrier.OBEmit an atomic read to a byte array that acts as a memory barrier.OCEmit an atomic write to a byte array that acts as a memory barrier.OEmit a call to memcpy.OEmit a call to memmove.OEmit a call to memset9. The second argument must fit inside an unsigned char.4 The primopThe primop argumentsOzreturn registerrepresentation of the array info pointerheader payload array sizeinitial elementO copy function source arrayoffset in source arraydestination arrayoffset in destination arraynumber of elements to copyO copy function source arrayoffset in source arraydestination arrayoffset in destination arraynumber of elements to copyO Result regAtomic op (e.g. add)MutableByteArray#Index(Type of element by which we are indexing Op argument (e.g. amount to add)O Result regMutableByteArray#Index(Type of element by which we are indexingOMutableByteArray#Index(Type of element by which we are indexingValue to writeO Result regMutableByteArray#Index(Type of element by which we are indexing Old value New value444444None"#&'L O>the offset of Sp relative to the base on entry to this block.Othe number of bytes of arguments in the area for this block Defn: the offset of young(L) relative to the base is given by (sm_sp - sm_args) of the StackMap for block L.OjNumber of words of stack that we do not describe with an info table, because it contains an update frame.Oregs on the stackOXcreate a sequence of assignments to establish the new StackMap, given the old StackMap.OGiven a set of live registers and a StackMap, save all the registers on the stack and return the new StackMap and the assignments to do the saving.O[Manifest Sp: turn all the CmmStackSlots into CmmLoads from Sp. The block looks like this:zmiddle_pre -- the middle nodes Sp = Sp + sp_off -- Sp adjustment goes here last -- the last nodeEAnd we have some extra blocks too (that don't contain Sp adjustments)qThe adjustment for middle_pre will be different from that for middle_post, because the Sp adjustment intervenes.O,Determine whether a stack check cannot fail.OEliminate stores of the formSp[area+n] = r when we know that r is already in the same slot as Sp[area+n]. We could do this in a later optimisation pass, but that would involve a separate analysis and we already have the information to hand here. It helps clean up some extra stack stores in common cases.Note that we may have to modify the StackMap as we walk through the code using procMiddle, since an assignment to a variable in the StackMap will invalidate its mapping there.4444None1v4 Set of visible orphan modules, according to what modules have been directly imported. This is based off of the dep_orphs field, which records transitively reachable orphan modules (modules that define orphan instances).4!4! represents the combination of the global type class instance environment, the local type class instance environment, and the set of transitively reachable orphan modules (according to what modules have been directly imported) used to test orphan instance visibility.4'A type-class instance. Note that there is some tricky laziness at work here. See Note [ClsInst laziness and the rough-match fields] for more details.4) Class name4*Top of type args4+is_dfun_name = idName . is_dfun.We use 4+ for the visibility check, 4C, which needs to know the A which the dictionary is defined in. However, we cannot use the  attached to 4/ since doing so would mean we would potentially pull in an entire interface file unnecessarily. This was the cause of #12367.42tA fuzzy comparison function for class instances, intended for sorting instances before displaying them to the user.4=Collects the names of concrete types and type constructors that make up the head of a class instance. For instance, given `class Foo a b`:W`instance Foo (Either (Maybe Int) a) Bool` would yield [Either, Maybe, Int, Bool].Used in the implementation of ":info" in GHCi.The / is because of instance Foo a => Baz T where ... The decl is an orphan if Baz and T are both not locally defined, even if Foo *is* locally defined4CJTest if an instance is visible, by checking that its origin module is in 4 2. See Note [Instance lookup and orphan instances]4EzChecks for an exact match of ClsInst in the instance environment. We use this when we do signature checking in TcRnDriver4ITrue when when the instance heads are the same e.g. both are Eq [(a,b)] Used for overriding in GHCi Obviously should be insenstive to alpha-renaming4JLook up an instance in the given instance environment. The given class application must match exactly one instance and the match may not contain any flexi type variables. If the lookup is unsuccessful, yield 'Left errorMessage'.4KSee Note [Rules for instance lookup] ^ See Note [Safe Haskell Overlapping Instances] in TcSimplify ^ See Note [Safe Haskell Overlapping Instances Implementation] in TcSimplifyObAdd a new solution, knocking out strictly less specific ones See Note [Rules for instance lookup]4@the name of the class(the types which the class was applied tothe s of the dictionary bindingthe  of the dictionary.may this instance overlap?is this instance an orphan?>@BCDEAFGHI!8!94444 4!4"4#4$4%4&4'4(4)4*4+4,4-4.4/404142434445464748494:4;4<4=4>4?4@4A4B4C4D4E4F4G4H4I4J4K4L>44FGHI@BCDEA4'4(4)4*4+4,4-4.4/40414494:4;4<4>4?4@464748424=4!4"4#4$4%4 4&4A4G4H4I4F4J4K4B4E4C4D4L!9!8434445None O.Do we force the result to be representational?ODo we apply a sym to the result?4QZoptCoercion applies a substitution to a coercion, *and* optimises it to reduce its sizeO|Optimize a coercion, making no assumptions. All coercions in the lifting context are already optimized (and sym'd if nec'y)OGOptimize a coercion, knowing the coercion's role. No other assumptions.O=Optimize a coercion, knowing the coercion's non-Phantom role.O Optimize a non-phantom coercion.O Optimize a non-phantom coercion.OoOptimize a phantom coercion. The input coercion may not necessarily be a phantom, but the output sure will be.4RCheck to make sure that an AxInstCo is internally consistent. Returns the conflicting branch, if it exists See Note [Conflict checking with AxiomInstCo]O/Conditionally set a role to be representationalOcIf we require a representational role, return that. Otherwise, return the "default" role provided.OThe role of the input coercionO current roleO"default" role4Q4R4Q4RNone +01345;<=A4SRole Annotation Declaration4Tu : u , u4U#Located Role Annotation Declaration4VAnnotation Provenance4ZAnnotation Declaration4[u : u , u u u4\Located Annotation Declaration4]Warning pragma Declaration4_"Located Warning pragma Declaration4`Warning pragma Declarations4dLocated Warning Declarations4e!Documentation comment Declaration4j)Located Documentation comment Declaration4kVectorise Declaration4lu : u , u,u4mu : u&, u4nu : u , u,u , u4pu : u , u,u,4tLocated Vectorise Declaration4u Rule Binder4wu : u, u,u4xLocated Rule Binder4yRule Declaration4zu : u,u , u , u , u,u  , u,4{Located Rule Declaration4|Rule Declarations4Located Rule Declarations4Foreign Declaration4u : u , u,u , u4Located Foreign Declaration4Default Declaration4us : u , u,u4Located Default Declaration4Deriving Declaration4u : u , u, u , u,  ! , u,u4Located Deriving Declaration4Instance Declaration4Located Instance Declaration4Class Instance Declaration4u : u , u , u,u,4u : u&, u,4"Located Class Instance Declaration4Family EquationOne equation in a type family instance declaration, data family instance declaration, or type family default. See Note [Type family instance declarations in HsSyn] See Note [Family instance declaration binders]4u : u4Fixity used in the declaration4Family Instance Equation4 Located Family Instance Equation4 Data Family Instance Declaration4u : u" , u#,u , u u,u , u4(Located Data Family Instance Declaration4 Type Family Instance Declaration4u : u , u,4(Located Type Family Instance Declaration4Type Family Default Equation4Type Family Instance Equation4Haskell Type Patterns4$Located Type Family Default Equation4%Located Type Family Instance Equation4,Haskell data Constructor Declaration Details4 data T b = forall a. Eq a => MkT a b MkT :: forall b a. Eq a => MkT a b data T b where MkT1 :: Int -> T Int data T = Int MkT, Int | MkT2 data T a where Int MkT Int :: T Int us : u, u,u$, u,u, u ,u , u,u data Constructor Declaration4The type after the :: 4A possible Haddock comment.4User-written context (if any)4 Arguments4$Located data Constructor Declaration4 newtype Blah ...4  data Blah ...4 A single deriving clause of a data declaration.u : u, u , u,  ! , u,u4;The user-specified strategy (if any) to use when deriving 4.4The types to derive.It uses 12s because, with -XGeneralizedNewtypeDerivingH, we can mention type variables that aren't bound by the datatype, e.g. data T b = ... deriving (C [a])&should produce a derived instance for  C [a] (T b).4Haskell Deriving clause4Haskell Data type Definition4:Declares a data type or newtype, giving its constructors  data/newtype T a =  constrs! data/newtype instance T [a] =  constrs 4Context4Optional kind signature.(Just k) for a GADT-style data, or  data instance decl, with explicit kind sigAlways Nothing for H98-syntax decls4Data constructorsFor data T a = T1 | T2 a the 4 s all have 4. For data T a where { T1 :: T a } the  LConDecls all have 4.4 Optional  'deriving' claues4LxL if we're in an hs-boot file and the user said "type family Foo x where .."4.If the user supplied an injectivity annotation it is represented using InjectivityAnn. At the moment this is a single injectivity condition - see Note [Injectivity annotation]. `Located name` stores the LHS of injectivity condition. `[Located name]` stores the RHS of injectivity condition. Example:.type family Foo a b c = r | r -> a c where ...,This will be represented as "InjectivityAnn r [a, c]"4u : u , u4Located Injectivity Annotation4type Family Declaration4u : u, u", u%, u, u&, u, u', u, u , u4Located type Family Declaration4type Family Result Signature4u :4u : u&,u, u'4u : u&,u, u', u4$Located type Family Result Signature4Type or Class Group4A type or class declaration.4 type/data family T :: *->*u : u, u", u%,u, u,u&, u,u', u,u , u4type declarationu : u, u,4data declarationu : u", u%, u#, u#,u u,4u : u , u,u , uThe tcdFDs will have u, u u 4Type constructor4DType variables; for an associated type these include outer binders5Fixity used in the declaration5RHS of type declaration5does this have a CUSK?5 Context...5Functional deps5Methods' signatures5Default methods5 Associated types;5 Associated type defaults5  Haddock docs5 &Located Declaration of a Type or Class5 Splice Declaration5Located Splice Declaration5 Haskell GroupA 5 is categorised into a 5" before being fed to the renamer.5A Haskell Declaration5Type or Class Declaration5 Instance declaration5!Deriving declaration5"Value declaration5#Signature declaration5$ 'default' declaration5%Foreign declaration5&Warning declaration5'Annotation declaration5(Rule declaration5)Vectorise declaration5*+Splice declaration (Includes quasi-quotes)5+!Documentation comment declaration5,Role annotation declaration52True  = argument is a data/newtype declaration.53!type or type instance declaration54 type class55type/data family declaration56type family declaration57open type family info58closed type family info59data family declaration5@wDoes this declaration have a complete, user-supplied kind signature? See Note [Complete user-supplied kind signatures]5GKDoes this family declaration have a complete, user-supplied kind signature?OFDoes this family declaration have user-supplied return kind signature?5H-Maybe return name of the result type variable4 Here, the pats^ are type patterns (with kind and type bndrs). See Note [Family instance declaration binders]4 May have u : u when in a list4 May have u : u# when in a GADT constructor list4 The optional deriving clauses of a data declaration. ClausesI is plural because one can specify multiple deriving clauses using the -XDerivingStrategies language extension. The list of 4s corresponds to exactly what the user requested to derive, in order. If no deriving clauses were specified, the list is empty.5-When in a list this may haveu : u5G4if associated, does the enclosing class have a CUSK? 4S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555 5 5 5 5 555555555555555555"5#5,55 5!5$5%5&5'5(5)5*5+5-5.5/505152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y 55"5#5,55 5!5$5%5&5'5(5)5*5+5-44444444444444444444445555555555 5 5 5 444445F5B5C5D5E5452535=55565957585:5;5?5A5<5>5@5G44444444444444444444444444445O44445M5N444444444444444444444444444444|4}4~44y4z4{4u4v4w4x5S5R5T4k4l4m4n4o4p4q4r4s4t5U5V4445 5544444444444445P5Q44444444444444445L5I5J5K4e4f4g4h4i4j5W4]4^4_4`4a4b4c4d4Z4[4\4V4W4X4Y5X4S4T4U5Y444444445H555555555555555.5/5150None +013<CV=0Located Haskell Expression0Syntax ExpressionSyntaxExpr is like 6zY, but it's filled in a little earlier, by the renamer. It's used for rebindable syntax.E.g. (>>=)4 is filled in before the renamer by the appropriate s for (>>=)H, and then instantiated by the type checker with its type args etcThis should desugar to csyn_res_wrap $ syn_expr (syn_arg_wraps[0] arg0) (syn_arg_wraps[1] arg1) ...Xwhere the actual arguments come from elsewhere in the AST. This could be defined using PostRn and PostTcA and such, but it's harder to get it all to work out that way. (6~! is hard to write, for example.)0Guarded Right-Hand Sides8GRHSs are used both for pattern bindings and for Matchesu : u , u,u , u,u u ,u0Haskell Splice0;Haskell Command (e.g. a "statement" in an Arrow proc block)0A Haskell expression.5GHaskell Statement Context. It expects to be parameterised with one of RdrName, s or Id5Parallel array comprehension5 do { ... }5'mdo { ... } ie recursive do-expression5'do-notation in an arrow-command context5&A command-line Stmt in GHCi pat <- rhs5!Pattern guard for specified thing5A branch of a parallel stmt5A branch of a transform stmt5Haskell Match ContextmContext of a pattern match. This is more subtle than it would seem. See Note [Varieties of pattern matches].58A pattern matching on an argument of a function binding5Patterns of a lambda5)Patterns and guards on a case alternative5$Guards of a multi-way if alternative5Patterns of a proc5"A pattern binding eg [y] <- e = e5oRecord update [used only in DsExpr to tell matchWrapper what sort of runtime error message to generate]5=Pattern of a do-stmt, list comprehension, pattern guard, etc5!A Template Haskell pattern splice51A Template Haskell pattern quotation [p| (a,b) |]5A pattern synonym declaration5function binder of f5 fixing of f5was f' banged? See Note [FunBind vs PatBind]5Arithmetic Sequence Information5Haskell Bracket5Pending Type-checker Splice5Pending Renamer Splice5Haskell Spliced Thing-Values that can result from running a splice.5Haskell Spliced Expression5Haskell Spliced Type5Haskell Spliced Pattern5&Finalizers produced by a splice with ()XSee Note [Delaying modFinalizers in untyped splices] in RnSplice. For how this is used.5A splice can appear with various decorations wrapped around it. This data type captures explicitly how it was originally written, for use in the pretty printer.5$( splice ) or $$( splice )5$splice or $$splice5 bare splice5Applicative Argument5Parenthesised Statement Block56API Annotations when in qualifier lists or guards - u : u , u,u* , u+,u+ , u,,u-552 represents an applicative expression built with  $ and  *. It is generated by the renamer, and is desugared into the appropriate applicative expression by the desugarer, but it is intended to be invisible in error messages.4For full details, see Note [ApplicativeDo] in RnExpr5u : u. u '{',u '}',5u : u/6Ghci Statement6Ghci Located Statement6Guard Statement6Guard Located Statement6Expression Statement6Expression Located Statement6Command Statement6Command Located Statement6do block Statement6 3Located Statement with separate Left and Right id's6 Located do block Statement6 Guarded Right Hand Side.6 Located Guarded Right-Hand Side6 Guarded RHSs6The where clause6 Located Match May have u : u when in a list6Haskell Record Bindings6Haskell Top-level Command6Top-level command, introducing a new arrow. This may occur inside a proc (where the stack is empty) or as an argument of a command-forming operator.!Located Haskell Top-level Command6 Haskell Array Application Type6#u : u0 , u1,u2 , u36$u : u4 '(|' , u5 '|)'6&u : u6 , u ,6'u : u '(', u ')'6(u : u7 , u8,u '{' , u '}'6)u : u9 , u , u*,u , u:,6*u : u. , u '{' , u '}',u;6+u : u<, u, u, u, u6-*Located Haskell Command (for arrow syntax)6.(Located Haskell Wildcard Type Expression60u : uHaskell Tuple Argument61 The argument62-The argument is missing, but this is its type63Located Haskell Tuple Argument60 is used for tuple sections (,a,) is represented by 3ExplicitTuple [Missing ty1, Present a, Missing ty3] Which in turn stands for (x:ty1 y:ty2. (x,a,y))64Variable65Unbound variable; also used for "holes" (_ or _x). Turned from HsVar to HsUnboundVar by the renamer, when it finds an out-of-scope variable or hole. Turned into HsVar by type checker, to support deferred type errors.66DAfter typechecker only; must be different HsVar for pretty printing67CVariable pointing to record selector Not in use after typechecking68GOverloaded label (Note [Overloaded labels] in GHC.OverloadedLabels) Just id means RebindableSyntax0 is in use, and gives the id of the in-scope  fromLabel&. NB: Not in use after typechecking692Implicit parameter (not in use after typechecking)6:Overloaded literals6; Simple (non-overloaded) literals6<3Lambda abstraction. Currently always a single matchu : u6 , u ,6= Lambda-caseu : u6 , u7,u , u6> Application6?Visible type applicationZExplicit type argument; e.g f @Int x y NB: Has wildcards, but no implicit quantificationu : u,6AFOperator applications: NB Bracketed ops such as (+) come out as Vars.6BDNegation operator. Contains the negated expression and the name of L/u : u=6C.Parenthesised expr; see Note [Parens in HsSyn]6F-Used for explicit tuples and sections thereofu : u , u6GUsed for unboxed sum typesu : u '(#' , u, u '#)',There will be multiple uK, (1 - alternative) before the expression, (arity - alternative) after it6Hu : u7 , u8,u '{' , u '}'6Iu : u9 , u , u*,u , u:,6J Multi-way ifu : u9 u,u,6Klet(rec)u : u. , u '{' , u '}',u;6Lu : u<, u, u, u, u6MSyntactic list: [a,b,c,...]u : u '[', u ']'6N)Syntactic parallel array: [:e1, ..., en:]u : u '[:', u,u, u u ':]'6ORecord constructionu : u '{' , u,u '}'6P Record updateu : u '{' , u,u '}'6Q,Expression with an explicit type signature.  e :: typeu : u6SArithmetic sequenceu : u '[', u,u, u ']'6T&Arithmetic sequence for parallel array [:e1..e2:] or [:e1, e2..e3:]u : u '[:', u,u, u, u ':]'6Uu : u  '{-# SCC', u or u>, u '#-}'6Vu : u  '{-# CORE', u, u '#-}'6Wu : u , u?,u@ , u,uA6Zu : u , u6[proc notation for Arrowsu : uB , u 6\u : uC,6]u : u0 , u1,u2 , u36^u : u4 '(|' , u5 '|)'6au : u , u '{-# GENERATED' , u,u , uD,u , u= , u,uD , u , u '#-}'6cu : u6du : u 6eu : u6qRAn unbound variable; used for treating out-of-scope variables as expression holes6rlAn (unqualified) out-of-scope variable, together with the GlobalRdrEnv with respect to which it is unbound6s"A "true" expression hole (_ or _x)6t'Command Syntax Table (for Arrow syntax)6yPost-Type checking TablerWe use a PostTcTable where there are a bunch of pieces of evidence, more than is convenient to keep individually.6zPost-Type checking ExpressionhPostTcExpr is an evidence expression attached to the syntax tree by the type checker (c.f. postTcType).6}uThis is used for rebindable-syntax pieces that are too polymorphic for tcSyntaxOp (trS_fmap and the mzip in ParStmt)6dMake a 'SyntaxExpr Name' (the "rn" is because this is used in the renamer), missing its HsWrappers.6.Is there only one RHS in this list of matches?6"Should pattern match failure in a 5 be desugared using  MonadFail?0 May have u : u when in a list+006u6x6w6v06660666660555506,6+6*6)6(6'6&6%6$6#06f6e6d6c6b6a6`6_6^6]6\6[6Z6Y6X6V6U6T6S6R6Q6P6O6N6M6L6K6J6I6H6G6F6E6D6B6A6@6>6=6<6968676665646:6C6W6?6;6p6o6n6m6l6k6j6i6h6g000000555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555556666666666 6 6 6 6 66666666666 6!6"6-6.6/606261636q6s6r6t6y6z6{6|6}6~666666666666666666666666666666666666666666666666666666666666+06z6y6{6|06u6x6w6v6}6~66t6q6s6r606f6e6d6c6b6a6`6_6^6]6\6[6Z6Y6X6V6U6T6S6R6Q6P6O6N6M6L6K6J6I6H6G6F6E6D6B6A6@6>6=6<6968676665646:6C6W6?6;6p6o6n6m6l6k6j6i6h6g6360626160066666.6/66666666-06,6+6*6)6(6'6&6%6$6#6 6!6"66666666660666666666666666606666 6 6 60066666 6 666666666555555555555555555555555555555555555666666660555555556555555555555555560606655555555666655555655555555555555565555555555566666666666None<FTV 6WA simple case alternative with a single pattern, no binds, no guards; pre-typechecking7DNLifts a "small" constructor into a "big" constructor by recursive decompositon7ESplit a list into lists that are small enough to have a corresponding tuple arity. The sub-lists of the result all have length <=  But there may be more than  sub-lists7J_Converting a Type to an HsType RdrName This is needed to implement GeneralizedNewtypeDeriving.Note that we use B extensively, which generates Exact RdrNames rather than strings.7ZIf any of the matches in the 2 are infix, the 2 is considered infix.7\#Make a prefix, non-strict function 57^Should we treat this as an unlifted bind? This will be true for any bind that binds an unlifted variable, but we must be careful around AbsBinds. See Note [Unlifted id check in isUnliftedHsBind]. For usage information, see Note [Strict binds check] is DsBinds.7_5Is a binding a strict variable or pattern bind (e.g. !x = ...)?7oReturns all the binding$ names of the decl. The first one is guaranteed to be the name of the decl. The first component represents all binding names except record fields; the second represents field occurrences. For record fields mentioned in multiple constructors, the SrcLoc will be from the first occurrence.3Each returned (Located name) has a SrcSpan for the whole- declaration. See Note [SrcSpan for binders]7D5"Small" constructor function, of maximum input arity /Possible "big" list of things to construct from:Constructed thing made possible by recursive decomposition1j1k66666666666666666666667777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w66666666667]7\677L7K7M7N7O7T67677R7S67P7Q667777"7$7#77%707172737475767<7=7?7J7D7E7U7X7W7[7V7Y7Z66677777 7!7&7'7)7*7(7+7,7-7.7/7>667@7A7B7C1j1k777F7G7I7H7778797:7;777 7 7 7 7777 77777777767^7_7`7b7e7a7d7c7f7k7l7g7h7i7j7o7n7q7r7p7m7s7t7u7v7wNone+01<(7xHaskell ModuleEAll we actually declare here is the top-level structure for a module.7yusu,uu,u, uW for explicit braces and semi around hsmodImports,hsmodDecls if this style is used.7zNothingP: "module X where" is omitted (in which case the next field is Nothing too)7{ Export listNothing+: export list omitted, so export everythingJust [] : export nothing Just [...]: as you would expect...us : u% ,u7|We snaffle interesting stuff out of the imported interfaces early on, adding that info to TyDecls/etc; so this list is often empty, downstream.7}1Type, class, value, and interface signature decls7~9reason/explanation for warning/deprecation of this moduleus : u% ,u7-Haddock module info and description, unparsedus : u% ,ua q r s t u v w x y z!R!S!T!U!V!W!X!Y!Z![!\!]!^!_0|0}0~0000000000000000000000000000000000000002{2|2}2~2222222222222222222222200000000000000000000000000000000000000006u6v6w6x06660666660555506#6$6%6&6'6(6)6*6+6,06;6?6W6C6:6465666768696<6=6>6@6A6B6D6E6F6G6H6I6J6K6L6M6N6O6P6Q6R6S6T6U6V6X6Y6Z6[6\6]6^6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p000000000000000000000000001111111111 1 1 1 1 111&11!1111111111111111 1"1#1$1%1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~1111111111111111111111111111111111111111111111111111111111111111111111111111111111122222222 222 2 22 2 222222222222222222 2!2"2#2$2%2&2'2(2)2*2+2,2-2.2/202122232425262728292:2;2<2=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P2l2m2o2n2p2q2r2s2t2u2v2w2x2y2z22222222222222222222224S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555 5 5 5 5 555555555555555555"5#5,55 5!5$5%5&5'5(5)5*5+5-5.5/505152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555556666666666 6 6 6 6 66666666666 6"6!6-6.6/606162636q6r6s6t6y6z6{6|6}6~66666666666666666666666666666666666666666666666666666666666666666666666666666666667777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7{7|7}7~7 a7x7y7z7{7|7}7~7None<FT7SmkClassDecl builds a RdrClassDecl, filling in the names for tycon and datacon by deriving them from the name of the class. We fill in the names for the tycon and datacon corresponding to the class, by deriving them from the name of the class itself. This saves recording the names in the interface file (which would be equally good).7Function definitions are restructured here. Each is assumed to be recursive initially, and non recursive definitions are discovered by the dependency analyser.7JThis rather gruesome function is used mainly by the parser. When parsing: data T a = T | T1 Int"we parse the data constructors as types? because of parser ambiguities, so then we need to change the  type constr to a  data constrThe exact-name case can occur when parsing: data [] a = [] | a : [a]3For the exact-name case we return an original name.ONote [Sorting out the result type] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In a GADT declaration which is not a record, we put the whole constr type into the res_ty for a ConDeclGADT for now; the renamer will unravel it once it has sorted out operator fixities. Consider for example C :: a :*: b -> a :*: b -> a :+: b Initially this type will parse as a :*: (b -> (a :*: (b -> (a :+: b))))Yso it's hard to split up the arguments until we've done the precedence resolution (in the renamer). On the other hand, for a record { x,y :: Int } -> a :*: b there is no doubt. AND we need to sort records out so that we can bring x,y into scope. So: * For PrefixCon we keep all the args in the res_ty * For RecCon we do not7`Transform btype_no_ops with strict_mark's into HsEqTy's (((~a) ~b) c) ~d ==> ((~a) ~ (b c)) ~ d7[Transform tyapps with strict_marks into uses of twiddle [~a, ~b, c, ~d] ==> (~a) ~ b c ~ dB666677F777777777777777777777777777777777777777777777777777777777777B766667777777777F777777777777777777777777777777777777777777777777777None7Term equalities7ALiterals (simple and overloaded ones) for pattern match checking.7.Lifted expressions for pattern match checking.75Equality between literals for pattern match checking.7Lift a 7 to a 77 Expression Lq7 Expression Lp7'Check if an expression is lifted or notO"Check whether a literal is negated76Check whether a PmExpr is syntactically equal to term Lq.76Check whether a PmExpr is syntactically equal to term Lp.O)Check whether a PmExpr is syntactically eOCheck whether a PmExpr is syntactically equal to (x == y). Since (==) is overloaded and can have an arbitrary implementation, we use the PmExprEq constructor to represent only equalities with non-overloaded literals where it coincides with a syntactic equality check.OCheck if a DataCon is (:).OWe return a boolean along with the expression. Hence, if substitution was a no-op, we know that the expression still cannot progress.7Substitute in a complex equality. We return (Left eq) if the substitution affected the equality or (Right eq) if nothing happened.OPretty print a pmexpr, but remember to prettify the names of the variables that refer to neg-literals. The ones that cannot be shown are printed as underscores.777777777777777777777777777777777777777777777777 None"#Vi7A map keyed by the 7.7PA list of conlikes which represents a complete pattern match. These arise from COMPLETE signatures.7>The ConLikes that form a covering family (e.g. Nothing, Just)7&The TyCon that they cover (e.g. Maybe)73Objects which have yet to be linked by the compiler7An object file (.o)7Static archive file (.a)73Dynamically linked library file (.so, .dll, .dylib)7A byte-code object, lives only in memory. Also carries some static pointer table entries which should be loaded along with the BCOs. See Note [Grant plan for static forms] in StaticPtrTable.7DInformation we can use to dynamically link modules into the compiler7sTime at which this linkable was built (i.e. when the bytecodes were produced, or the mod date on the files)7The linkable module itself73Those files and chunks of code we have yet to link.4INVARIANT: A valid linkable always has at least one 7 item. If this list is empty, the Linkable represents a fake linkable, which is generated in HscNothing mode to avoid recompiling modules.?ToDo: Do items get removed from this list when they get linked?7Mextra source files (e.g. from #includes). The lexer collects these from '#  file  line' pragmas, which the C preprocessor leaves behind. These files and their timestamps are stored in the .hi file, so that we can force recompilation if any of them change (#3589)7Safe Haskell information for 8F Simply a wrapper around SafeHaskellMode to sepperate iface and flags7Is an import a safe import?7Vectorisation information for 8J; i.e, the vectorisation information propagated across module boundaries.NB: The field 7q explicitly contains the workers of data constructors as well as class selectors  i.e., their mappings are noti implicitly generated from the data types. Moreover, whether the worker of a data constructor is in 7} determines whether that data constructor was vectorised (or is part of an abstractly vectorised type constructor).7/All variables in here have a vectorised variant7All s in here have a vectorised variant; the name of the vectorised variant and those of its data constructors are determined by  E and  F3; the names of the isomorphisms are determined by  G7The vectorised form of all the _s in here coincides with the unconverted form; the name of the isomorphisms is determined by  G7Vectorisation information for 8u, 8 and 8; see also documentation at H.*NB: The following tables may also include s, s and \s from imported modules, which have been subsequently vectorised in the current module.7(f, f_v) keyed on f7(T, T_v) keyed on T7(C, C_v) keyed on C7set of parallel variables7!set of parallel type constructors7pThis is used to signal if one of my imports used HPC instrumentation even if there is no module-local HPC usage7;Information about a modules use of Haskell Program Coverage8*Is hpc used anywhere on the module *tree*?8XIndicates whether a given module's source has been modified since it was last compiled.8the source has been modified8the source has not been modified. Compilation may or may not be necessary, depending on whether any dependencies have changed since we last compiled.8=the source has not been modified, and furthermore all of its (transitive) dependencies are up to date; it definitely does not need to be recompiled. This is important for two reasons: (a) we can omit the version check in checkOldIface, and (b) if the module used TH splices we don't need to force recompilation.8A single node in a 8,. The nodes of the module graph are one of:A regular Haskell source moduleA hi-boot source module8 Identity of the module8 1The module source either plain Haskell or hs-boot8 5Location of the various files belonging to the module8 Timestamp of source file8 #Timestamp of object, if we have one8<Timestamp of hi file, if we *only* are typechecking (it is LxJ otherwise. See Note [Recompilation checking in -fno-code mode] and #92438Source imports of the module87Non-source imports of the module from the module *text*8vThe parsed, nonrenamed source, if we have it. This is also used to support "inline module syntax" in Backpack files.8$Filename of preprocessed source file8Cached flags from OPTIONS, INCLUDE and LANGUAGE$ pragmas in the modules source code8-The actual preprocessed source, if we have it8A ModuleGraph contains all the nodes from the home package (only). There will be a node for each source module, plus a node for each hi-boot module.IThe graph is not necessarily stored in topologically-sorted order. Use I and  J to achieve this.8:Accumulated statistics about what we are putting into the 8!. "In" means stuff that is just readG from interface files, "Out" means actually sucked in and type-checked8ZInformation about other packages that we have slurped in by reading their interface files8!*In OneShot mode (only), home-package modules accumulate in the external package state, and are sucked in lazily. For these home-pkg modules (only) we need to record which are boot modules. We set this field after loading all the explicitly-imported interfaces, but before doing anything elseThe u part is not necessary, but it's useful for debug prints, and it's convenient because this field comes direct from K8"The 8s for modules in external packages whose interfaces we have opened. The declarations in these interface files are held in the  eps_decls, 8%, 8& and  eps_rules$ fields of this record, not in the 8, fields of the interface we have sucked in.What is in the PIT is: The ModuleFingerprint info Its exportsFixitiesDeprecations and warnings8# Cache for 96#. Ordinarily, we can rely on the 8"\ for this information, EXCEPT that when we do dependency analysis, we need to look at the 8?A of our imports to determine what their precise free holes are (moduleFreeHolesPrecise). We don't want to repeatedly reread in the interface for every import, so cache it here. When the PIT gets filled in we can drop these entries.8$Result of typechecking all the external package interface files we have sucked in. The domain of the mapping is external-package modules8% The total 4&3 accumulated from all the external-package modules8& The total #3 accumulated from all the external-package modules8' The total RuleEnv3 accumulated from all the external-package modules8( The total 73 accumulated from all the external-package modules8) The total 3 accumulated from all the external-package modules8* The total 73 accumulated from all the external-package modules8+aThe family instances accumulated from external packages, keyed off the module that declared them8,5Stastics about what was loaded from external packages82TRecords modules for which changes may force recompilation of this module See wiki: Ohttp://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidanceThis differs from Dependencies. A module X may be in the dep_mods of this module (via an import chain) but if we don't use anything from X it won't appear in our Usage83Module from another package84mModule from the current package | A file upon which the module depends, e.g. a CPP #include, or using TH's addDependentFile86-A requirement which was merged into this one.87#External package module depended on88Cached module fingerprint89)Was this module imported as a safe import8:Name of the module8;Entities we depend on, sorted by occurrence name and fingerprinted. NB: usages are for parent names only, e.g. type constructors but not the associated data constructors.8<tFingerprint for the export list of this module, if we directly imported it (and hence we depend on its export list)8=ZExternal file dependency. From a CPP #include or TH addDependentFile. Should be absolute.8># of the file contents.8?^Dependency information about ALL modules and packages below this one in the import hierarchy.(Invariant: the dependencies of a module M never includes M.0Invariant: none of the lists contain duplicates.8AAll home-package modules transitively below this one I.e. modules that this one imports, or that are in the dep_mods of those directly-imported modules8BHAll packages transitively below this module I.e. packages to which this module's direct imports belong, or that are in the dep_pkgs of those modules The bool indicates if the package is required to be trusted when the module is imported as a safe import (Safe Haskell). See Note [RnNames . Tracking Trust Transitively]8CETransitive closure of orphan modules (whether home or external pkg)._(Possible optimization: don't include family instance orphans as they are anyway included in 8Dz. But then be careful about code which relies on dep_orphs having the complete list!) This does NOT include us, unlike  imp_orphs.8DyTransitive closure of depended upon modules which contain family instances (whether home or external). This is used by checkFamInstConsistency%. This does NOT include us, unlike  imp_finsts9. See Note [The type family instance consistency story].8E-Did this module originate from a *-boot file?O)Does this module define family instances?8F<Records whether a module has orphans. An "orphan" is one of:An instance declaration in a module other than the definition module for one of the type constructors or classes in the instance headeA transformation rule in a module other than the one defining the function in the head of the ruleA vectorisation pragma8GFixity information for an sP. We keep the OccName in the range so that we can generate an interface from it8I2Fixity environment mapping names to their fixities8J Warning information for a module8KNothing deprecated8LWhole module deprecated8MSome specific things deprecated8NNClass that abstracts out the common ability of the monads in GHC to lookup a & in the monadic environment by sY. Provides a number of related convenience functions for accessing particular kinds of &8S A map from ss to &Es, constructed by typechecking local declarations or interface files8UQBring the exports of a particular module (filtered by an import decl) into scope8VfBring into scope the entire top-level envt of of this module, including the things imported into it.8W}Interactive context, recording information about the state of the context in which statements are executed in a GHC session.8YThe  9 used to evaluate interative expressions and statements.8ZEach GHCi stmt or declaration brings some new things into scope. We give them names like interactive:Ghci9.T, where the ic_index is the '9'p. The ic_mod_index is incremented whenever we add something to ic_tythings See Note [The interactive package]8[HThe GHCi top-level scope (ic_rn_gbl_env) is extended with these importsThis field is only stored here so that the client can retrieve it with GHC.getContext. GHC itself doesn't use it, but does reset it to empty sometimes (such as before a GHC.load). The context is set with GHC.setContext.8\sTyThings defined by the user, in reverse order of definition (ie most recent at the front) See Note [ic_tythings]8] The cached  , built by Lq and updated regularly It contains everything in scope at the command line, including everything in ic_tythings8^9All instances and family instances created during this session. These are grabbed en masse after each update to be sure that proper overlapping is retained. That is, rather than re-check the overlapping each time we update the context, we just take the results from the instance code that already does that.8_#Fixities declared in let statements8`$The current default types, set by a  'default' declaration8a The stack of breakpoint contexts8b#The monad that GHCi is executing in8cSThe function that is used for printing results of expressions in ghci and -e mode.8exAn entry to be inserted into a module's static pointer table. See Note [Grand plan for static forms] in StaticPtrTable.8gForeign export stubs8hWe don't have any stubs8i!There are some stubs. Parameters:?1) Header file prototypes for "foreign exported" functions@2) C stubs to use when calling "foreign exported" functions8jA restricted form of 8u for code generation purposes8lModule being compiled8mAlgebraic data types (including ones that started life as classes); generate constructors and info tables. Includes newtypes, just for the benefit of External Core8nThe tidied main bindings, including previously-implicit bindings for record and class selectors, and data constructor wrappers. But *not* data constructor workers; reason: we we regard them as part of the code-gen of tycons8oForeign export stubs8q>Dependent packages, used to generate #includes for C code gen8r%Program coverage tick box information8sModule breakpoints8tStatic pointer table entries for static forms defined in the module. See Note [Grand plan for static forms] in StaticPtrTable8uA ModGuts is carried through the compiler, accumulating stuff as it goes There is only one ModGuts at any time, the one for the module being compiled right now. Once it is compiled, a 8 and 8, are extracted and the ModGuts is discarded.8wModule being compiled8xWhether it's an hs-boot module8y$For error messages from inner passes8zWhat it exports8{*What it depends on, directly or otherwise8|$What was used? Used for interfaces.8}Did we run a TH splice?8~Top-level lexical environment8EFixities declared in this module. Used for creating interface files.8=TyCons declared in this module (includes TyCons for classes)8'Class instances declared in this module8(Family instances declared in this module8(Pattern synonyms declared in this module8\Before the core pipeline starts, contains See Note [Overall plumbing for rules] in Rules.hs8Bindings for this module8'Foreign exports declared in this module8(Files to be compiled with the C compiler8Warnings declared in the module8#Annotations declared in this module8Complete Matches8!Coverage tick boxes in the module8Breakpoints for the module8]Vectorisation declarations in this module (produced by desugarer & consumed by vectoriser)8-Pool of vectorised declarations in the module8 Class instance environment for  home-package% modules (including this one); c.f.  tcg_inst_env8&Type-family instance environment for  home-package% modules (including this one); c.f. tcg_fam_inst_env8Safe Haskell mode8^Do we need to trust our own package for Safe Haskell? See Note [RnNames . Trust Own Package]8$The name the module is imported with8#the source span of the whole import8whether this is a safe import8"whether this is an "hiding" import8'all the things the module could provide8"whether this is a qualified import8^If a module was "imported" by the user, we associate it with more detailed usage information 8H; a module imported by the system only gets used for usage information.8Records the modules directly imported by a module for extracting e.g. usage information, and also to give better error message8The 8/ is essentially a cache for information in the 8f for home modules only. Information relating to packages will be loaded into global environments in 8.8PLocal type environment for this particular module Includes Ids, TyCons, PatSyns8"s for the instances in this module8Domain may include s from other modules8eAnnotations present in this module: currently they only annotate things also declared in this module8 Module vectorisation information8&Complete match pragmas for this module8AThe original names declared of a certain module that are exported8A 8 plus a 8> summarises everything we know about a compiled module. The 8 is the stuff *before* linking, and can be written out to an interface file. The 'ModDetails is after linking and can be completely recovered from just the 8.4When we read an interface file, we also construct a 8. from it, except that we explicitly make the 8 and a few other fields empty; as when reading we consolidate the declarations etc. into a number of indexed maps and environments in the 8.8Name of the module we are for8Are we a sig of another mod?8Hash of the whole interface8Hash of the ABI only8ZHash of the important flags used when compiling the module, excluding optimisation flags8Hash of optimisation flags8Hash of hpc flags8Whether this module has orphans8aWhether this module has family instances. See Note [The type family instance consistency story].8Boot? Signature?8zThe dependencies of the module. This is consulted for directly-imported modules, but not for anything else (hence lazy)8Usages; kept sorted so that it's easy to decide whether to write a new iface file (changing usages doesn't affect the hash of this module) NOT STRICT! we read this field lazily from the interface file It is *only* consulted by the recompilation checker8Exports Kept sorted by (mod,occ), to make version comparisons easier Records the modules that are the declaration points for things exported by this module, and the ts of those things8Hash of export list8cModule required TH splices when it was compiled. This disables recompilation avoidance (see #481).8HFixities NOT STRICT! we read this field lazily from the interface file8HWarnings NOT STRICT! we read this field lazily from the interface file8KAnnotations NOT STRICT! we read this field lazily from the interface file8Type, class and variable declarations The hash of an Id changes if its fixity or deprecations change (as well as its type of course) Ditto data constructors, class operations, except that the hash of the parent class/tycon changes86Binds all the things defined at the top level in the original source code for this module. which is NOT the same as mi_exports, nor mi_decls (which may contains declarations for things not actually defined by the user). Used for GHCi and for inspecting the contents of modules via the GHC API only.(We need the source file to figure out the top-level environment, if we didn't compile this module from source then this field contains Nothing).1Strictly speaking this field should live in the 8", but that leads to more plumbing.8Sorted class instance8Sorted family instances8 Sorted rules8RHash for orphan rules, class and family instances, and vectorise pragmas combined8Vectorisation information8Cached lookup for 88Cached lookup for 88Cached lookup for 8. The Nothing in 8 means that the thing isn't in decls. It's useful to know that when seeing if we are up to date wrt. the old interface. The t* is the parent of the name, if it has one.8:True if this program uses Hpc at any point in the program.8/Safe Haskell Trust information for this module.8QDo we require the package this module resides in be trusted to trust this module? This is used for the situation where a module is Safe (so doesn't require the package be trusted itself) but imports some trustworthy modules from its own package (which does require its own package be trusted). See Note [RnNames . Trust Own Package]8/The result of searching for an imported module.MNB: FindResult manages both user source-import lookups (which can result in D) as well as direct imports for interfaces (which always result in  z).8The module was found8#The requested package was not found8"_Error_: both in multiple packages8 Not found8The 8 maps modules to the result of searching for that module. It records the results of searching for modules along the search path. On :load., we flush the entire contents of this cache.8<data constructors not exported to ensure correct result type8*The supported metaprogramming result types87Information about modules in the package being compiled8sThe basic loaded interface file: every loaded module has one of these, even if it is imported from another package81Extra information that has been created from the 8/ for the module, typically during typechecking8KThe actual artifact we would like to link to access things in this module.8 might be Nothing: If this is an .hs-boot modulecTemporarily during compilation if we pruned away the old linkable because it was out of date.After a complete compilation (M), all 8 fields in the 8 will be Just.When re-linking a module (N), we construct the 8 by building a new 8 from the old 8 (only).8@Helps us find information about modules in the imported packages8;Helps us find information about modules in the home package8"A module name: search for the file8A filename: preprocess & parse it to find the module name. If specified, the Phase indicates how to compile this file (which phase to start from). Nothing indicates the starting phase should be determined from the suffix of the filename.8A compilation target.A target may be supplied with the actual text of the module. If so, use this instead of the file contents (this is for use in an IDE where the file hasn't been saved by the user yet).8module or filename8object code allowed?8in-memory text buffer?8HscEnv is like Session, except that some of the fields are immutable. An HscEnv is used to compile a single module from plain Haskell source code (after preprocessing) to either C, assembly or C--. Things like the module graph don't change during a single compilation.(Historical note: "hsc" used to be the name of the compiler binary, when there was a separate driver and compiler. To compile a single module, the driver would invoke hsc on the source code... so nowadays we think of hsc as the layer of the compiler that deals with compiling a single module.8The dynamic flag settings8-The targets (or roots) of the current session8'The module graph of the current session81The context for evaluating interactive statements8IThe home package table describes already-compiled home-package modules,  excluding# the module we are compiling right now. (In one-shot mode the current module is the only home-package module, so hsc_HPT is empty. All other modules count as "external-package" modules. However, even in GHCi mode, hi-boot interfaces are demand-loaded into the external-package table.)8 is not mutable because we only demand-load external packages; the home package is eagerly loaded, module by module, by the compilation manager.0The HPT may contain modules compiled earlier by --makeE but not actually below the current module in the dependency graph.4(This changes a previous invariant: changed Jan 05.)8Information about the currently loaded external packages. This is mutable because packages will be demand-loaded during a compilation run as required.9As with 8, this is side-effected by compiling to reflect sucking in interface files. They cache the state of external interface files, in effect.9:The cached result of performing finding in the file system97Used for one-shot compilation only, to initialise the IfGblEnv. See O for P(. See also Note [hsc_type_env_var hack]9Binteractive server process. Created the first time it is needed.9?An error thrown if the GHC API is used in an incorrect fashion.9XA source error is an error that is caused by one or more errors in the source code. A 9l is thrown by many functions in the compilation pipeline. Inside GHC these errors are merely printed via  m, but API clients may treat them differently, for example, insert them into a list box. If you want the default behaviour, use the idiom: RhandleSourceError printExceptionAndWarnings $ do ... api calls that may fail ...The 9%s error messages can be accessed via 98. This list may be empty if the compiler failed due to -Werror ( ).See printExceptionAndWarningsS for more information on what to take care of when writing a custom error handler.9$Status of a compilation to hard-code9PPerform the given action and call the exception handler if the action throws a 9. See 9 for more information.9iGiven a bag of warnings, turn them into an exception if -Werror is enabled, or print them out otherwise.9(Retrieve the ExternalPackageState cache.9$Constructs an empty HomePackageTable9%Constructs an empty PackageIfaceTable9( Find the 8 for a L, searching in both the loaded home and external package module information9*Find all the instance declarations (of classes and families) from the Home Package Table filtered by the provided predicate function. Used in  tcRnImportsl, to select the instances that are in the transitive closure of imports from the currently compiled module.9+Get the combined VectInfo of all modules in the home package table. In contrast to instances and rules, we don't care whether the modules are "below" us in the dependency sense. The VectInfo of those modules not "below" us does not affect the compilation of the current module.9,AGet rules from modules "below" this one (in the dependency sense)OGGet annotations from modules "below" this one (in the dependency sense)OYGet things from modules "below" this one (in the dependency sense) C.f Inst.hptInstances92`Deal with gathering annotations in from all possible places and combining them into a single 93NOld-style accessor for whether or not the ModIface came from an hs-boot file.94-Lookups up a (possibly cached) fixity from a 8. If one cannot be found,  is returned instead.95WThe semantic module for this interface; e.g., if it's a interface for a signature, if 8 is p[A= A]:A, 95 will be  A.96:The "precise" free holes, e.g., the signatures that this 8 depends on.97Given a set of free holes, and a unit identifier, rename the free holes according to the instantiation of the unit identifier. For example, if we have A and B free, and our unit identity is p[A= C ,B=impl:B]%, the renamed free holes are just C.98Constructs an empty ModIface99Constructs cache for the 8 field of a 89:Constructs an empty ModDetails9='Constructs an empty InteractiveContext.9?RThis function returns the list of visible TyThings (useful for e.g. showBindings)9@PGet the PrintUnqualified function based on the flags and this InteractiveContext9AextendInteractiveContext is called with new TyThings recently defined to update the InteractiveContext to include them. Ids are easily removed when shadowed, but Classes and TyCons are not. Some work could be done to determine whether they are entirely shadowed, but as you could still have references to them (e.g. instances for classes or values of the type for TyCons), it's not clear whether removing them is even the appropriate behavior.9EAdd TyThings to the GlobalRdrEnv, earlier ones in the list shadowing later ones, and shadowing existing entries in the GlobalRdrEnv.9GrCreates some functions that work out the best ways to format names for the user according to a set of heuristics.9HCreates a function for formatting modules based on two heuristics: (1) if the module is the current module, don't qualify, and (2) if there is only one exposed package which exports this module, don't qualify.9ICreates a function for formatting packages based on two heuristics: (1) don't qualify if the package in question is "main", and (2) only qualify with a unit id if the package ID would be ambiguous.9JaA function which only qualifies package names if necessary; but qualifies all other identifiers.9KDetermine the & s brought into scope by another & other than itself. For example, Id's don't have any implicit TyThings as they just bring themselves into scope, but classes bring their dictionary datatype, type constructor and some selector functions into scope, just for a start!9NReturns True if there should be no interface-file declaration for this thing on its own: either it is built-in, or it is part of some other declaration, or it is generated implicitly by some other declaration.9O6tyThingParent_maybe x returns (Just p) when pprTyThingInContext should print a declaration for p (albeit with some "..." in it) when asked to show x It returns the *immediate* parent. So a datacon returns its tycon but the tycon could be the associated type of a class, so it in turn might have a parent.9QnThe Names that a TyThing should bring into scope. Used to build the GlobalRdrEnv for the InteractiveContext.9b Find the & for the given sJ by using all the resources at our disposal: the compiled modules in the 8: and the compiled modules in other packages that live in 81'. Note that this does NOT look up the &H in the module being compiled: you have to do that yourself, if desired9cAs 9b?, but with a marginally easier-to-use interface if you have a 89dGet the  from a &4 if it is a type constructor thing. Panics otherwise9eGet the  from a &2 if it is a coercion axiom thing. Panics otherwise9fGet the  from a &4 if it is a data constructor thing. Panics otherwise9gGet the  from a &5 if it is a data constructor thing. Panics otherwise9hGet the  from a &< if it is a id *or* data constructor thing. Panics otherwise9iConstructs the cache for the 8 field of a 89lCreates cached lookup for the 8 field of 89p&Add stats for one newly-read interface9uNDetermines whether a set of modules requires Template Haskell or Quasi QuotesNote that if the session's   enabled Template Haskell when depanal was called, then each module in the returned module graph will have Template Haskell enabled whether it is actually needed or not.9vMap a function f over all the  ModSummaries. To preserve invariants f can't change the isBoot status.9z'Look up a ModSummary in the ModuleGraph9}gAdd a ModSummary to ModuleGraph. Assumes that the new ModSummary is not an element of the ModuleGraph.9 Did this 8 originate from a hs-boot file?9MFind out if HPC is used by this module or any of the modules it depends upon96Is this an actual file on disk we can link in somehow?91Is this a bytecode linkable with no file on disk?9TRetrieve the filename of the linkable if possible. Panic if it is a byte-code object9QRetrieve the compiled byte-code if possible. Panic if it is a file-based linkable9exception handleraction to perform10/.-&def 8'}'~''''''''777777777777777777777777777777777777777788888888888 8 8 8 8 888888888888888888 8)8$8!8"8#8%8&8'8(8*8+8,8-8.8/808182838485868788898:8;8<8=8>8?8@8A8B8C8D8E8F8G8H8I8J8K8L8M8N8P8R8Q8O8S8T8U8V8W8X8Y8Z8[8\8]8^8_8`8a8b8c8d8e8f8g8i8h8j8k8l8m8n8o8p8q8r8s8t8u8v88{8w8x8y8z8|8}8~888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889999999999 9 9 9 9 9999999999999999999 9!9"9#9$9%9&9'9(9)9*9+9,9-9.9/909192939495969798999:9;9<9=9>9?9@9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R9S9T9U9V9W9X9Y9Z9[9\9]9^9_9`9a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9u9v9w9x9y9z9{9|9}9~9999999999999999999999999998888888899999888888888888888888888889999 9 9 9 9 88888889{9~9}9v9x9y9z9u9w999988888888889:8u8v88{8w8x8y8z8|8}8~88888888888888888888j8k8l8m8n8o8p8q8r8s8t8g8i8h9<88889;888888888e8f10/.-8888 8 8 8 8 8888889999999988889| 8888889999 9!9"9#9$9%99&9)9*9,9+988 8)8$8!8"8#8%8&8'8(8*8+8,8888888889p81899(989'8/8.808-9r9s9t88888889-9.9/90918928W8X8Y8Z8[8\8]8^8_8`8a8b8c8d9=9@9?9E9A9B9F9D9>8T8U8V9C9G89I9H9J88888888888888888888888888888888889i999l9j93949596978I8G8H9n9m&9Q9d9f9g9h9e9O9P9K9M9L9N8S9b9c9Z9R9\9[9^9_9`9a9]9S9T9V9W9X9U9Y8N8P8R8Q8O8F8E82838485868788898:8;8<8=8>8?8@8A8B8C8D9o9q88J8K8L8Mdef9k777779977777'9999777888997'}'~'''''''7777777777777799997999997777779999999997777799None%CKV p9wThe plugin found a contradiction. The returned constraints are removed from the inert set, and recorded as insoluble.9The first field is for constraints that were solved. These are removed from the inert set, and the evidence for them is recorded. The second field contains new work, that should be processed by the constraint solver.9.Initialize plugin, when entering type-checker.9DSolve some constraints. TODO: WRITE MORE DETAILS ON HOW THIS WORKS.99Clean up after the plugin, when exiting the type-checker.9DFlag to see whether we're type-checking terms or kind-checking types9 The thing that has type "actual"9Is at least one of the three elements above visible? (Errors from the polymorphic subsumption check are considered visible.) Only used for prioritizing error messages.: See Note [SubGoalDepth]:Whether or not one :;~ can rewrite another is determined by its flavour and its equality relation. See also Note [Flavours with roles] in TcSMonad:A place for type-checking evidence to go after it is generated. Wanted equalities are always HoleDest; other wanteds are always EvVarDest.: gbind this var to the evidence EvVarDest is always used for non-type-equalities e.g. class constraints:!vfill in this hole with the evidence HoleDest is always used for type-equalities See Note [Coercion holes] in TyCoRep:8An expression or type hole:9OEither an out-of-scope variable or a "true" hole in an expression (TypedHoles)::(A hole in a type (PartialTypeSignatures):p:p} summarises what was imported from where, irrespective of whether the imported things are actually used or not. It is used: when processing the export list,4when constructing usage info for the interface file,to identify the list of directly imported modules for initialisation purposes and for optimised overlap checking of family instances,/when figuring out what things are really unused:r'Domain is all directly-imported modulesTSee the documentation on ImportedModsVal in HscTypes for the meaning of the fields.We need a full ModuleEnv rather than a ModuleNameEnv here, because we might be importing modules of the same name from different packages. (currently not the case, but might be in the future).:s8Home-package modules needed by the module being compiledBIt doesn't matter whether any of these dependencies are actually used when compiling the module; they are listed if they are below it at all. For example, suppose M imports A which imports X. Then compiling M might not need to consult X.hi, but X is still listed in M's dependencies.:tPackages needed by the module being compiled, whether directly, or via other modules in this package, or via modules imported from other packages.:u This is strictly a subset of imp_dep_pkgs and records the packages the current module needs to trust for Safe Haskell compilation to succeed. A package is required to be trusted if we are dependent on a trustworthy module in that package. While perhaps making imp_dep_pkgs a tuple of (UnitId, Bool) where True for the bool indicates the package is required to be trusted is the more logical design, doing so complicates a lot of code not concerned with Safe Haskell. See Note [RnNames . Tracking Trust Transitively]:vDo we require that our own package is trusted? This is to handle efficiently the case where a Safe module imports a Trustworthy module that resides in the same package as it. See Note [RnNames . Trust Own Package]:wYOrphan modules below us in the import tree (and maybe including us for imported modules):xbFamily instance modules below us in the import tree (and maybe including us for imported modules):{>IsGroupClosed describes a group of mutually-recursive bindings:}+IdBindingInfo describes how an Id is bound.It is used for the following purposes: a) for static forms in TcExpr.checkClosedInStaticForm and b) to figure out when a nested binding can be generalised, in TcBinds.decideGeneralisationPlan.:?A typecheckable thing available in a local context. Could be : &1, but also lexically scoped variables, etc. See TcEnv for how to retrieve a & given a s.:Type alias for @; the convention is we'll use this for mutable bits of data in :@ which are updated during typechecking and returned at the end.:: describes the top-level of the module at the point at which the typechecker is finished work. It is this structure that is handed on to the desugarer For state that needs to be updated during the typechecking phase and returned at end, use a : (= ).:Module being compiled:SIf a signature, the backing module See also Note [Identity versus semantic module]:4What kind of module (regular Haskell, hs-boot, hsig):$Top level envt; used during renaming:Types used for defaulting. Nothing => no default decl:Just for things in this module:NJust for things in this module See Note [The interactive package] in HscTypes:Global type env for the module we are compiling now. All TyCons and Classes (for this module) end up in here right away, along with their derived constructors, selectors.j(Ids defined in this module start in the local envt, though they move to the global envt during zonking)[NB: for what "things in this module" means, see Note [The interactive package] in HscTypes:Instance envt for all  home-package* modules; Includes the dfuns in tcg_insts:Ditto for family instances:And for annotations:What is exported:Information about what was imported from where, including things bound in this module. Also store Safe Haskell info here about transitive trusted package requirements.EThere are not many uses of this field, so you can grep for all them.AThe ImportAvails records information about the following things: 6All of the modules you directly imported (tcRnImports)WThe orphans (only!) of all imported modules in a GHCi session (runTcInteractive)(The module that instantiated a signature%Each of the signatures that merged inDIt is used in the following ways: - imp_orphs is used to determine what orphan modules should be visible in the context (tcVisibleOrphanMods) - imp_finsts is used to determine what family instances should be visible (tcExtendLocalFamInstEnv) - To resolve the meaning of the export list of a module (tcRnExports) - imp_mods is used to compute usage info (mkIfaceTc, deSugar) - imp_trust_own_pkg is used for Safe Haskell in interfaces (mkIfaceTc, as well as in HscMain) - To create the Dependencies field in interface (mkDependencies):0What is defined in this module and what is used.:XRecords occurrences of imported entities See Note [Tracking unused binding and imports]:.Locally-defined top-level names to keep alive."Keep alive" means give them an Exported flag, so that the simplifier does not discard them as dead code, and so that they are exposed in the interface file (but not to export to the user).Some things, like dict-fun Ids and default-method Ids are "born" with the Exported flag on, for exactly the above reason, but some we only discover as we go. Specifically:,The to/from functions for generic data typesDTop-level variables appearing free in the RHS of an orphan rule2Top-level variables appearing free in a TH bracket:True  = Template Haskell syntax used.We need this so that we can generate a dependency on the Template Haskell package, because the desugarer is going to emit loads of references to TH symbols. The reference is implicit rather than explicit, so we have to zap a mutable variable.:True  =$ A Template Haskell splice was used.2Splices disable recompilation avoidance (see #481):uLocations of the top-level splices; used for providing details on scope in error messages for out-of-scope variables:&Allows us to choose unique DFun names.:VThe requirements we merged with; we always have to recompile if any of these changed.:Renamed decls, maybe. Nothing  = Don't retain renamed decls.:"dependencies from addDependentFile:'Top-level declarations from addTopDecls:Foreign files emitted from TH.:>Exact names bound in top-level declarations in tcg_th_topdecls:#Template Haskell module finalizers.They are computations in the TcM monad rather than Q; because we set them to use particular local environments.:,Core plugins added by Template Haskell code.:Template Haskell state:Maybe Haddock header docs:True4 if any part of the prog uses hpc instrumentation.:5Whether this module has a corresponding hi-boot file:CThe Name of the main function, if this module is the main module.:Has the typechecker inferred this module as -XSafe (Safe Haskell) See Note [Safe Haskell Overlapping Instances Implementation], although this is used for more than just that failure case.:9A list of user-defined plugins for the constraint solver.:%The RealSrcSpan this module came from:LWanted constraints of static forms. See Note [Constraints in static forms].::\ describes the result of running the frontend of a Haskell module. Usually, you'll get a :, since running the frontend involves typechecking a program, but for an hs-boot merge you'll just get a ModIface, since no actual typechecking occurred.iThis data type really should be in HscTypes, but it needs to have a TcGblEnv which is only defined here.;lengthP; replicateP; singletonP;mapP;filterP;zipP; crossMapP;(!:);emptyP;(+:+); enumFromToP;enumFromThenToP;30Historical "type-checking monad" (now it's just ;9).;4+Historical "renaming monad" (now it's just ;9).;;A ;; is a substitution on s^s that can be used to refine the identities of a hole while we are renaming interfaces (see  RnModIface). Specifically, a ;; for ns_module_name A, defines a mapping from {A.T} (for some t T) to some arbitrary other s."The most intruiging thing about a ;;(, however, is how it's constructed. A ;; is *implied* by the exported Fs of the implementor of an interface: if an implementor of signature  H exports M.T-, you implicitly define a substitution from {H.T} to M.T. So a ;; is computed from the list of s that are exported by the implementation of a module, or successively merged together by the export lists of signatures which are joining together.PIt's not the most obvious way to go about doing this, but it does seem to work!gNB: Can't boot this and put it in NameShape because then we start pulling in too many DynFlags things.;LUnion two ImportAvailsThis function is a key part of Import handling, basically for each import we create a separate ImportAvails structure and then union them all together with this function.;N#No signature or a partial signature;[IMakes a new equality predicate with the same role as the given evidence.;\Get the flavour of the given :;;](Get the equality relation for the given :;;^@Returns free variables of constraints as a non-deterministic set;_oReturns free variables of constraints as a deterministically ordered. list. See Note [Deterministic FV] in FV.OiReturns free variables of constraints as a composable FV computation. See Note [Deterministic FV] in FV.;`nReturns free variables of a bag of constraints as a non-deterministic set. See Note [Deterministic FV] in FV.;avReturns free variables of a bag of constraints as a deterministically odered list. See Note [Deterministic FV] in FV.OrReturns free variables of a bag of constraints as a composable FV computation. See Note [Deterministic FV] in FV.;bkReturns free variables of WantedConstraints as a non-deterministic set. See Note [Deterministic FV] in FV.;ctReturns free variables of WantedConstraints as a deterministically ordered list. See Note [Deterministic FV] in FV.OoReturns free variables of WantedConstraints as a composable FV computation. See Note [Deterministic FV] in FV.OiReturns free variables of Implication as a composable FV computation. See Note [Deterministic FV] in FV.;tA constraint is considered to be a custom type error, if it contains custom type errors anywhere in it. See Note [Custom type errors in constraints];wTrue if taking superclasses of givens, or of wanteds (to perhaps expose more equalities or functional dependencies) might help to solve this constraint. See Note [When superclasses help];Wraps the given type with the constraints (via ic_given) in the given implication, according to the variables mentioned (via ic_skols) in the implication.;)Get the equality relation relevant for a :;Get the role relevant for a :;-Extract the flavour, role, and boxity from a :;$Extract the flavour and role from a :;;+Take a CtLoc and moves it to the kind level;)Extract a suitable CtOrigin from a HsExpr;-Extract a suitable CtOrigin from a MatchGroup;-Extract a suitable CtOrigin from guarded RHSsO7Extract a suitable CtOrigin from a list of guarded RHSsOShort one-liners;;This function provides an escape for direct access to the ;3: monad. It should not be used lightly, and the provided 9 API should be favoured instead.; Access the 0 carried by the 9& during constraint solving. Returns Lx if invoked during 9 or 9.)10/.-777779999999999999999999999999999999999999999999999999999999999999999999999999:::::::::: : : : : ::::::::::::::::::: :!:":#:$:%:&:':(:*:,:/:3:):+:-:.:0:1:2:4:5:6:7:8:9:::;:<:=:>:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:S:T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:w:x:s:r:t:u:v:y:z:{:|:}:~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;; ;!;";#;$;%;&;';(;);*;+;,;-;.;/;0;1;2;3;4;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z;[;\;];^;_;`;a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z;{;|;};~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;);:;9;3;4;8;6;7:;-;.;/;0;1;2::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;);*;+;,; ;!;";#;$;%;&;';(;@:::::p:q:w:x:s:r:t:u:v;K;L:l:m:n:o;I;J:::::::::::::::::::::::::}:~:::y:z:{:|:::::;G;H7777;5;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;;:::799::::::::::::;A;B;C:;D;E;F10/.-::::k:h:i:j:`:a:b:c:d:e:f:g:X:Y:Z:[:\:]:^:_:O:P:Q:R:S:T:U:V:W;M;N:N:;:<:=:>:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M;;y;;;x;z;{;|;};~;;k;n;v;w;l;m;o;h;j;i;p;q;r;s;u;t;U;V;W;Y;\;];X;Z;[;P;Q;T;R;S;;;;;;;;^;`;_;a:4:5:6:7;;;;;;;;;;;;b;d;e;c;;;f;;g:':(:*:,:/:3:):+:-:.:0:1:2;:":#:$:%:&;;: ;;;;::: : : : ;;;;;;;;;;;999999999999999999999999999999999999999999999999;;;;;;999;;;;;;999999999:::::::;;;::::::::::: :!;;;;;;;;;;9999999999;;;:::::::;:;;;;;;;;;;;:::8:9::;O;;;<;=;>;?9;;;;None] wOSubtract two natural numbers.O\Compute the exact logarithm of a natural number. The logarithm base is the second argument.ODivide two natural numbers.OgCompute the exact root of a natural number. The second argument specifies which root we are computing.OCompute the the n-th root of a natural number, rounded down to the closest natural number. The boolean indicates if the result is exact (i.e., True means no rounding was done, False means rounded down). The second argument specifies which root we are computing. OCompute the logarithm of a number in the given base, rounded down to the closest integer. The boolean indicates if we the result is exact (i.e., True means no rounding happened, False means we rounded down). The logarithm base is the second argument. 7;;;;<<<<<<<<7<;;<<;;<<<<<None =<%<&<'<'<&<%None;=V ^#<**Setup the initial typechecking environment<+Run a ;3& action in the context of an existing GblEnv.:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:S:T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:w:x:s:r:t:u:v:y:z:{:|:}:~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;; ;!;";#;$;%;&;';(;);*;+;,;-;.;/;0;1;2;3;4;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z;[;\;];^;_;`;a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z;{;|;};~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<*<+<,<-<.=?=@=A=B=C=D=E=F=G=H=I=J=K=L=M=N=O=P=Q=Ro/_/T/]/U/X/S="=#=$=&=%<<=-===== ===/M/N/O/F/E/`==== == = = = ==!<<<<<<<<<<<<<<======(=)=*='=+==,==========J=K=M=L=N=1=G=8=H=I=6=3=7=4=5=/=0=.=E=F=C=:=D=9=B=;=<===@=A=>=?=2=O=P=Q=R None<!H=S=T=S=T NoneFNT!UOA ZonkEnv carries around several bits. The UnboundTyVarZonker just zaps unbouned meta-tyvars to Any (as defined in zonkTypeZapping), except on the LHS of rules. See Note [Zonking the LHS of a RULE].The (TyCoVarEnv TyVar) and is just an optimisation: when binding a tyvar or covar, we zonk the kind right away and add a mapping to the env. This prevents re-zonking the kind at every occurrence. But this is *just* an optimisation.The final (IdEnv Var) optimises zonking for Ids. It is knot-tied. We must be careful never to put coercion variables (which are Ids, after all) in the knot-tied env, because coercions can appear in types, and we sometimes inspect a zonked type in this module.<Confused by zonking? See Note [What is zonking?] in TcMType.O!Extend the knot-tied environment."w1j667T::=`=a=b=c=d=e=f=g=h=i=j=k=l=m=n=o=p=q=r=s=t=b=`=a7T61j6=c=d"w::=m=k=l=g=h=i=j=e=f=q=r=p=s=t=o=nNone^!lT=vqThe state of the term oracle (includes complex constraints that cannot progress unless we get more information).OThe environment of the oracle contains 1. A Bool (are there any constraints we cannot handle? (PmExprOther)). 2. A substitution we extend with every step and return as a result.=wThe type of substitutions.=x`Check whether a constraint (x ~ BOT) can succeed, given the resulting state of the term oracle.OBCheck whether a variable is in the free variables of an expression=y=Flatten the DAG (Could be improved in terms of performance.).=zInitial state of the oracle.={%Solve a complex equality (top-level).OSolve a complex equality.OEExtend the substitution and solve the (possibly updated) constraints.=|When we know that a variable is fresh, we do not actually have to check whether anything changes, we know that nothing does. Hence, =|/ simply extends the substitution, unlike what O does.OSimplify a complex equality.OtSimplify an expression. The boolean indicates if there has been any simplification or if the operation was a no-op.O@Simplify an equality expression. The equality is given in parts.O:Apply an (un-flattened) substitution to a simple equality.O3Apply an (un-flattened) substitution to a variable.=}6Apply an (un-flattened) substitution to an expression.=~&External interface to the term oracle.=Type of a PmLit77777777777777777777=v=w=x=y=z={=|=}=~=77777777777=w77777777=~=v=z={=|=x7=}==yNone!mz====None!p=GCalled from the typechecker (TcErrors) when we find an unbound variableOIGenerate helpful suggestions if a qualified name Mod.foo is not in scope. OP=========== O=P==========None$! =fOutput should be to a temporary file: we're going to run more compilation steps on this output later.=We want a persistent file, i.e. a file in the current directory derived from the input filename, but with the appropriate extension. eg. in "ghc -c Foo.hs" the output goes into ./Foo.o.=The output must go into the specific outputFile in DynFlags. We don't store the filename in the constructor as it changes when doing -dynamic-too.=only the DynFlags change in the HscEnv. The DynFlags change at various points, for example when we read the OPTIONS_GHC pragmas in the Cpp phase.=kthe ModLocation. This is discovered during compilation, in the Hsc phase where we read the module header.=additional object files resulting from compiling foreign code. They come from two sources: foreign stubs, and add{C,Cxx,Objc,Objcxx}File from template haskell=Stop just before this phase=!basename of original input source=!basename of original input source= its extension=%says where to put the pipeline output========================================================NoneQV!=A function that atomically updates the name cache given a modifier function. The second result of the modifier function will be the result of the IO action.= Look up the s for a given  and t . Consider alternatively using = if you're in the ;6 monad and  is simply that of the 8 you are typechecking.=Set the  of a s.=6Look up a top-level name from the current Iface module'Q'S==========================='Q'S=================None!OSubstitution on {A.T}&. We enforce the invariant that the  of keys of this map have  hole (meaning that if we have a hole substitution, the keys of the map are never affected.) Alternatively, this is isomorphic to Map (, t) s.=Create an empty ;;i (i.e., the renaming that would occur with an implementing module with no exports) for a specific hole mod_name.= Create a ;;7 corresponding to an implementing module for the hole mod_name that exports a list of s.=Given an existing ;;, merge it with a list of s with Backpack style mix-in linking. This is used solely when merging signatures together: we successively merge the exports of each signature until we have the final, full exports of the merged signature.What makes this operation nontrivial is what we are supposed to do when we want to merge in an export for M.T when we already have an existing export {H.T}. What should happen in this case is that {H.T} should be unified with M.T@: we've determined a more *precise* identity for the export at t T.FNote that we don't do unrestricted unification: only name holes from ns_mod_name ns are flexible. This is because we have a much more restricted notion of shaping than in Backpack'14: we do shaping *as* we do type-checking. Thus, once we shape a signature, its exports are *final* and we're not allowed to refine them further,=%The export list associated with this ;;G (i.e., what the exports of an implementing module which induces this ;; would be.)=Given a s!, substitute it according to the ;;! implied substitution, i.e. map {A.T} to M.T&, if the implementing module exports M.T.=Like =, but returns Nothing if no substitution works.OThe  of any ss a ;; has action over.OSubstitute names in a s.OSubstitute names in an ^. This has special behavior for type constructors, where it is sufficient to substitute the  to induce a substitution on .OSet the  of a  FieldSelectorO Merges to  lists together, assuming the s have already been unified (O).OUnify two lists of "s, given an existing substitution subst, with only name holes from flexi( unifiable (all other name holes rigid.)O Unify two "s, given an existing substitution subst, with only name holes from flexi( unifiable (all other name holes rigid.)O Unify two s"s, given an existing substitution subst, with only name holes from flexi( unifiable (all other name holes rigid.)O Unify a name h which 4 with another name, given an existing substitution subst, with only name holes from flexi) unifiable (all other name holes rigid.) ;;;<;=;>;?====== ;;;<;=;>;?======None]!رOEnvironment for O monads.=[What we have is a generalized ModIface, which corresponds to a module that looks like p[A= AK]:B. We need a *specific* ModIface, e.g. p[A=q():A]:B (or maybe even p[A= BP]:B) which we load up (either to merge it, or to just use during typechecking).Suppose we have:p[A= A]:M ==> p[A=q():A]:MSubstitute all occurrences of  A with q():A (renameHoleModule). Then, for any Name of form {A.T}, replace the Name with the Name according to the exports of the implementing module. This works even for p[A= BR]:M, since we just read in the exports of B.hi, which is assumed to be ready now. This function takes an optional ;;, which can be used to further refine the identities in this interface: suppose we read a declaration for {H.T} but we actually know that this should be Foo.T; then we'll also rename this (this is used when loading an interface to merge it into a requirement.)=Rename just the exports of a 8?. Useful when we're doing shaping prior to signature merging.ORun a computation in the O monad.OThe key function. This gets called on every Name embedded inside a ModIface. Our job is to take a Name from some generalized unit ID p[A= A, B= Ba], and change it to the correct name for a (partially) instantiated unit ID, e.g. p[A=q[]:A, B= B].%There are two important things to do:If a hole is substituted with a real module implementation, we need to look at that actual implementation to determine what the true identity of this name should be. We'll do this by loading that module's interface and looking at the mi_exports.However, there is one special exception: when we are loading the interface of a requirement. In this case, we may not have the "implementing" interface, because we are reading this interface precisely to "merge it in".External case: p[A= B]:A (and thisUnitId is something else) We are loading this in order to determine B.hi! So don't load B.hi to find the exports.Local case: p[A= A]:A (and thisUnitId is p[A= A}]) This should not happen, because the rename is not necessary in this case, but if it does we shouldn't load A.hi!Compare me with  tcIfaceGlobal!ORename an implicit name, e.g., a DFun or coercion axiom. Here is where we ensure that DFuns have the correct module as described in Note [rnIfaceNeverExported].O Rename an (~?, with special handling for an associated dictionary function.========None!s=Given a data constructor in the heap, find its Name. The info tables for data constructors have a field which records the source name of the constructor as a Ptr Word8 (UTF-8 encoded string). The format is: Package:Module.NamekWe use this string to lookup the interpreter's internal representation of the name using the lookupOrig.==None!%Hooks can be used by GHC API clients to replace parts of the compiler pipeline. If a hook is not installed, GHC uses the default built-in behaviour============================NoneQV! =-A function called to log warnings and errors.=BA monad transformer to add GHC specific features to another monad.GNote that the wrapped monad must support IO and handling of exceptions.=The Session is a handle to the complete state of a compilation session. A compilation session consists of a set of modules constituting the current program or library, the context for interactive evaluation, and various caches.=A minimal implementation of a =j. If you need a custom monad, e.g., to maintain additional state consider wrapping this monad or using =.=:A monad that has all the features needed by GHC API calls.In short, a GHC monadallows embedding of IO actions,can log warnings,/allows handling of (extensible) exceptions, andmaintains a current session.If you do not use = or =, make sure to call 5 before any call to the GHC API functions can occur.=+Call the argument with the current session.=#Grabs the DynFlags from the Session=WSet the current session to the result of applying the current session to the argument.=3Call an action with a temporarily modified Session.=(A monad that allows logging of warnings.=Reflect a computation in the = monad into the L monad.>You can use this to call functions returning an action in the = monad inside an Lb action. This is needed for some (too restrictive) callback arguments of some library functions: libFunc :: String -> (Int -> IO a) -> IO a ghcFunc :: Int -> Ghc a ghcFuncUsingLibFunc :: String -> Ghc a -> Ghc a ghcFuncUsingLibFunc str = reifyGhc $ \s -> libFunc $ \i -> do reflectGhc (ghcFunc i) s=pPrint the error message and all warnings. Useful inside exception handlers. Clears warnings after printing.============================================None"#V">3Run a command in the interpreter's context. With -fexternal-interpreterq, the command is serialized and sent to an external iserv process, and the response is deserialized (hence the Binary constraint). With -fno-external-interpreter' we execute the command directly here.>Grab a lock on the 8S and do something with it. Overloaded because this is used from TcM as well as IO.>Execute an action of type IO [a] , returning s for each of the results.> Execute an action of type IO ()> Execute an action of type  IO String> Execute an action of type String -> IO String> gAllocate and store the given bytes in memory, returning a pointer to the memory in the remote process.>4Create a set of BCOs that may be mutually recursive.>8loadDLL loads a dynamic library using the OS's native linker (i.e. dlopen() on Unix, LoadLibrary() on Windows). It takes either an absolute pathname to the file, or a relative filename (e.g. "libfoo.so" or "foo.dll"). In the latter case, loadDLL searches the standard locations for the appropriate library.Returns:0Nothing => success Just err_msg => failure>"Send a {0 and receive the response from the iserv process>##Read a value from the iserv process>$!Send a value to the iserv process>& Creates a O& that will automatically release the O! when it is no longer referenced.>( Convert a O to the value it references directly. This only works when the interpreter is running in the same process as the compiler, so it fails when -fexternal-interpreter is on.>) Convert an O to the value it references directly. This only works when the interpreter is running in the same process as the compiler, so it fails when -fexternal-interpreter is on.U{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYX~}|>>>>> > > > > >>>>>>>>>>>>>>>>>>> >!>">#>$>%>&>'>(>)>*>+U>~}|>> > > > > >>>>>>>>>>>>>>>>>> >!>{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYX>>%>">#>$>>'>&>(>)>*>+None"F0 >-+Locate a module that was imported by the user. We have the module's name, and possibly a package name. Without a package name, this function will use the search path and the known exposed packages to find the module, if a package is specified then only that package is searched for the module.>.zLocate a plugin module requested by the user, for a compiler plugin. This consults the same set of exposed packages as >- , unless -hide-all-plugin-packages or -plugin-package are specified.>/Locate a specific 0. The purpose of this function is to create a   for a given , that is to find out where the files associated with this module live. It is used when reading the interface for a module mentioned by another interface, for example (a "system import").OGiven a monadic actions this and or_this, first execute this. If the returned 8/ is successful, return it; otherwise, execute or_this[. If both failed, this function also combines their failure messages in a reasonable way.OHelper function for >38: this function wraps an IO action which would look up mod_name@ in the file system (the home package), and first consults the 9 cache to see if the lookup has already been done. Otherwise, do the lookup (with the IO action) and save the result in the finder cache and the module location cache (if it was successful.)OImplements the search for a module name in the home package only. Calling this function directly is usually *not* what you want; currently, it's used as a building block for the following operations: When you do a normal package lookup, we first check if the module is available in the home module, before looking it up in the package database.dWhen you have a package qualified import with package name "this", we shortcut to the home module.When we look up an exact i, if the unit id associated with the module is the current home module do a look up in the home module.PSome special-case code in GHCi (ToDo: Figure out why that needs to call this.)O.Search for a module in external packages only.O2Look up the interface file associated with module modB. This function requires a few invariants to be upheld: (1) the  in question must be the module identifier of the *original* implementation of a module, not a reexport (this invariant is upheld by  Packages.hs) and (2) the  8, must be consistent with the unit id in the _. The redundancy is to avoid an extra lookup in the package state for the appropriate config.>7DConstructs the filename of a .o file for a given source file. Does not! check whether the .o file exists>8EConstructs the filename of a .hi file for a given source file. Does not" check whether the .hi file exists8888888888>,>->.>/>0>1>2>3>4>5>6>7>8>9>:>;><>=>,8888888888>->.>/>3>0>4>5>6>8>7>1>2>9>:>;><>=None"IN>>~Extract information from the rename and typecheck phases to produce a dependencies information for the module being compiled.>>>?>@>@>?>>None"J0>A!Top level driver for C-- pipeline>A>ANone;=>?D"J>B>C>D>E>F>G>H>I>B>C>D>E>F>G>I>HNoneDV"KD>J>JNone<"K>KSource Statistics>K>KNoneQV"RO The type constructor for queries>OShow a GHC syntax tree. This parameterised because it is also used for comparing ASTs in ppr roundtripping tests, where the SrcSpan's are blanked out, to avoid comparing locations, only structureO.Extend a generic query by a type-specific caseO/Type extension of queries for type constructorsO/Type extension of queries for type constructorsOFlexible type extensionOFlexible type extension>L>M>N>O>O>L>M>NNone"S6>R>S>T>U>V>R>S>T>U>V None"#Z"\O1Decide whether to add a tick to a binding or not.O A let body is treated differently from addTickLHsExprEvalInner above with TickForBreakPoints, because for breakpoints we always want to tick the body, even if it is not a redex. See test break012. This gives the user the opportunity to inspect the values of the let-bound variables.OTickishs that only make sense when their source code location refers to the current file. This might not always be true due to LINE pragmas in the code - which would confuse at least HPC.>W>X>W>X!None<V"| OcvtOpApp x op y converts op and y' and produces the operator application x op yG. The produced tree of infix expressions will be left-biased, provided x is.We can see that cvtOpApp9 is correct as follows. The inductive hypothesis is that cvtOpApp x op y is left-biased, provided x7 is. It is clear that this holds for both branches (of cvtOpApp:), provided we assume it holds for the recursive calls to cvtOpApp. When we call cvtOpApp from cvtlJ, the first argument will always be left-biased since we have already run cvtl on it.OcvtOpAppP x op y converts op and y' and produces the operator application x op yD. The produced tree of infix patterns will be left-biased, provided x is.See the cvtOpApp+ documentation for how this function works.OBConstructs an application of a type to arguments passed in a list.O5Constructs an arrow type with a specified return typeOcvtOpAppT x op yJ takes converted arguments and flattens any HsAppsTy structure in them.OConvert Maybe Kind to a type family result signature. Used with data families where naming of the result is not possible (thus only kind or no signature is possible).OTConvert type family result signature. Used with both open and closed type families.O0Convert injectivity annotation of a type family.OIf passed an empty list of O/s, this simply returns the third argument (an 1D). Otherwise, return an 1 using the provided 1< and 1D.OIf passed an empty O., this simply returns the third argument (an 1D). Otherwise, return an 1 using the provided 1F and 1D.O3The original Template Haskell type variable bindersThe location of the returned 1D" if it needs an explicit forall#The converted type variable bindersThe converted rho type8The complete type, quantified with a forall if necessaryO%The original Template Haskell contextThe location of the returned 1D# if it needs an explicit contextThe converted contextThe converted tau type8The complete type, qualified with a context if necessary>`>a>b>c>d>a>b>`>c>d"None">iuRename a module from one name to another. The identity renaming means that the module should be brought into scope.>mAn include of another unit>q Is this a dependency signature include? If so, we don't compile this include when we instantiate this unit (as there should not be any modules brought into scope.)>vRA declaration in a package, e.g. a module or signature definition, or an include.>z Top level unit declaration in a Backpack file.#>h>i>j>k>l>m>n>o>p>q>r>s>t>u>v>w>x>y>z>{>|>}>~>>>>>>>>>>>>#>>>>>>>>>~>>>>>y>z>{>|>}>r>s>t>u>v>w>x>m>n>o>p>q>h>i>j>k>l#None;=Df"OWConstruct an AddAnn from the annotation keyword and the location of the keyword itselfOConstruct an AddAnn from the annotation keyword and the Located Token. If the token has a unicode equivalent and this has been used, provide the unicode variant of the annotation.OIf the M is using its unicode variant return the unicode variant of the annotationO[Add an annotation to the located element, and return the located element as a pass throughOFAdd an annotation to a located element resulting from a monadic actionOTAdd a list of AddAnns to the given AST element. For example, the parsing rule for let looks like:  | 'let' binds 'in' exp {% ams (sLL $1 $> $ HsLet (snd $ unLoc $2) $4) (mj AnnLet $1:mj AnnIn $3 :(fst $ unLoc $2)) } #This adds an AnnLet annotation for let, an AnnIn for in, as well as any annotations that may arise in the binds. This will include open and closing braces if they are used to delimit the let expressions.O4Add all [AddAnn] to an AST element wrapped in a JustO4Add all [AddAnn] to an AST element wrapped in a JustOiAdd a list of AddAnns to the given AST element, where the AST element is the result of a monadic actionOOAdd a list of AddAnns to the AST element, and return the element as a OrdListO4Synonyms for AddAnn versions of AnnOpen and AnnCloseO4Synonyms for AddAnn versions of AnnOpen and AnnCloseOeGiven a list of the locations of commas, provide a [AddAnn] with an AnnComma entry for each SrcSpanO!Given a list of the locations of '|'>s, provide a [AddAnn] with an AnnVbar entry for each SrcSpanO?Get the location of the last element of a OrdList, or noSrcSpanOjAdd a semicolon annotation in the right place in a list. If the leading list is empty, add it to the tail >>>>>>>>>>>>> >>>>>>>>>>>>>O9 P9 $None">#Parse the imports of a source file. Throws a 9 if parsing fails.>6Parse OPTIONS and LANGUAGE pragmas of the source file. Throws a 95 if flag parsing fails (including unsupported flags.)>6Parse OPTIONS and LANGUAGE pragmas of the source file. Throws a 95 if flag parsing fails (including unsupported flags.)>4Complain about non-dynamic flags in OPTIONS pragmas. Throws a 9K if the input list is non-empty claiming that the input flags are unknown.> Parse this.LFilename the buffer came from. Used for reporting parse error locations.KThe original source filename (used for locations in the function result)8The source imports, normal imports, and the module name.> Input fileParsed options, if any.> Input Buffer)Source filename. Used for location info.Parsed options.>>>>>>>>>>>>%None#2%>TRecover the type of a well-typed Core expression. Fails when applied to the actual #7 expression as it cannot really be said to have a type>4Returns the type of the alternatives right hand side>[Returns the type of the first alternative, which should be the same as for all alternatives>Is this expression levity polymorphic? This should be the same as saying (isKindLevPoly . typeKind . exprType) but much faster.>A more efficient version of #ib when we have several arguments. The first argument is just for debugging, and gives some context>nWrap the given expression in the coercion safely, dropping identity coercions and coalescing nested coercions>ZWraps the given expression in the source annotation, dropping the annotation if possible.><Strip ticks satisfying a predicate from top of an expression>aStrip ticks satisfying a predicate from top of an expression, returning the remaining expression>RStrip ticks satisfying a predicate from top of an expression, returning the ticks>sCompletely strip ticks satisfying a predicate from an expression. Note this is O(n) in the size of the expression!>bindNonRec x r b produces either: let x = r in bor: case r of x { _DEFAULT_ -> b }&depending on whether we have to use a case or let" binding for the expression (see >). It's used by the desugarer to avoid building bindings that give Core Lint a heart attack, although actually the simplifier deals with them perfectly well. See also 'Q>Tests whether we have to use a case rather than let7 binding for this expression as per the invariants of ": see CoreSyn#let_app_invariant>qThis guy constructs the value that the scrutinee must have given that you are in one particular branch of a case>$Extract the default case alternative>jFind the case alternative corresponding to a particular constructor: panics if no such constructor exists>bMerge alternatives preserving order; alternatives in the first argument shadow ones in the second>Given: )case (C a b x y) of C b x y -> ...nWe want to drop the leading type argument of the scrutinee leaving the arguments to match against the pattern>>' returns True of an expression that is:[Safe to evaluate even if normal order eval might not evaluate the expression at all, orSafe not- to evaluate even if normal order would do soIt is usually called on arguments of unlifted type, but not always In particular, Simplify.rebuildCase calls it on lifted types when a 'case' is a plain KI. See the example in Note [exprOkForSpeculation: case expressions] belowPrecisely, it returns True iff: a) The expression guarantees to terminate, b) soon, c) without causing a write side effect (e.g. writing a mutable variable) d) without throwing a Haskell exception e) without risking an unchecked runtime exception (array out of bounds, divide by zero)For exprOkForSideEffects( the list is the same, but omitting (e).uNote that exprIsHNF implies exprOkForSpeculation exprOkForSpeculation implies exprOkForSideEffectsSee Note [PrimOp can_fail and has_side_effects] in PrimOp and Note [Transformations affected by can_fail and has_side_effects];As an example of the considerations in this test, consider: -let x = case y# +# 1# of { r# -> I# r# } in Ebeing translated to: 3case y# +# 1# of { r# -> let x = I# r# in E }We can only do this if the y + 1Y is ok for speculation: it has no side effects, and can't diverge or raise an exception.>>' returns True of an expression that is:[Safe to evaluate even if normal order eval might not evaluate the expression at all, orSafe not- to evaluate even if normal order would do soIt is usually called on arguments of unlifted type, but not always In particular, Simplify.rebuildCase calls it on lifted types when a 'case' is a plain KI. See the example in Note [exprOkForSpeculation: case expressions] belowPrecisely, it returns True iff: a) The expression guarantees to terminate, b) soon, c) without causing a write side effect (e.g. writing a mutable variable) d) without throwing a Haskell exception e) without risking an unchecked runtime exception (array out of bounds, divide by zero)For exprOkForSideEffects( the list is the same, but omitting (e).uNote that exprIsHNF implies exprOkForSpeculation exprOkForSpeculation implies exprOkForSideEffectsSee Note [PrimOp can_fail and has_side_effects] in PrimOp and Note [Transformations affected by can_fail and has_side_effects];As an example of the considerations in this test, consider: -let x = case y# +# 1# of { r# -> I# r# } in Ebeing translated to: 3case y# +# 1# of { r# -> let x = I# r# in E }We can only do this if the y + 1Y is ok for speculation: it has no side effects, and can't diverge or raise an exception.PFTrue of dyadic operators that can fail only if the second arg is zero!>:exprIsHNF returns true for expressions that are certainly already evaluated to headA normal form. This is used to decide whether it's ok to change: case x of _ -> einto: e-and to decide whether it's safe to discard a K. So, it does notF treat variables as evaluated, unless they say they are. However, it does treat partial applications and constructor applications as values, even if their arguments are non-trivial, provided the argument type is lifted. For example, both of these are values: &(:) (f x) (map f xs) map (...redex...)because K& on such things completes immediately.3For unlifted argument types, we have to be careful: C (f x :: Int#)Suppose f x diverges; then C (f x)1 is not a value. However this can't happen: see CoreSyn#let_app_invariant`. This invariant states that arguments of unboxed type must be ok-for-speculation (or trivial).> Similar to >| but includes CONLIKE functions as well as data constructors. Conlike arguments are considered interesting by the inliner.PReturns true for values or value-like expressions. These are lambdas, constructors / CONLIKE functions (as determined by the function argument) or PAPs.>Can we bind this " at the top level?>@A cheap equality test which bales out fast! If it returns TrueS the arguments are definitely equal, otherwise, they may or may not be equal. See also >>9Cheap expression equality test, can ignore ticks by type.>Returns True3 of expressions that are too big to be compared by >>PFinds differences between core expressions, modulo alpha and renaming. Setting top means that the IdInfo6 of bindings will be checked for differences as well.>-Finds differences between core bindings, see diffExpr.The main problem here is that while we expect the binds to have the same order in both lists, this is not guaranteed. To do this properly we'd either have to do some sort of unification or check all possible mappings, which would be seriously expensive. So instead we simply match single bindings as far as we can. This leaves us just with mutually recursive and/or mismatching bindings, which we then speculatively match by ordering them. It's by no means perfect, but gets the job done well enough.PFind differences in IdInfoJ. We will especially check whether the unfoldings match, if present (see  diffUnfold).PPFind differences in unfoldings. Note that we will not check for differences of IdInfof in unfoldings, as this is generally redundant, and can lead to an exponential blow-up in complexity.P)Add location information to diff messages>GThis function is called only on *top-level* right-hand sides. Returns TrueW if the RHS can be allocated statically in the output, with no thunks involved at all.>True if the type has no non-bottom elements, e.g. when it is an empty datatype, or a GADT with non-satisfiable type parameters, e.g. Int :~: Bool. See Note [Bottoming expressions]GSee Note [No alternatives lint check] for another use of this function.>-collectMakeStaticArgs (makeStatic t srcLoc e) yields Just (makeStatic, t, srcLoc, e).Returns Nothing for every other expression.>JDoes this binding bind a join point (or a recursive group of join points)?>Case alternative constructor!Things bound by the pattern match*The type arguments to the case alternative>BType constructor of scrutinee's type (used to prune possibilities)And its type arguments imposs_consF: constructors known to be impossible due to the form of the scrutinee Alternatives>#i#j#k>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>#j#k>#i>>>>>>>>>>&None#4>>'None#f*>1Bind a binding group over an expression, using a let or case as appropriate (see CoreSyn#let_app_invariant)>Bind a list of binding groups over an expression. The leftmost binding group becomes the outermost group in the resulting expressionPConstruct an expression which represents the application of one expression paired with its type to an argument. The result is paired with its type. This function is not exported and used in the definition of > and >. Respects the let/app invariant by building a case expression where necessary See CoreSyn Note [CoreSyn let/app invariant]>Construct an expression which represents the application of one expression to the other Respects the let/app invariant by building a case expression where necessary See CoreSyn Note [CoreSyn let/app invariant]>Construct an expression which represents the application of a number of expressions to another. The leftmost expression in the list is applied first Respects the let/app invariant by building a case expression where necessary See CoreSyn Note [CoreSyn let/app invariant]>Construct an expression which represents the application of a number of expressions to that of a data constructor expression. The leftmost expression in the list is applied first>Make a wildcard binder4. This is typically used when you need a binder that you expect to use only at a *binding* site. Do not use it at occurrence sites because it has a single, fixed unique, and it's very easy to get into difficulties with shadowing. That's why it is used so little. See Note [WildCard binders] in SimplEnv>Create a lambda where the given expression has a number of variables bound over it. The leftmost binder is that bound by the outermost lambda in the result> Create a "" which will evaluate to the given Int> Create a "" which will evaluate to the given Int> Create a " which will evaluate to the a Word with the given value> Create a "" which will evaluate to the given Word> Create a "" which will evaluate to the given Integer> Create a "" which will evaluate to the given Natural'TODO: should we add LitNatural to Core?> Create a "" which will evaluate to the given Float> Create a "" which will evaluate to the given Double> Create a "" which will evaluate to the given Char> Create a "" which will evaluate to the given String> Create a "A which will evaluate to a string morally equivalent to the given  FastString>oBuild a small tuple holding the specified variables One-tuples are flattened; see Note [Flattening one-tuples]>~Build the type of a small tuple that holds the specified variables One-tuples are flattened; see Note [Flattening one-tuples]>qBuild a small tuple holding the specified expressions One-tuples are flattened; see Note [Flattening one-tuples]>Build a small unboxed tuple holding the specified expressions, with the given types. The types must be the types of the expressions. Do not include the RuntimeRep specifiers; this function calculates them for you. Does not5 flatten one-tuples; see Note [Flattening one-tuples]>%Make a core tuple of the given boxity>mBuild a big tuple holding the specified variables One-tuples are flattened; see Note [Flattening one-tuples]>|Build the type of a big tuple that holds the specified variables One-tuples are flattened; see Note [Flattening one-tuples]>oBuild a big tuple holding the specified expressions One-tuples are flattened; see Note [Flattening one-tuples]>Build the type of a big tuple that holds the specified type of thing One-tuples are flattened; see Note [Flattening one-tuples]?The unit expression?? is like ?E but one-tuples are NOT flattened (see Note [Flattening one-tuples])Builds a selector which scrutises the given expression and extracts the one name from the list given. If you want the no-shadowing rule to apply, the caller is responsible for making sure that none of these names are in scope.If there is just one 7 in the tuple, then the selector is just the identity.0If necessary, we pattern match on a "big" tuple.?Builds a selector which scrutises the given expression and extracts the one name from the list given. If you want the no-shadowing rule to apply, the caller is responsible for making sure that none of these names are in scope.If there is just one 7 in the tuple, then the selector is just the identity.0If necessary, we pattern match on a "big" tuple.?P is like ?E but one-tuples are NOT flattened (see Note [Flattening one-tuples])Like ?7 but for tuples that are guaranteed never to be "big". pmkSmallTupleSelector [x] x v e = [| e |] mkSmallTupleSelector [x,y,z] x v e = [| case e of v { (x,y,z) -> x } |]PLike ?7 but for tuples that are guaranteed never to be "big". pmkSmallTupleSelector [x] x v e = [| e |] mkSmallTupleSelector [x,y,z] x v e = [| case e of v { (x,y,z) -> x } |]?A generalization of ??, allowing the body of the case to be an arbitrary expression.;To avoid shadowing, we use uniques to invent new variables./If necessary we pattern match on a "big" tuple.?As ?M, but for a tuple that is small enough to be guaranteed not to need nesting.? Makes a list [] for lists of the specified type? Makes a list (:) for lists of the specified type? OMake a list containing the given expressions, where the list has the given type? Make a fully applied LZ expression? Make a build6 expression applied to a locally-bound worker function? &Makes a Nothing for the specified type? /Makes a Just from a value of the specified type?The $s to pattern match the tuple againstThe  to select,A variable of the same type as the scrutinee ScrutineeSelector expression?The $s to pattern match the tuple againstThe  to select,A variable of the same type as the scrutinee ScrutineeSelector expression?-For inventing names of intermediate variables)The tuple identifiers to pattern match onBody of the case,A variable of the same type as the scrutinee Scrutinee?The tuple argsBody of the case,A variable of the same type as the scrutinee Scrutinee? Element type of the listFold result typeCons! function expression for the foldNil expression for the fold#List expression being folded acress? !Type of list elements to be built+Function that, given information about the Qs of the binders for the build worker function, returns the body of that worker@>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>?????????? ? ? ? ? ?????????????@>>>>>>>>>>>>>>>>>>>>>>>>>>>?>>>>>?>>>>>???????? ? ? ? ? ?????????????>4>4(None#?8Traverses the AST, simply to find all joinrecs and call P on them.PsGiven a recursive group of a joinrec, identifies exit paths  and binds them as join-points outside the joinrec.??)None#"?$An environment for substituting for s?'A substitution environment, containing , , and  substitutions.6Some invariants apply to how you use the substitution: in_scope_invariant* The in-scope set contains at least those s and s that will be in scope after applying the substitution to a term. Precisely, the in-scope set must be a superset of the free vars of the substitution range that might possibly clash with locally-bound variables in the thing being substituted in. apply_once% You may apply the substitution only oncecThere are various ways of setting up the in-scope set such that the first of these invariants hold:?Arrange that the in-scope set really is all the things in scope@Arrange that it's the free vars of the range of the substitutionoMake it empty, if you know that all the free vars of the substitution are fresh, and hence can't possibly clash?$Find the in-scope set: see CoreSubst#in_scope_invariant?%Remove all substitutions for s and Bs that might have been built up while preserving the in-scope set?&Add a substitution for an  to the ?:: you must ensure that the in-scope set is such that the CoreSubst#in_scope_invariant3 is true after extending the substitution like this?'Adds multiple  substitutions to the ? : see also ?&?(Add a substitution for a  to the ? The b *must* be a real TyVar, and not a CoVar You must ensure that the in-scope set is such that the CoreSubst#in_scope_invariant5 is true after extending the substitution like this.?)Adds multiple  substitutions to the ? : see also ?(?*Add a substitution from a  to a % to the ?:: you must ensure that the in-scope set is such that the CoreSubst#in_scope_invariant3 is true after extending the substitution like this?+yAdd a substitution appropriate to the thing being substituted (whether an expression, type, or coercion). See also ?&, ?(, ?*?-Add a substitution as appropriate to each of the terms being substituted (whether expressions, types, or coercions). See also ?+.?.Find the substitution for an  in the ??/Find the substitution for a  in the ??2Simultaneously substitute for a bunch of variables No left-right shadowing ie the substitution for (x y. e) a1 a2 so neither x nor y scope over a1 a2?4Add the J to the in-scope set, but do not remove any existing substitutions for it?5Add the U to the in-scope set: as a side effect, and remove any existing substitutions for it?6Add the  s to the in-scope set: see also ?5?7Optimized version of ?6E that can be used if you are certain all the things being added are s and hence none are s or s?9"Apply a substitution to an entire "1. Remember, you may only apply the substitution once: see CoreSubst#apply_oncecDo *not* attempt to short-cut in the case of an empty substitution! See Note [Extending the Subst]?;"Apply a substitution to an entire "$, additionally returning an updated ?2 that should be used by subsequent substitutions.?<"Apply a substitution to an entire "$, additionally returning an updated ?2 that should be used by subsequent substitutions.?=De-shadowing the program is sometimes a useful pre-pass. It can be done simply by running over the bindings with an empty substitution, because substitution returns a result that has no-shadowing guaranteed.(Actually, within a single type* there might still be shadowing, because ?H@ is a no-op for the empty substitution, but that's probably OK.) Aug 09wThis function is not used in GHC at the moment, but seems so short and simple that I'm going to leave it here?>Substitutes a " for another one according to the ?- given, returning the result and an updated ?3 that should be used by subsequent substitutions. M is preserved by this process, although it is substituted into appropriately.??Applies ?> to a number of s, accumulating a new ? left-to-right?@,Substitute in a mutually recursive group of s?AVery similar to ?> , but it always allocates a new 4E for each variable in its output. It substitutes the IdInfo though.?BApplies ?A to a number of 8s, accumulating a final substitution from left to right?E$Clone a mutually recursive group of s?HSee ?JSee ?KSubstitute into some ! with regard to the supplied new .?LSubstitutes for the s within an unfolding?MSubstitutes for the s within an unfolding?OSubstitutes for the  s within the  WorkerInfo given the new function P "Substitution to use for the IdInfo Substitution and Id to transform-Transformed pair NB: unfolding may be zapped9???? ?!?"?#?$?%?&?'?(?)?*?+?,?-?.?/?0?1?2?3?4?5?6?7?8?9?:?;?<?=?>???@?A?B?C?D?E?F?G?H?I?J?K?L?M?N?O?P?Q?R9????=?O?P?H?J?:?9?<?;?M?L?.?/?N?R?Q?K?!?"?#?2?$? ?&?'?)?+?-?,?%?4?5?6?7?3?8?I?(?*?0?1?>???@?F?G?D?C?A?B?E*None#i?U[manifestArity sees how many leading value lambdas there are, after looking through casts?W!An approximate, fast, version of ?ZP hThe Arity returned is the number of value args the expression can be applied to without doing much work?\ etaExpand n e1 returns an expression with the same meaning as e, but with arity n.Given: e' = etaExpand n eWe should have that: ty = exprType e = exprType e'?]~Split an expression into the given number of binders and a body, eta-expanding if necessary. Counts value *and* type binders.?\,Result should have this number of value argsExpression to expand ?T?U?V?W?X?Y?Z?[?\?]?^ ?U?V?W?X?Z?[?T?\?]?^?Y+None%^#P NDecide whether some bindings should be made into join points or not. Returns Lp if they can't be join points. Note that it's an all-or-nothing decision, as if multiple binders are given, they're assumed to be mutually recursive.1It must, however, be a final decision. If we say True for f , and then subsequently decide not make f= into a join point, then the decision about another binding g might be invalidated if (say) f tail-calls g.0See Note [Invariants on join points] in CoreSyn.?a?b?c?a?b?c,None#R?g?h?i?j?k?g?j?i?h?k-None$&?o+Returns Just (bndr,rhs) if the binding is a join point: If it's a JoinId, just return it If it's not yet a JoinId but is always tail-called, make it into a JoinId and return it. In the latter case, eta-expand the RHS if necessary, to make the lambdas explicit, as is required for join points]Precondition: the InBndr has been occurrence-analysed, so its OccInfo is valid?qReturns Just (dc, [t1..tk], [x1..xn])R if the argument expression is a *saturated* constructor application of the form dc t1..tk x1 .. xn>, where t1..tk are the *universally-quantified* type args of dc ?l?m?n?o?p?q?r?s?t?u?v?w ?n?l?m?o?p?q?r?s?t?v?u?w.None$&?y Used to make " for an 1 defined in the module being compiled. See also "?zIFind the "top" free names of several expressions. Such names are either: cThe function finally being applied to in an application chain (if that name is a GlobalId: see Var#globalvslocal), orThe TyCon if the expression is a 'cThis is used for the fast-match-check for rules; if the top names don't match, the rest can'tP ruleCantMatch tpl actual returns True only if actual definitely can't match tpl by instantiating tplV. It's only a one-way match; unlike instance matching we don't consider unification.Notice that [_$_] )ruleCantMatch [Nothing] [Just n2] = FalseR Reason: a template variable can be instantiated by a constant Also: )ruleCantMatch [Just n1] [Nothing] = False Reason: a local variable v in the actuals might [_$_]?|Make a $ containing a number of "!s, suitable for putting into an IdInfo?MGather all the rules for locally bound identifiers from the supplied bindings?The main rule matching function. Attempts to apply all (active) supplied rules to this instance of an application in a given context, returning the rule applied and the resulting expression if successful.?iReport partial matches for rules beginning with the specified string for the purposes of error reportingP 0Target; can have more elements than the template?Rule activation test Rule patternDatabase of rulesBindings to check inResulting check message?y?z?{?|?}?~?????????????????|?}?~????{??y?z/None$' P0The size of a candidate expression for unfoldingP Size foundP2Arguments cased herein, and discount for each suchP?Size to subtract if result is scrutinised by a case expression?Make an unfolding that may be used unsaturated (ug_unsat_ok = unSaturatedOk) and that is reported as having its manifest arity (the number of outer lambdas applications will resolve before doing any work).?XMake an unfolding that will be used once the RHS has been saturated to the given arity.P)Finds a nominal size of a string literal.PThe size of a function callP"The size of a jump to a join pointPnumber of value args"number of value args that are voidPnumber of value args"number of value args that are void"""#4?q?r?????????????????????????????"""#4??????????????????????????????q?r0NoneQV$1HPCheck if there is comparison with minBound or maxBound, that is always true or false. For instance, an Int cannot be smaller than its minBound, so we can replace such comparison with False.P]Create an Int literal expression while ensuring the given Integer is in the target Int rangeP^Create a Word literal expression while ensuring the given Integer is in the target Word range?zMatch the scrutinee of a case and potentially return a new scrutinee and a function to apply to each literal alternative.??????None$3Data Constructor BoxerP.Unpack/Strictness decisions from source modulePWrappers+Workers and representation following UnpackStrictness decisions%???????????????????????????????"????????????????????????????1NoneN$E#P@A mapping from binders to the Ids they were expanded/renamed to.x :-> MultiVal [a,b,c] in rhoiiff x's typePrimRep is not a singleton, or equivalently x's type is an unboxed tuple, sum or void.x :-> UnaryVal x'\iff x's RepType is UnaryRep or equivalently x's type is not unboxed tuple, sum or void.MSo x :-> MultiVal [a] in rho means x is represented by singleton tuple.*x :-> MultiVal [] in rho means x is void.mINVARIANT: OutStgArgs in the range only have NvUnaryTypes (i.e. no unboxed tuples, sums or voids)P:Extend the environment, checking the UnariseEnv invariant.PUMake alternatives that match on the tag of a sum (i.e. generate LitAlts for the tag)P:Build a unboxed sum term from arguments of an alternative.Example, for ( x | ) :: ( ( ) | Int  ) we call mkUbxSum ( _ | ) [ ( ), Int ] [ voidPrimId ] which returns  1#, rubbish P:MultiVal a function argument. Never returns an empty list.PIMultiVal a DataCon argument. Returns an empty list when argument is void.??2None$FP Optional Stg-to-Stg passes.P!DWhich optional Stg-to-Stg passes to run. Depends on flags, ways etc.??None$G;"xyz{|}????????????????????????????"????{???}?yz?|????x???????????????3None$O[?This list is used to ensure that when you say "Prelude.map" in your source code, or in an interface file, you get a Name with the correct known key (See Note [Known-key names] in PrelNames)P".Check the known-key names list of consistency.?Given a 4 lookup its associated s) if it corresponds to a known-key thing.?Is a s known-key??Given a 4C lookup any associated arbitrary SDoc's to be displayed by GHCi's ':info' command.????????????????????????????4None$P ??????5None$S&P#Generate Cmm code for a tick. Depending on the type of Tickish, this will either generate actual Cmm instrumentation code, or simply pass on the annotation as a  CmmTickish.??None$Sl3?????3???6None;=Df$YP$Given an info table, decide what the entry convention for the proc is. That is, for an INFO_TABLE_RET we want the return convention, otherwise it is a NativeNodeCall.P%Generate a source note spanning from "a" to "b" (inclusive), then proceed with parsing. This allows debugging tools to reason about locations in Cmm code.@@P&9 P'9 7None$Y@@8NoneV_$[@Read an interface file@ Write an interface fileP(:Initial ram buffer to allocate for writing interface files @@@@@@@@ @ @ @ @@ @ @@@@@@9None"#$`@Produce a fingerprint of a DynFlags> value. We only base the finger print on important fields in DynFlags= so that the recompilation checker can use this fingerprint.NB: The  parameter is the 3 recorded by the *interface* file, not the actual  according to our  .@@@@@@None$=<Loads a system interface and throws an exception if it fails@'Load the interface corresponding to an importS directive in source code. On a failure, fail in the monad with an error message.@Like @, but returns a m.@.Load interface directly for a fully qualified . (This is a fairly rare operation, but in particular it is used to load orphan modules in order to pull their instances into the global package table and to handle some operations in GHCi).@,Load interfaces for a collection of modules.@Loads the interface for a given Name. Should only be called for an imported name; otherwise loadSysInterface may not find the interface@'Loads the interface for a given Module.P)An ;8 function to load the home interface for a wired-in thing, so that we're sure that we see its instance declarations and rules See Note [Loading instances for wired-in things]@Loads a user interface and throws an exception if it fails. The first parameter indicates whether we should import the boot variant of the moduleP*A wrapper for @% that throws an exception if it failsP+Returns True if a 8 comes from an external package. In this case, we should NOT load it into the EPS; the entities should instead come from the local merged signature interface.P,This is an improved version of @ 6 which can also handle the case when a user requests p[A= B]:M$ but we only have an interface for p[A= A]:M (the indefinite interface. If we are not trying to build code, we load the interface we have, *instantiating it* according to how the holes are specified. (Of course, if we're actually building code, this is a hard error.)In the presence of holes, P, has an important invariant: to load module M, its set of transitively reachable requirements must have an up-to-date local hi file for that requirement. Note that if we are loading the interface of a requirement, this does not apply to the requirement itself; e.g., p[A= A]:A does not require A.hi to be up-to-date (and indeed, we MUST NOT attempt to read A.hi, unless we are actually typechecking p.)@TCompute the signatures which must be compiled in order to load the interface for a 6. The output of this function is always a subset of  +; it is more precise because in signature p[A= A,B= B]:BG, although the free holes are A and B, B might not depend on A at all!sIf this is invoked on a signature, this does NOT include the signature itself; e.g. precise free module holes of p[A= A,B= B]:B never includes B.@$'Read binary interface, and print it out=@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@@@@@@@@@@@=@@@ @!@@"@@%@#@&@$None;<=$@\Get a ] that includes mappings for all vars free in the given type. Useful when tidying open types.@kMake a name for the dict fun for an instance decl. It's an *external* name, like other top-level names, and hence must be made with newGlobalBinder.@lSpecial case of @k. to generate dict fun name for a single TyCon.]&:::::::::;F<$=2@(@)@*@+@,@-@.@/@0@1@2@3@4@5@6@7@8@9@:@;@<@=@>@?@@@A@B@C@D@E@F@G@H@I@J@K@L@M@N@O@P@Q@R@S@T@U@V@W@X@Y@Z@[@\@]@^@_@`@a@b@c@d@e@f@g@h@i@j@k@l@m@n@o@p@q@r@s]&:::::::::@/@0@1@2@f@g@h@i@j@(@)@*@+@,@-@.@C@D@B@A@E@4@5@:@9@6@7@8@<@>@=@;@3@P@O@Q@R@V@U@T@W@X@Y@[@Z@S@I@G@M@K@L@J@H@N@s@r@]@^@_@F<$@\@?@@@`@e=2@a@c;F@b@d@k@l@m@n@o@p@q:None%N$@v!Replaces all bindings of the form 'b = /\ ... -> makeStatic location valuewith Ob = /\ ... -> StaticPtr key (StaticPtrInfo "pkg key" "module" location) value3where a distinct key is generated for each binding.UIt also yields the C stub that inserts these bindings into the static pointer table.@wsptModuleInitCode module fps. is a C stub to insert the static entries of module into the static pointer table.fpsZ is a list associating each binding corresponding to a static entry with its fingerprint.@v@w@v@w;None$@wMake a map from selector names to field labels and parent tycon names, to be used when reporting unused record fields.P-$Should we report the fact that this s is unused? The t may differ from  due to DuplicateRecordFields./@x@y@z@{@|@}@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@/@@@@@@@@@@@@@@@@@x@y@z@{@|@}@~@@@@@@@@@@@@@@@@@@@@@@@@<None$H@kThe monad used by Core-to-Core passes to access common state, register simplification statistics and so on@'A description of the plugin pass itself@Just n  =b float lambdas to top level, if doing so will abstract over n or fewer value variables Nothing  = float all lambdas to top level, regardless of how many free variables Just 0 is the vanilla case: float a lambda iff it has no free vars@True  =N float constants to top level, even if they do not escape a lambda@True  = float out over-saturated applications based on arity information. See Note [Floating over-saturated applications] in SetLevels@%Allow floating to the top level only.P.Lift an  operation into @@Lift an L operation into @ while consuming its @@4The original name cache is the current mapping from  and OccName to a compiler-wide unique s@Get all annotations of a given type. This happens lazily, that is no deserialization will take place until the [a] is actually demanded and the [a] can also be empty (the UniqFM is not filtered).TThis should be done once at the start of a Core-to-Core pass that uses annotations.See Note [Annotations]@6Get at most one annotation of a given type per Unique.@%Output a String message to the screen@Output a message to the screen@BOutput an error to the screen. Does not cause the compiler to die.@BOutput an error to the screen. Does not cause the compiler to die.AGOutput a fatal error to the screen. Does not cause the compiler to die.AGOutput a fatal error to the screen. Does not cause the compiler to die.A8Output a string debugging message at verbosity level of -v or higherA2Outputs a debugging message at verbosity level of -v or higherAShow some labelled u8 if a particular flag is set or at a verbosity level of -v -ddump-most or higherAAttempt to convert a Template Haskell name to one that GHC can understand. Original TH names such as those you get when you use the 'foo syntax will be translated to their equivalent GHC name exactly. Qualified or unqualified TH names will be dynamically bound to names in the module being compiled, if possible. Exact TH names will be bound to the name they represent, exactly.g|}~ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@AAAAAAAg@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@|}~@@@@@@@AAAAAAA=None$P/A P/k is a binding along with a cached set containing its free variables (both type variables and dictionaries)AJSpecialise calls to type-class overloaded functions occuring in a program.P0.Specialise a set of calls to imported bindingsP1 Construct a P/ from a "P2!Identify the free variables of a "P3Flatten a set of "dumped" P/Bs, and some other binding pairs, into a single recursive binding.?AA?>None$3`bac@@@@@A#A$A%A&A'A(A)A*A+A,A-A#A$A%A&A'`bacA(A)@A+A-A,A*@@@@?None$qA7A substitution result.HA&A4A5A6A7A8A9A:A;A<A=A>A?A@AAABACADAEAFAGAHAIAJAKALAMANAOAPAQARASATAUAVAWAXAYAZA[A\A]A^A_A`AaAbAcAdAeAfAgAhAiAjAkAlAmAnAoApAqArAsAtAuAvAwAxAyAzHALAJAMAKA@AAABACADAEAFAHAIANAOAPAWAXAQASATARAVAUA&A7A8A9A:AYAmAoAnArAsAtAuAqApAwAxAvAzAyA;A<A=A>A?AGAgA_AaAbAcA`AhAZAkA6AeA[A]AdAlA5A4A\AjAiA^Af@None$JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANone$P4Push a TickIt context outwards past applications and cases, as long as this is a non-scoping tick, to let case and application optimisations apply.P5.A "friendly name" to build the new binder from/This expression satisfies the let/app invariantP6.a "friendly name" to build the new binder from/This expression satisfies the let/app invariantAAAAAABNone^$YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANone$nz is the core compiler plugin data type. Try to avoid constructing one of these directly, and just modify some fields of A\ instead: this is to try and preserve source-code compatibility when we add fields to this.PNonetheless, this API is preliminary and highly likely to change in the future.AModify the Core pipeline that will be used for compilation. This is called as the Core pipeline is built for every module being compiled, and plugins get the opportunity to modify the pipeline in a nondeterministic order.AYAn optional typechecker plugin, which may modify the behaviour of the constraint solver.A`Command line options gathered from the -PModule.Name:stuff syntax are given to you as this typeADefault plugin: does nothing at all! For compatibility reasons you should base all your plugin definitions on this default value. AAAAAAAAA AAAAAAAAARNone$jAAAAA %'10/.-P7P8P9P:P;P<POJNMLKIHGFEDCBA@?>=<;:98765432stuDvwx w x y z { | } ~                             ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~    !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOP|}~ ~   234798:;<=>?@ABCEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()$5$3$+$,$-$.$/$0$1$2$4$6$7$!$$&$$$%$$"$#$$ $'      !"#%$&'()*+,-./0123456789:;<=>?@BCDEAFGHIJKLMNOPQRSTVUWXYZ[\]^_`abcdefghijlmnopqrstuvwxyz{|}~234`bacdefghijklmnopqrstz{|}~_`bdf q r s t u v w x y z { | } 4 5 6 7 8 9 : ; < = > ? @ e f g h i j k l m n o p q r s t u v w z x y { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~|}~   !"#$%&'()*+,-./0123456789:;<=>?@AOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~*+,-./0156789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^      !"#$%&'()*+,-./012345L      !"#$%&'()*+,-./012345DEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn}~!`!a!b!c!d!e!f  !"#$%&'()*+OPQRSTUVWXYZ[\]^_`abcdefghsjklmnopqrituvwxyz{|}~     +,-./0123456      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuv     A                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i !!!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!! !!!"!#!$!%!&!O!P!Q!R!S!T!U!V!W!X!Y!Z![!\!]!^!_!g!h!i!j!k!l!m!n!o!p!q!r!s!t!u!v!w!x!y!z!{!|!}!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""########## # # # # ################### #!#"###$#%#&#'#(#)#*#+#,#-#.#/#0#1#2#3#4#5#6#7#8#9#:#;#<#=#>#?#@#A#B#C#D#E#F#G#H#I#J#K#L#M#N#O#P#Q#R#S#T#U#V#W#X#Y#Z#[#\#]#^#_#`#a#b#c#d#e#f#g#h#i#j#k#l#m#n#o#p#q#r#s#t#u#v#w#x#y#z#{#|#}#~#######$$$$$$$$$$$$($)$*$8$9$:$;$<$=$>$?$@$A$B$C$D$E$F$G$H$I$J$K$L$M$N$O$P$Q$R$S$T$U$V$W$X$b$c$d$e$f$g$j$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b'}'~''''''''...........................////////// / / / / ////////777777777777777777777777777777777777777788888888888 8 8 8 8 888888888888888888 8)8$8!8"8#8%8&8'8(8*8+8,8-8.8/808182838485868788898:8;8<8=8>8?8@8A8B8C8D8E8F8G8H8I8J8K8L8M8N8P8R8Q8O8S8T8U8V8W8X8Y8Z8[8\8]8^8_8`8a8b8c8d8e8f8g8i8h8j8k8l8m8n8o8p8q8r8s8t8u8v88{8w8x8y8z8|8}8~888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889999999999 9 9 9 9 9999999999999999999 9!9"9#9$9%9&9'9(9)9*9+9,9-9.9/909192939495969798999:9;9<9=9>9?9@9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R9S9T9U9V9W9X9Y9Z9[9\9]9^9_9`9a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9u9v9w9x9y9z9{9|9}9~999999999999999999999999999>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>?????????? ? ? ? ? ????????????????? ?!?"?#?$?%?&?'?(?)?+?,?-?.?/?0?1?2?3?4?5?6?7?8?9?:?;?<?=?>???@?A?B?C?D?E?H?I?J?K?L?M?N?O?P?Q?R?y?z?{?|?}?~??????????@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@AAAAAAAAAAAt_`bdf|}~st_`bdf|}~   !"#$%&'()*+,-./0123456789:;<=>?@A !(.135$b$c$d$e$f$g$j$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$???? ?!?"?#?$?%?&?'?(?)?+?,?-?.?/?0?1?2?3?4?5?6?7?8?9?:?;?<?=?>???@?A?B?C?D?E?H?I?J?K?L?M?N?O?P?Q?R !"#&'();<=>?  +h+,-./0123456     A                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i$%{|}~$/  !"#$%&'()*+ !!!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!! !!!"!#!$!%!&      !"#%$&'()*+,-./0123456789:;<=>?@BCDEAFGHIJKLMNOPQRSTVUWXYZ[\]^_`abcdefghijlmnopqrstuvwxyz{|}~234CNone%GAADNone%HP=7True if it's a bad idea to float bindings into this RHSAAENone%QAA returns (True, fixity) if it finds a aK in a local environment or from an interface file. Otherwise, it returns (False, fixity) (e.g., for unbound ss or s.s without user-supplied fixity declarations).A]Look up the fixity of a (possibly ambiguous) occurrence of a record field selector. We use P> so that we can specifiy the t6 as the field label, which might be different to the t of the selector s if DuplicateRecordFieldsn is in use (Trac #1173). If there are multiple possible selectors with different fixities, generate an error.AAAAAAAAAAAAFNone$^%`B Lookup an Exact RdrNameX. See Note [Looking up Exact RdrNames]. This adds an error if the name cannot be found.P? Lookup an Exact RdrNameY. See Note [Looking up Exact RdrNames]. This never adds an error, but it may return one.B ,Used in export lists to lookup the children.B5Specialised version of msum for RnM ChildLookupResultBLike B-, but with a more informative result if the ! happens to be a record selector:8Nothing -> name not in scope (no error reported)iJust (Left x) -> name uniquely refers to x, or there is a name clash (reported)Just (Right xs) -> name refers to one or more record selectors; if overload_ok was False, this list will be a singleton.B!,Lookup a name in relation to the names in a AB!:description of thing we're looking up, like "type family"B%The standard namePossibly a non-standard name/AAAAAAABBBBBBBBBB B B B B BBBBBBBBBBBBBBBBBBB B!B"B#B$B%B&B'/BBBBBBBBBBBBBBBBBBBBBBB BAAAAAAAB"B B!B B B B BB&B%B'B$BBBB#GNoneV%UP@A PA+ list that contains no duplicate variables.PBA PA2 list that is allowed to have duplicate variables.PC9Name of an operator in an operator application or sectionPDA normal identifierPEPrefix negationPFAn unbound indentifierPG.A (possibly ambiguous) record field occurrenceB0Finds free type and kind variables in a type, without duplicates, and without variables that are already in scope in LocalRdrEnv NB: this includes named wildcards, which look like perfectly ordinary type variables at this pointB1Finds free type and kind variables in a type, with duplicates, but without variables that are already in scope in LocalRdrEnv NB: this includes named wildcards, which look like perfectly ordinary type variables at this pointPH8When the NamedWildCards extension is enabled, partition_nwcs removes type variables that start with an underscore from the FreeKiTyVars in the argument and returns them in a separate list. When the extension is disabled, the function returns the argument and empty list. See Note [Renaming named wild cards]PI(In what contexts are wildcards permittedPJ?Ensures either that we're in a type or that -XTypeInType is setB<Simply bring a bunch of RdrNames into scope. No checking for validity, at all. The binding location is taken from the location on each name.B@#Extract all wild cards from a type.PK=Look up the fixity for an operator name. Be careful to use A; for (possibly ambiguous) record fields (see Trac #13132).BKBK5 finds the free (kind, type) variables of an 1+ or the free (sort, kind) variables of an 1C. It's used when making the foralls explicit. Does not return any wildcards. When the same name occurs multiple times in the types, only the first occurrence is returned. See Note [Kind and type-variable binders]BLBL4 find the free (kind, type) variables of an 1+ or the free (sort, kind) variables of an 1C. It's used when making the foralls explicit. Does not return any wildcards. When the same name occurs multiple times in the types, all occurrences are returned.BMEExtracts the free kind variables (but not the type variables) of an 1. Does not return any wildcards. When the same name occurs multiple times in the type, only the first occurrence is returned. See Note [Kind and type-variable binders]BNExtracts free type and kind variables from types in a list. When the same name occurs multiple times in the types, only the first occurrence is returned and the rest is filtered out. See Note [Kind and type-variable binders]BOExtracts free type and kind variables from types in a list. When the same name occurs multiple times in the types, all occurrences are returned.BPRemoves multiple occurrences of the same name from FreeKiTyVars. If a variable occurs as both a kind and a type variable, only keep the occurrence as a kind variable. See also Note [Kind and type-variable binders]PJtype'B-B.B/B0B1B2B3B4B5B6B7B8B9B:B;B<B=B>B?B@BABBBCBDBEBFBGBHBIBJBKBLBMBNBOBPBQBRBS'B6B4B5B9B8B7B2B/B-B.B3B?B@BAB:BBBCBDBEBFBGB>B;B=B<B0B1BKBMBLBNBOBPBQBRBHBIBJBSHNoneQV%@BXBZBYB[B\B]B^B_B`BaBbBcBdBeBfBgBhBiBjBkBcBbBeBfB\BdBaB_B`BgBXBZBYB[BhB]B^BiBj@BkINone $<FQTVZ^%PBoProcess Import Decls. See PL for a description of what the return types represent. Note: Do the non SOURCE ones first, so that we get a helpful warning for SOURCE ones that are unnecessaryPL#Given a located import declaration decl from this_mod1, calculate the following pieces of information:  An updated 0, where all unresolved 2 in the entity lists have been resolved into ss,A  representing the new identifiers that were brought into scope (taking into account module qualification and hiding),:pM summarizing the identifiers that were imported by this declaration, and A boolean 74 which is true if the imported module used HPC.BpCalculate the :p> induced by an import of a particular interface, but without :r.PM7Given an import/export spec, construct the appropriate s.PNIWarn the user about top level binders that lack type signatures. Called afterI type inference, so that we can report the inferred type of the function BoBpBqBrBsBtBuBvBwBxBy BoBrBsBqBpBvByBtBuBwBxJNone $<FQTV%POGiven a resolved name in the children export list and a parent. Decide whether we are allowed to export the child with the parent. Invariant: gre_par == NoParent See note [Typing Pattern Synonym Exports]PO5Alleged parent type constructor User wrote T( P, Q )KEither a a) Pattern Synonym Constructor b) A pattern synonym selectorBzB{BzB{KNoneFTV% AAAAAAAAB|B}B~BBBBBBBBBBB|B}BB~BBBBBBBBBAAAAAAAALNone<FTV% PP0'InstDeclFreeVarsMap is an association of an InstDecl with FreeVars. The FreeVarsr are the tycon names that are both a) free in the instance declaration b) bound by this group of typeclassinstance declsB rnSourceDecl "renames" declarations. It simultaneously performs dependency analysis and precedence parsing. It also does the following error checks:Checks that tyvars are used properly. This includes checking for undefined tyvars, and tyvars in contexts that are ambiguous. (Some of this checking has now been moved to module  TcMonoTypeI, since we don't have functional dependency information at this point.)1Checks that all variable occurrences are defined. Checks the (..)$ etc constraints in the export list.wBrings the binders of the group into scope in the appropriate places; does NOT assume that anything is in scope alreadyPQFor Windows DLLs we need to know what packages imported symbols are from to generate correct calls. Imported symbols are tagged with the current package, so if they get inlined across a package boundry we'll still know where they're from.PR8Warn about non-canonical typeclass instance declarationsA "non-canonical" instance definition can occur for instances of a class which redundantly defines an operation its superclass provides as well (c.f. L&/). In such cases, a canonical instance is one where the subclass inherits its method implementation from its superclass instance (usually the subclass has a default method implementation to that effect). Consequently, a non-canonical instance occurs when this is not the case.See also descriptions of checkCanonicalMonadInstances and checkCanonicalMonoidInstancesPSRenames role annotations, returning them as the values in a NameEnv and checks for duplicate role annotations. It is quite convenient to do both of these in the same place. See also Note [Role annotations in the renamer]PT Construct an InstDeclFreeVarsMap by eliminating any Names from the FreeVars" which are *not* the binders of a TyClDecl.PUGet the  LInstDecls which have empty FreeVars sets, and the InstDeclFreeVarsMapj with these entries removed. We call (getInsts tcs instd_map) when we've completed the declarations for tcs. The call returns (inst_decls, instd_map'), where inst_decls are the instance declarations all of whose free vars are now defined instd_map' is the inst-decl map with tcs- removed from the free-var setPVRename injectivity annotation. Note that injectivity annotation is just the part after the "|". Everything that appears before it is renamed in rnFamDecl.PWiBrings pattern synonym names and also pattern synonym selectors from record pattern synonyms into scope.PV.Type variables declared in type family headResult signatureInjectivity annotationBBBBBB NoneFT%=W/Rename a splice pattern. See Note [rnSplicePat]BThe splice data to be loggedPX]Returns the result of running a splice and the modFinalizers collected during the execution.5See Note [Delaying modFinalizers in untyped splices].BMoutputs splice information for 2 flags which have different output formats: `-ddump-splices` and `-dth-dec-file`=U=V=W=XBBBBBBBBBB=U=XB=W=VBBBBBBBBBNoneFTV^&<(Rename some StmtsPYHA tree of statements using a mixture of applicative and bind constructs.PZThe ss of return and pure. These may not be  returnName and pureName due to RebindableSyntax.P[like <(8 but applies a post-processing step to the renamed StmtsP\Hmaybe rearrange statements according to the ApplicativeDo transformationP].strip the FreeVars annotations from statementsP^Is this a context where we respect RebindableSyntax? but ListComp/PArrComp are never rebindable Neither is ArrowExpr, which has its own desugarer in DsArrowsP_Srearrange a list of statements using ApplicativeDoStmt. See Note [ApplicativeDo].P`RTurn a sequence of statements into an ExprStmtTree using a heuristic algorithm. O(n^2)Pa[Turn a sequence of statements into an ExprStmtTree optimally, using dynamic programming. O(n^3)PbaTurn the ExprStmtTree back into a sequence of statements, using ApplicativeStmt where necessary.PcDivide a sequence of statements into segments, where no segment depends on any variables defined by a statement in another segment.PdFind a "good" place to insert a bind in an indivisible segment. This is the only place where we use heuristics. The current heuristic is to peel off the first group of independent statements and put the bind after those.PeMBuild an ApplicativeStmt, and strip the "return" from the tail if necessary.nFor example, if we start with do x <- E1; y <- E2; return (f x y) then we get do (E1[x] | E2[y]); f x yKthe LastStmt in this case has the return removed, but we set the flag on the LastStmt to indicate this, so that we can print out the original statement correctly in error messages. It is easier to do it this way rather than try to ignore the return later in both the typechecker and the desugarer (I tried it that way first!).PfPGiven the statements following an ApplicativeStmt, determine whether we need a join or not, and remove the return if necessary.PgJust e, if the expression is return e or  return $ e , otherwise Nothing<(7How to rename the body of each statement (e.g. rnLExpr) StatementsRif these statements scope over something, this renames it and returns the result.P[7How to rename the body of each statement (e.g. rnLExpr)postprocess the statements StatementsRif these statements scope over something, this renames it and returns the result.Ph'How to rename the body of the statement The statement0Rename the stuff that this statement scopes overPb the "tail"free variables of the tailPeThe argsTrue  = need a joinThe body statements<(<)B<)B<(MNoneZ^&6B7everything is up to date, recompilation is not requiredB@The .hs file has been touched, or the .o/.hi file does not existBThe .o/.hi files are up to date, but something else has changed to force recompilation; the String says what (one-line summary)Bmake an interface from the results of typechecking only. Useful for non-optimising compilation, or where we aren't generating any object code at all ( ).Pi1Add fingerprints for top-level declarations to a 8.$See Note [Fingerprinting IfaceDecls]PjRetrieve the orphan hashes 8s for a list of modules (in particular, the orphan modules which are transitively imported by the current module).eQ: Why do we need the hash at all, doesn't the list of transitively imported orphan modules suffice?A: If one of our transitive imports adds a new orphan instance, our export hash must change so that modules which import us rebuild. If we just hashed the [Module], the hash would not change even when a new instance was added to a module that already had an orphan instance.iQ: Why don't we just hash the orphan hashes of our direct dependencies? Why the full transitive closure?!A: Suppose we have these modules:module A where instance Show (a -> b) where module B where import A -- ** module C where import A import B)Whether or not we add or remove the import to A in B affects the orphan hash of B. But it shouldn't really affect the orphan hash of C. If we hashed only direct dependencies, there would be no way to tell that the net effect was a wash, and we'd be forced to recompile C and everything else.PkCreates cached lookup for the 8\ field of ModIface Hackily, we use "module" as the OccName for any module-level annotationsBTop level function to check if the version of an old interface file is equivalent to the current source file the user asked us to compile. If the same, we can avoid recompilation. We return a tuple where the first element is a bool saying if we should recompile the object file and the second is maybe the interface file, where Nothng means to rebuild the interface file not use the exisitng one.Pl$Check if a module is still the same version..This function is called in the recompilation checker after we have determined that the module M being checked hasn't had any changes to its source file since we last compiled M. So at this point in general two things may have changed that mean we should recompile M: * The interface export by a dependency of M has changed. * The compiler flags specified this time for M have changed in a manner that is significant for recompilation. We return not just if we should recompile the object file but also if we should rebuild the interface file.PmWCheck if an hsig file needs recompilation because its implementing module has changed.PnCheck the flags haven't changedPo,Check the optimisation flags haven't changedPp#Check the HPC flags haven't changedPqGiven the usage information extracted from the old M.hi file for the module being compiled, figure out whether M needs to be recompiled. BBBBBBBBBBB BBBBBBBBBBBNNone&@BPretty-prints a #8 (type/data family instance) with its defining location.BPretty-prints a & with its defining location.BPretty-prints the &L header. For functions and data constructors the function is equivalent to BZ but for type constructors and classes it prints only the header part of the declaration.BPretty-prints a & in context: that is, if the entity is a data constructor, record selector, or class method, then the entity's parent declaration is pretty-printed with irrelevant parts omitted.BLike B!, but adds the defining location.BPretty-prints a &.BBBBBBBBBBBBBBONone&'&iPrType of functions that use error message and a list of axioms to build full error message (with a source location) for injective type families.BIf co :: T ts ~ rep_ty then: +instNewTyCon_maybe T ts = Just (rep_ty, co)nChecks for a newtype, and for being saturated Just like Coercion.instNewTyCon_maybe, but returns a TcCoercionBLike Bl, but returns the arguments back if there is no data family to unwrap. Returns a Representational coercionBConverts a data family type (eg F [a]) to its representation type (eg FList a) and returns a coercion between the two: co :: F [a] ~R FList a.BBF gets rid of top-level newtypes, potentially looking through newtype  instances.It is only used by the type inference engine (specifically, when solving representational equality), and hence it is careful to unwrap only if the relevant data constructor is in scope. That's why it get a GlobalRdrEnv argument.It is careful not to unwrap data/newtype instances if it can't continue unwrapping. Such care is necessary for proper error messages.TIt does not look through type families. It does not normalise arguments to a tycon.If the result is Just (rep_ty, (co, gres), rep_ty), then co : ty ~R rep_ty gres are the GREs for the data constructors that had to be in scopePsCheck whether a new open type family equation can be added without violating injectivity annotation supplied by the user. Returns True when this is possible and False if adding this equation would violate injectivity annotation.BHBuild a list of injectivity errors together with their source locations.PtReturn a list of type variables that the function is injective in and that do not appear on injective positions in the RHS of a family instance declaration. The returned Pair includes invisible vars followed by visible onesPu,Is type headed by a type family application?Pv`If a RHS is a bare type variable return a set of LHS patterns that are not bare type variables.Pw?Build injecivity error herald common to all injectivity errors.PxQBuild error message for a pair of equations violating an injectivity annotation.PyRBuild error message for equation with injective type variables unused in the RHS.PzUBuild error message for equation that has a type family call at the top level of RHSP{wBuild error message for equation that has a bare type variable in the RHS but LHS pattern is not a bare type variable.B(Type family for which we generate errors1Currently checked equation (represented by axiom)Injectivity annotationList of injectivity conflicts #BBBBBBBBBBB #BBBBBBBBBBBPNone&j HBBBBBBBBBBBB BBBBBBBBBBBBHQNone<N^&vBRInstantiate all outer type variables and any context. Never looks through arrows.BInstantiate all outer v binders and any context. Never looks through arrows or specified type variables. Used for visible type application.BJThis is used to instantiate binders when type-checking *types* only. The  VarEnv KindN gives some known instantiations. See also Note [Bidirectional type checking]BUsed only in *types*P| This takes a ~# b and returns a ~~ b.P} This takes a ~# b and returns a ~ b.P~ This takes a ~R# b and returns  Coercible a b.BType to instantiate it at(Standard name, user name)j(Standard name, suitable expression) USED ONLY FOR CmdTop (sigh) *** See Note [CmdSyntaxTable] in HsExpr;^;`;b<<@@BBBBBBBBBBBBBBBBBBBBBBBBBBB<<BBBBBB@@BBBBB;b;^;`NoneNV^&B Variant of Be that works when supplied only part (that is, to the right of some arrows) of the full function typeBqCall this variant when you are in a higher-rank situation and you know the right-hand type is deeply skolemised.BSometimes we don't have a  HsExpr Name' to hand, and this is more convenient.ByInfer a type using a fresh ExpType See also Note [ExpType] in TcMType Does not attempt to instantiate the inferred typeBrTake an "expected type" and strip off quantifiers to expose the type underneath, binding the new skolems for the  thing_inside. The returned 0  has type specific_ty -> expected_ty.B Variant of B that takes an ExpTypeB-Breaks apart a function kind into its pieces.;If present, has type ty1Bof the actual type!If present, it has type ty_actualBof the actual typeof the expected typeB3These are only ever used for scoped type variables./The expression has type: spec_ty -> expected_tyBtype, only for errors function kindco :: old_kind ~ arg -> res$;;BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB$BBBBBBBBBBBB;B;BBBBBBBBBBBBBBBBBBBBBRNoneDV&VC@Takes a list of custom printers with a explicit recursion knot and a term, and returns the output of the first successful printer, or the default printerPTerm Reconstruction tracePuReturns the instantiated type scheme ty', and the mapping from new (instantiated) -to- old (skolem) type variablesGBBCCCCCCCCCC C C C C CCCCCCCCCCCCCCCCCCC C"C!C#C$C%C*C(C&C'C+C)C,C-C.C/C0C1C2C3C4C5C6C7C8C9C:C;C<C=C>C?C@CACBCCCDGCBCCCDC C"C!C#C$C%C*C(C&C'C+C)C,C-C.C/C0C2C3C1C9C5C4C=C>C:CCCC C C C C;BCCCCCCC<C?C@CABC CCCCCCC6CCCCCCCCCCCCC7C8SNoneV& PhAn error Report collects messages categorised by their importance. See Note [Error report] for details.CIeReport unsolved goals as errors or warnings. We may also turn some into deferred run-time errors if `-fdefer-type-errors` is on.CJ`Report *all* unsolved goals as errors, even if -fdefer-type-errors is on However, do not make any evidence bindings, because we don't have any convenient place to put them. See Note [Deferring coercion errors to runtime] Used by solveEqualities for kind equalities (see Note [Fail fast on kind errors] in TcSimplify] and for simplifyDefault.CKReport all unsolved goals as warnings (but without deferring any errors to run-time). See Note [Safe Haskell Overlapping Instances Implementation] in TcSimplifyP,Report unsolved goals as errors or warnings.P(Put a doc into the important msgs block.P+Put a doc into the relevant bindings block.P-Put a doc into the valid substitutions block.PVThis function tries to reconstruct why a "Coercible ty1 ty2" constraint is left over.PExpand type synonyms in given types only enough to make them as similar as possible. Returned types are the same in terms of used type synonyms.To expand all synonyms, see .See ExpandSynsFail tests in tests testsuitetestsAtypecheck/should_fail for some examples of how this should work.CICJCKCLCMCICJCKCLCMTNoneFT&JC_KSee Note [Safe Haskell Overlapping Instances Implementation] in TcSimplifyCReturns Given constraints that might, potentially, match the given pred. This is used when checking to see if a Given might overlap with an instance. See Note [Instance and Given overlap] in TcInteract.C"Remove inert constraints from the CZ?, for use when a typechecker plugin wishes to discard a given.C-Look up a dictionary inert. NB: the returned :I might not match the input exactly. Note [Use loose types in inert set].C)Look up a solved inert. NB: the returned :M might not match the input exactly. See Note [Use loose types in inert set].CThis variant of C} will keep solving, even when only Deriveds are left around. It also doesn't return any evidence, as callers won't need it.C-This can deal only with equality constraints.P.Mark variables as used filling a coercion holeCEqualities onlyCEqualities onlyC&Good for equalities and non-equalitiesC Make a new E of the given type, bound (in the monad's EvBinds) to the given termC-Emit a new Wanted equality into the work-listCMake a new equality CtEvidenceDqChecks if the depth of the given location is too much. Fails if it's too big, with an appropriate error message.C%How to instantiate the type variablesType to instantiate1Result (type vars, preds (incl equalities), rho)Dtype being reduced /CTCUCVCWCXCYCZC[CaC\C^C_C]C`CbCcCdCeCfCgChCiCjCkClCmCnCoCpCqCrCsCtCuCvCwCxCyCzC{C|C}C~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDDDDDDDChCiCjCkClCmCwCxCsCuCvCqCrCnCtCzCoCpCyCCWCCCCCCCCCCCCCCCCCCCCCCTCUCVCCCCCCCCDCDCCCCCCCCCCCCCDDDCCCCCCCCCCCCCbCcCdCeCfCgCZC[CaC\C^C_C]C`CCCCCCCCCCCCCCCCCCCCCCC{CCCCCCXCCCCCCCCCCYC}C|CCC~CCCCCCCCCCCCCCCCC/CCCCCCCCCCCCCCC CDDCCUNone%& P,The result of flattening a tyvar "one step".P;The inert set doesn't make the tyvar equal to anything elsePThe tyvar flattens to a not-necessarily flat other type. co :: new type ~r old type, where the role is determined by the FlattenEnvPThe P monad is a wrapper around CWC with the following extra capabilities: (1) it offers access to a PV; and (2) it maintains the flattening worklist. See Note [The flattening work list].P Change the  in a P.P Change the D in a P.PPUse when flattening kinds/kind coercions. See Note [No derived kind equalities]PLike P), but assumes that every role is nominal.PFlatten a coercion. Really, just flatten the types that it coerces between and then use transitivity. See Note [Flattening coercions]DDDDDDDDDDDDVNone&PCompare types for equality, while zonking as necessary. Gives up as soon as it finds that two types are not equal. This is quite handy when some unification has made two types in an inert wanted to be equal. We can discover the equality without flattening, which is sometimes very expensive (in the case of type functions). In particular, this function makes a ~20% improvement in test case perfcompilerT5030.Returns either the (partially zonked) types in the case of inequality, or the one type in the case of equality. canEqReflexive is a good next step in the L case. Returning L is always safe.NB: This does *not* look through type synonyms. In fact, it treats type synonyms as rigid constructors. In the future, it might be convenient to look at only those arguments of type synonyms that actually appear in the synonym RHS. But we're not there yet.PhDecompose a type application. All input types must be flat. See Note [Canonicalising type applications]<We're able to unwrap a newtype. Update the bits accordingly.PdBreak apart an equality over a casted type looking like (ty1 |> co1) ~ ty2 (modulo a swap-flag)PCall when canonicalizing an equality fails, but if the equality is representational, there is some hope for the future. Examples in Note [Use canEqFailure in canDecomposableTyConApp]P@Call when canonicalizing an equality fails with utterly no hope.PCanonicalise a CFunEqCan. We know that the arg types are already flat, and the RHS is a fsk, which we must *not* substitute. So just substitute in the LHSP%Solve a reflexive equality constraintP :: ty1 ~ ty2ty1 :: ty1 ~ ty1'ty2ty2, with type synonyms DDDDDDD D!D"D# DD"DD#DDDD!D DP0WNone' POIndicates if Instance met the Safe Haskell overlapping instances safety check.See Note [Safe Haskell Overlapping Instances] in TcSimplify See Note [Safe Haskell Overlapping Instances Implementation] in TcSimplifyPGRepresents collections of constraints generated by typechecker pluginsP]Original inputs to the plugins with solved/bad constraints removed, but otherwise unmodifiedPConstraints solved by pluginsP,Constraints reported as insoluble by pluginsP"New constraints emitted by pluginsP9A solved triple of constraints, with evidence for wantedsPCA triple of (given, derived, wanted) constraints to pass to pluginsPExtract the (inert) givens and invoke the plugins on them. Remove solved givens from the inert set and emit insolubles, but return new work produced so that D&( can feed it back into the main solver.PGiven a bag of (flattened, zonked) wanteds, invoke the plugins on them and produce an updated bag of wanteds (possibly with some new work) and a bag of insolubles. The boolean indicates whether D'< should feed the updated wanteds back into the main solver.PzStarting from a triple of (given, derived, wanted) constraints, invoke each of the typechecker plugins in turn and return%the remaining unmodified constraints,"constraints that have been solved,#constraints that are insoluble, and new work.FNote that new work generated by one plugin will not be seen by other plugins on this pass (but the main constraint solver will be re-invoked and they will see it later). There is no check that new work differs from the original constraints supplied to the plugin: the plugin itself should perform this check if necessary.PIf a class is "naturally coherent", then we needn't worry at all, in any way, about overlapping/incoherent instances. Just solve the thing! See Note [Naturally coherent classes] See also Note [The equality class story] in TysPrim.P,Assumes that we've checked that this is the Typeable4 class, and it was applied to the correct argument.PRepresentation for a type ty of the form  arg -> ret.P<Representation for type constructor applied to some kinds. P{ has ensured that this application results in a type of monomorphic kind (e.g. all kind variables have been instantiated).PRepresentation for TyCon applications of a concrete kind. We just use the kind itself, but first we must make sure that we've instantiated all kind- polymorphism, but no more.D&D'D&D'None' <A tcSubsumes which takes into account relevant constraints, to fix trac #14273. Make sure that the constraints are cloned, since the simplifier may perform unificationD*8How should we choose which constraints to quantify over?D+KApply the monomorphism restriction, never quantifying over any constraintsD,ySee Note [TcRnExprMode] in TcRnDriver, the :type +d case; this mode refuses to quantify over any defaultable constraintD-IQuantify over any constraint that satisfies TcType.pickQuantifiablePredsD1{Type-check a thing that emits only equality constraints, then solve those constraints. Fails outright if there is trouble.PDefault any remaining  CallStack constraints to empty  CallStacks.D54Reports whether first type (ty_a) subsumes the second type (ty_b), discarding any errors. Subsumption here means that the ty_b can fit into the ty_a, i.e. `tcSubsumes a b == True` if b is a subtype of a. N.B.: Make sure that the types contain all the constraints contained in any associated implications.PLike =0, but in the TcS monad.<CD*D+D,D-D.D/D0D1D2D3D4D5D6D7D8D9D:D;D<D7D*D+D,D-D8D2D4D0D/D.D3D1D9D6D5<D;D:D<CXNone%N'; D>jExtra information about the parent instance declaration, needed when type-checking associated types. The 2_ is the enclosing class, the [TyVar] are the type variable of the instance decl, and and the  VarEnv Type/ maps class variables to their instance types.D@'The kind expected in a certain context.DAa specific kindDBany kind will doDCsomething of the form TYPE _P2See Note [Validity checking of HasField instances]DPDo validity checks on a type family equation, including consistency with any enclosing class instance head, termination, and lack of polytypes.DRCheck a list of binders to see if they make a valid telescope. The key property we're checking for is scoping. For example: > data SameKind :: k -> k -> * > data X a k (b :: k) (c :: SameKind a b) Kind inference says that a's kind should be k. But that's impossible, because k isn't in scope when a is bound. This check has to come before general validity checking, because once we kind-generalise, this sort of problem is harder to spot (as we'll generalise over the unbound k in a's type.) See also Note [Bad telescopes].DSLike DS, but returns the zonked tyvarsDTAfter inferring kinds of type variables, check to make sure that the inferred kinds any of the type variables bound in a smaller scope. This is a skolem escape check. See also Note [Bad telescopes].PWhen this says True:, ignore this class constraint during a termination checkPTidy before printing a typeP Family tyconType patterns from instance)pretty-printed user-written instance headDPof the type familybound tyvars in the equationbound covars in the equation type patternsrhsuser-written LHSDQpatterns the user wrote."extra" patterns from a data instance kind sig)pretty-printed user-written instance headDTvars to check (zonked)vars out of scopesuffix to error message-//// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1D>D?D@DADBDCDDDEDFDGDHDIDJDKDLDMDNDODPDQDRDSDTDU-D?//// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1DDDED@DADBDCDGDHDQDKDJDLDFD>DNDODPDIDMDRDSDTDUYNone<FTV'M PshowString :: String -> ShowSP(showsPrec :: Show a => Int -> a -> ShowSPshows :: Show a => a -> ShowSPyMake a function binding. If no equations are given, produce a function with the given arity that produces a stock error.PMake a function binding. If no equations are given, produce a function with the given arity that uses an empty case expression for the last argument that is passes to the given function to produce the right-hand side.DhProduces a function binding. When no equations are given, it generates a binding of the given arity and an empty case expression for the last argument that it passes to the given function to produce the right-hand side.DiProduces a function binding. When there are no equations, it generates a binding with the given arity that produces an error based on the name of the type of the last argument.P0A table of postfix modifiers for unboxed values.PLookup ' in an association list.PeMake a top-level binder name for an auxiliary binding for a parent name See Note [Auxiliary binders]DVDWDXDYDZD[D\D]D^D_D`DaDbDcDdDeDfDgDhDiDjDkDlDmDZDVDWDXDYD[D\D]D^D_DaD`DbDcDdDeDfDjDkDlDgDhDiDmZNoneFTV'SKDqDoes not contain variableDrThe variable itselfDs$The variable itself, contravariantlyDt Function typeDu Tuple typeDv(Type app, variable only in last argumentDw.Type app, variable other than in last argumentDx Forall typeDzVariable to look for How to foldType to processDoDpDqDrDtDuDvDxDwDsDyDzD{D|D}D~DoDpDqDrDtDuDvDxDwDsDzD{D|DyD}D~[None <FNTV'jPSee documentation of P; that function uses the fields of this type to interpret the structure of a type when that type is considered as an argument to a constructor that is being represented with Rep1.P argTyFold3 implements a generalised and safer variant of the arg function from Figure 3 in  (http://dreixel.net/research/pdf/gdmh.pdf. arg is conceptually equivalent to: arg t = case t of _ | isTyVar t -> if (t == argVar) then Par1 else Par0 t App f [t'] | representable1 f && t' == argVar -> Rec1 f App f [t'] | representable1 f && t' has tyvars -> f :.: (arg t') _ -> Rec0 twhere argVar_ is the last type variable in the data type declaration we are finding the representation for. argTyFold is more general than arg because it uses P. to abstract out the concrete invocations of Par0, Rec0, Par1, Rec1, and :.:. argTyFold is safer than arg because argN would lead to a GHC panic for some data types. The problematic case is when t0 is an application of a non-representable type f to argVar: App f [argVar] is caught by the _% pattern, and ends up represented as Rec0 t. This type occurs free in the RHS of the eventual Rep1s instance, which is therefore ill-formed. Some representable1 checks have been relaxed, and others were moved to canDoGenerics1.P.Variant of foldr1 for producing balanced listsDDDDDDDDDDDDDD\NoneFT'DA list of wanted D constraints (D2) alongside any corresponding given constraints (D*) and locally quantified type variables (D).In most cases, D will be empty, as most deriving mechanisms (e.g., stock and newtype deriving) do not require given constraints. The exception is DeriveAnyClassw, which can involve given constraints. For example, if you tried to derive an instance for the following class using DeriveAnyClass: class Foo a where bar :: a -> b -> String default bar :: (Show a, Ix b) => a -> b -> String bar = show baz :: Eq a => a -> a -> Bool default baz :: Ord a => a -> a -> Bool baz x y = compare x y == EQ Then it would generate two Ds, one for each method: [ ThetaOrigin { to_tvs = [b] , to_givens = [] , to_wanted_origins = [Show a, Ix b] } , ThetaOrigin { to_tvs = [] , to_givens = [Eq a] , to_wanted_origins = [Ord a] } ] DA !- annotated with the origin of the constraint 99, and whether or the constraint deals in types or kinds.DZContains all of the information known about a derived instance when determining what its EarlyDerivSpec should be.D Is this an overlapping instance?D5Universally quantified type variables in the instanceD-Class for which we need to derive an instanceD,Other arguments to the class except the lastDZType constructor for which the instance is requested (last arguments to the type class)D!Arguments to the type constructorDThe representation tycon for D (for data family instances)DThe representation types for D (for data family instances)DLy: the context of the instance, for standalone deriving. Lx for deriving clauses.DLy@ if user requests a particular deriving strategy. Otherwise, Lx.D0To avoid having to manually plumb everything in D" throughout various functions in TcDeriv and  TcDerivInfer , we use D#, which is a simple reader around ;9.8DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD8DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD]None^'PLike D, but used only in the case of deriving strategies where the constraints are inferred by inspecting the fields of each data constructor (i.e., stock- and newtype-deriving).PLike D, but used only in the case of DeriveAnyClass, which gathers its constraints based on the type signatures of the class's methods instead of the types of the data constructor's field.See Note [Gathering and simplifying constraints for DeriveAnyClass] for an explanation of how these constraints are used to determine the derived instance context.PGiven instance (wanted) => C inst_ty , simplify wanted, as much as possible. Fail if not possible.P C inst_tyC, head of the instance we are deriving. Only used for SkolemInfo.The tyvars bound by inst_ty.Given and wanted constraints1Needed constraints (after simplification), i.e. [!].DDDD^None'GDD_None'DD`None'PAllow  makeStatic to occur anywhere.PAllow  makeStatic calls at the top-level only.P Reject any  makeStatic occurrence.PSee Note [Checking StaticPtrs]P1Checks the RHS of bindings. It only differs from P8 in that it doesn't reject occurrences of the function  makeStatic( when they appear at the top level and 'lf_check_static_ptrs == AllowAtTopLevelZ, and for join points, it skips the outer lambdas that take arguments to the join point.See Note [Checking StaticPtrs].DGThis checks whether a pass correctly looks through debug annotations ( SourceNote). This works a bit different from other consistency checks: We check this by running the given task twice, noting all differences between the results.PRun the given pass without annotations. This means that we both set the debugLevel setting to 0 in the environment as well as all annotations from incoming modules. DDDDDDDDDD DDDDDDDDDDaNone^'P.This environment is used for three operations: fTo support cloning of local Ids so that they are all unique (see item (6) of CorePrep overview).VTo support beta-reduction of runRW, see Note [runRW magic] and Note [runRW arg].To let us inline trivial RHSs of non top-level let-bindings, see Note [lazyId magic], Note [Inlining in CorePrep] and Note #12076(CorePrep inlines trivial CoreExpr not IdP%See Note [Floating Ticks in CorePrep]P Convert a " so it satisfies PW, without producing any floats (any generated floats are immediately let-bound using P). Generally you want this, esp. when you've reached a binding form (e.g., a lambda) and floating any further would be incorrect.P Convert a " so it satisfies P; also produce a list of Pg which are being propagated upwards. In fact, this function is used in only two cases: to implement P~ (which is what you usually want), and in the case when a let-binding is in a case scrutinee--here, we can always float out:Acase (let x = y in z) of ... ==> let x = y in case z of ...PIs an argument okay to CPE?P Helper for D and DP+Like wrapFloats, but only wraps tick floatsPSCollect cost centres defined in the current module, including those in unfoldings.DDDDDDDDDDbNone%'QDDDDDDcNone'PGiven a binding of in_id to in_rhs , and a fresh name to refer to in_id (out_id>, created from addBinder or addRecBinders), first try to CSE in_rhs>, and then add the resulting (possibly CSE'd) binding to the P@, so that we attempt to CSE any expressions which are equal to out_rhs.D Runs CSE on a single expression.{This entry point is not used in the compiler itself, but is provided as a convenient entry point for users of the GHC API.PAdd clones to the substitution to deal with shadowing. See Note [Shadowing] for more details. You should call this whenever you go under a binder.DDDDdNone'dDDDDeNoneD'ƺGDDDDDDDDDDDDDDDDDEEEEEEEEEE E E E E EEEEEEEEEEEEEEEEEEE E!E"E#E$E%E&E'E(E)E*E+E,E-E.E/E0E1E2E3E4E5GDDDDDDDDDDDDDDDDDEEEEEEEEEE E E E E EEEEEEEEEEEEEEEEEEE E!E"E#E$E%E&E'E(E)E*E+E,E-E.E/E0E1E2E3E4E5 None"#D'E8bFinds external references. Remember to remove the names defined by this group of BCOs themselvesUVWE8E9E:E;E9E:E8WUVE;fNone"#NZ'c EBGet the  associated with the given name.4May cause loading the module that contains the name. Throws a . if loading fails or the name cannot be found.EC$Temporarily extend the linker state.ED$Display the persistent linker state.EE,Initialise the dynamic linker. This entails*a) Calling the C initialisation procedure,6b) Loading any packages specified on the command line,Lc) Loading any packages specified on the command line, now held in the -l options in v_Opt_l,d) Loading any .o/.dll7 files specified on the command line, now held in ldInputs, e) Loading any MacOS frameworks.NOTE: This function is idempotent; if called more than once, it does nothing. This is useful in Template Haskell, where we call it before trying to link.EGLink a single expression,  includingE first linking packages and modules that this expression depends on.Raises an IO exception (A) if it can't find a compiled version of the dependents to link.P!Useful to apply to the result of PEJ8Unloading old objects ready for a new compilation sweep.The compilation manager provides us with a list of linkables that it considers "stable", i.e. won't be recompiled this time around. For each of the modules current linked in memory,zif the linkable is stable (and it's the same one -- the user may have recompiled the module on the side), we keep it,otherwise, we unload it.?we also implicitly unload all temporary bindings at this point.EKLink exactly the specified packages, and their dependents (unless of course they are already linked). The dependents are linked automatically, and it doesn't matter what order you specify the input packages.PRetrieve the list of search directory GCC and the System use to find libraries and components. See Note [Fork/Exec Windows].PCache for the GCC search directories as this can't easily change during an invocation of GHC. (Maybe with some env. variable but we'll) deal with that highly unlikely scenario then.P`Get a list of system search directories, this to alleviate pressure on the findSysDll function.EJThe linkables to *keep*. E?E@EAEBECEDEEEFEGEHEIEJEK EBEDEGEHEJECE@EAE?EKEEEIEFgNone"#DK'PcMaps Ids to their stack depth. This allows us to avoid having to mess with it after each push/pop.PePush an atom for constructor (i.e., PACK instruction) onto the stack. This is slightly different to pushAtomE due to the fact that we allow packing constructor fields. See also  mkConAppCode and  pushPadding.P/Indicate if the calling convention is supportedP]Let szsw be the sizes in bytes of some items pushed onto the stack, which has initial depth original_depthL. Return the values which the stack environment should map these items to.'ELEM'ELEMhNone'?EcMonadic because it makes a Name for the coercion TyCon We pass the Name of the parent TyCon, as well as the TyCon itself, because the latter is part of a knot, whereas the former is not.Eh Make the t for this Ee Univ and req Ex and provArgument types Result type,Field labels for a record pattern synonymEaEbEcEdEeEfEgEhEdEeEaEfEcEbEgEh NoneZ(2PReturns true if an ( is for data T (an abstract data type)P Merge two (s together, preferring a non-abstract one. If both are non-abstract we pick one arbitrarily (and check for consistency later.)P Merge two ~s of (s by t.EjOThis is a very interesting function. Like typecheckIface, we want to type check an interface file into a ModDetails. However, the use-case for these ModDetails is different: we want to compare all of the ModDetails to ensure they define compatible declarations, and then merge them together. So in particular, we have to take a different strategy for knot-tying: we first speculatively merge the declarations to get the "base" truth for what we believe the types will be (this is "type computation.") Then we read everything in relative to this truth and check for compatibility.During the merge process, we may need to nondeterministically pick a particular declaration to use, if multiple signatures define the declaration (P). If, for all choices, there are no type synonym cycles in the resulting merged graph, then we can show that our choice cannot matter. Consider the set of entities which the declarations depend on: by assumption of acyclicity, we can assume that these have already been shown to be equal to each other (otherwise merging will fail). Then it must be the case that all candidate declarations here are type-equal (the choice doesn't matter) or there is an inequality (in which case merging will fail.)YUnfortunately, the choice can matter if there is a cycle. Consider the following merge:{signature H where { type A = C; type B = A; data C } signature H where { type A = (); data B; type C = B } If we pick  type A = CU as our representative, there will be a cycle and merging will fail. But if we pick  type A = () as our representative, no cycle occurs, and we instead conclude that all of the types are unit. So it seems that we either (a) need a stronger acyclicity check which considers *all* possible choices from a merge, or (b) we must find a selection of declarations which is acyclic, and show that this is always the "best" choice we could have made (ezyang conjectures this is the case but does not have a proof). For now this is not implemented.mIt's worth noting that at the moment, a data constructor and a type synonym are never compatible. Consider:signature H where { type Int=C; type B = Int; data C = Int} signature H where { export Prelude.Int; data B; type C = B; }:This will be rejected, because the reexported Int in the second signature (a proper data type) is never considered equal to a type synonym. Perhaps this should be relaxed, where a type synonym in a signature is considered implemented by a data type declaration which matches the reference of the type synonym.EkTypecheck a signature 8[ under the assumption that we have instantiated it under some implementation (recorded in 95?) and want to check if the implementation fills the signature.0This needs to operate slightly differently than Ei because (1) we have a ;;r, from the exports of the implementing module, which we will use to give our top-level declarations the correct ss even when the implementor provided them with a reexport, and (2) we have to deal with DFun silliness (see Note [rnIfaceNeverExported])=_True  =# discard IdInfo on IfaceId bindingsP,For associated type/data family declarationsTrue  =# discard IdInfo on IfaceId bindings=Y=Z=[=\=]=^=_@@@EiEjEkElEmEn@@@ElEiEjEk=_=\=[=^=]=Z=YEmEniNoneNQV^(}PInfo about the context in which we're checking a type. Currently, differentiates only between types and kinds, but this will likely grow, at least to include the distinction between patterns and not-patterns.E}%Type-check a visible type applicationPShould we generalise the kind of this type signature? We *should* generalise if the type is closed or if NoMonoLocalBinds is set. Otherwise, nope. See Note [Kind generalisation plan]P`Check and desugar a type, returning the core type and its possibly-polymorphic kind. Much like  tcInferRho at the expression level.PxInfer the kind of a type and desugar. This is the "up" type-checker, as described in Note [Bidirectional type checking]PCall P/ and check its result against an expected kind.EApply a type of a given kind to a list of arguments. This instantiates invisible parameters as necessary. Always consumes all the arguments, using matchExpectedFunKind as necessary. This takes an optional  VarEnv Kind which maps kind variables to kinds. These kinds should be used to instantiate invisible kind variables; they come from an enclosing class for an associated type/data family.PQApplies a type to a list of arguments. Always consumes all the arguments, using B} as necessary. If you wish to apply a type to a list of HsTypes, this is your function. Used for type-checking types only.P Instantiate n# invisible arguments to a type. If n <= 0, no instantiation occurs. If n is too big, then all available invisible arguments are instantiated. (In other words, this function is very forgiving about bad values of n.)E#Instantiate a type to have at most n invisible arguments.E Kind-check a 1<x. If the decl under consideration has a complete, user-supplied kind signature (CUSK), generalise the result. Used in getInitialKind (for tycon kinds and other kinds) and in kind-checking (but not for tycon kinds, which are checked with tcTyClDecls). See also Note [Complete user-supplied kind signatures] in HsDecls.-This function does not do telescope checking.EConvenient specializationP'New unification variable for a wildcardP^Produce a tyvar of the given name (with the kind provided, or otherwise a meta-var kind). If the name is already in scope, return the scoped variable, checking to make sure the known kind matches any kind provided. The second return value says whether the variable is in scope (True) or not (False). (Use this for associated types, for example.)EBring tycon tyvars into scope. This is used during the "kind-checking" pass in TcTyClsDecls. (Never in getInitialKind, never in the "type-checking"/desugaring pass.) Never emits constraints, though the thing_inside might.E Used for the type variables of a type or class decl on the second full pass (type-checking/desugaring) in TcTyClDecls. This is *not* used in the initial-kind run, nor in the "kind-checking" pass. Accordingly, everything passed to the continuation is fully zonked. (tcTyClTyVars T [a,b] thing_inside) where T : forall k1 k2 (a:k1 -> *) (b:k1). k2 -> * calls thing_inside with arguments [k1,k2,a,b] [k1:*, k2:*, Anon (k1 -> *), Anon k1] (k2 -> *) having also extended the type environment with bindings for k1,k2,a,bNever emits constraints.uThe LHsTyVarBndrs is always user-written, and the full, generalised kind of the tycon is available in the local env.EfMake an appropriate message for an error in a function argument. Used for both expressions and types. Pargument typesof these kinds expected kind of the whole tupleEPossibly, kind info (see above)Function (for printing only)Function (could be knot-tied)Function kind (zonked)Args(f args, args, result kind)PFunction (for printing only)Function (could be knot-tied)Function kind (zonked)Args(f args, result kind)P8Predetermined instantiations (for assoc. type patterns) nthe typeits kind The inst'ed type, new args, kindE!Possibly, instantiations for vars nthe typeits kind'The inst'ed type, new args, final kindEof the thing being checked What sort of  is being checkedTrue  =" the decl being checked has a CUSKTrue  =Q all the hsq_implicit are *kind* vars (will give these kind * if -XNoTypeInType))The result kind, possibly with other infoA suitably-kinded TcTyConEdThing inside returns the set of variables bound in the scope. See Note [Scope-check inferred kinds]jreturns augmented bound vars No cloning: returned TyVars have the same Name as the incoming LHsTyVarBndrsPdThing inside returns the set of variables bound in the scope. See Note [Scope-check inferred kinds]Rreturns augmented bound vars See also Note [Associated type tyvar names] in ClassE!Do we require the result to be *?D//// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1D1EoEpEqErEsEtEuEvEwExEyEzE{E|E}E~EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEDEwExEyEvEEsEtEuE{EzE|E}//// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1EEEEEEEEoEpEqErEEEEE~EEEEEEEED1EEEEEEEEEEjNoneFT(4P.If there are no wildcards, return a LHsSigType(:O:P:Q:R:S:T:U:V:W:X:`:a:b:c:d:e:f:g:h:i:j:k;M;NEEEEEEEEEEEEEEEE(:h:i:j:`:a:b:c:d:e:f:g:X:O:P:Q:R:S:T:U:V:W:k;M;NEEEEEEEEEEEEEEEEkNone <FNQTV(DE A variant of E that takes a custom originP:Convenient wrapper for calling a matchExpectedXXX functionE(origin to use if the type needs inst'ing EEEEEEEEEEE EEEEEEEEEEElNoneFT(EEmNone <FQTV(PHWarn the user about polymorphic local binders that lack type signatures. EEEEEEEEE EEEEEEEEEnNone"#FKT(P&A monad within which we will generate KindRep+s. Here we keep an environment containing KindRepIs which we've already generated so we can re-use them opportunistically.PMaps kinds to KindRepW bindings. This binding may either be defined in some other module (in which case the Maybe (LHsExpr Id will be LxT) or a binding which we generated in the current module (in which case it will be Ly the RHS of the binding).Pof TyConP To construct TrName,s The various TyCon and DataCons of KindRepP A group of s in need of type-rep bindings.PBuild exported KindRep% bindings for the given set of kinds.PModule's typerep bindingPPackage name fingerprintPModule name fingerprintPThe s in need of bindings kindsPInformation we need about a / to generate its representation. We carry the 4 in order to share it between the generation of the TyCon and KindRep bindings.EGenerate the Typeable bindings for a module. This is the only entry-point of this module and is invoked by the typechecker driver in  tcRnSrcDecls.1See Note [Grand plan for Typeable] in TcTypeable.P6Generate TyCon bindings for a set of type constructorsP<Generate bindings for the type representation of a wired-in s defined by the virtual GHC.Prim] module. This is where we inject the representation bindings for these primitive types into  GHC.Types2See Note [Grand plan for Typeable] in this module.PThis is the list of primitive *s for which we must generate bindings in  GHC.Types+. This should include all types defined in GHC.Prim.8The majority of the types we need here are contained in  . However, not all of them: in particular unboxed tuples are absent since we don't want to include them in the original name cache. See Note [Built-in syntax and the OrigNameCache] in IfaceEnv for more.PKCollect various tidbits which we'll need to generate TyCon representations.P-Lookup the necessary pieces to construct the  trNameLiti. We do this so we can save the work of repeating lookups when constructing many TyCon representations.Q%Make Typeable bindings for the given .Q^Here is where we define the set of Typeable types. These exclude type families and polytypes.QIs a particular ' representable by Typeablef? Here we look for polytypes and types containing casts (which may be, for instance, a type family).Q We generate KindReps for a few common kinds in  GHC.Types, so that they can be reused across modules.QPerformed while compiling  GHC.Types to generate the built-in KindReps.QRun a P and add the produced KindRep#s to the typechecking environment.QProduce or find a KindRep for the given kind.Q%Construct the right-hand-side of the KindRep for the given  ! and in-scope kind variable set.Q!Produce the right-hand-side of a TyCon representation.Q"the kinds to generate bindings forQin-scope kind variablesthe kind we want a KindRep forQin-scope kind variablesthe kind we want a KindRep forRHS expressionQthe  we are producing a binding forits KindRepEEoNoneFT(Q A monad for type synonym cycle checking, which keeps track of the TyCons which are known to be acyclic, or a failure message reporting that a cycle was found.Q  Test if a s8 is acyclic, short-circuiting if we've seen it already.EChecks if any of the passed in s have cycles. Takes the  of the home package (as we can avoid checking those TyCons: cycles never go through foreign packages) and the corresponding LTyClDecl Name for each (, so we can give better error messages.EEEEEEEEEEEEEEEENone<FT(Q  PatSyn NamePatSyn type (UniBidirExplicitBidir) Whether infixPattern of the PatSynPattern arguments and types Pattern type<Selector names ^ Whether fields, empty if not record PatSynQ Visible field labels<<<<E<<<E<None <FNQTV^(ljQ When the MatchGroup has multiple RHSs, convert an Infer ExpType in the expected type into TauTvs. See Note [Case branches must never infer a non-tau type]QType-check a MatchGroup.<<EEEEEEEEEEEEEEEE<E<EEEEEEEEEEEEEEEpNoneFNQTV(ȇEEqNone FKTVZ]( QGiven a 8. of an instantiated signature (note that the 8G must be knot-tied consistently with the actual implementation) and a  constructed from the implementor of this interface, verify that the actual implementation actually matches the original interface.Note that it is already assumed that the implementation *exports* a sufficient set of entities, since otherwise the renaming and then typechecking of the signature 8 would have failed.Q Checks if a 4' is "defined". In general, for hsig files we can't assume that the implementing file actually implemented the instances (they may be reexported from elsewhere). Where should we look for the instances? We do the same as we would otherwise: consult the EPS. This isn't perfect (we might conclude the module exports an instance when it doesn't, see #9422), but we will never refuse to compile something.QKReturn this list of requirement interfaces that need to be merged to form mod_name, or [] if this is not a requirement.E For a module modname of type   , determine the list of extra "imports" of other requirements which should be considered part of the import of the requirement, because it transitively depends on those requirements by imports of modules from other packages. The situation is something like this:Ounit p where signature A signature B import A&unit q where dependency p[A= A,B= B-] signature A signature BAlthough q's B does not directly import A, we still have to make sure we process A first, because the merging process will cause B to indirectly import A. This function finds the TRANSITIVE closure of all such imports we need to make.EE, but in a convenient form for GhcMake and  TcRnDriver.EGiven a , make sure it is well typed. This is because unit IDs come from Cabal, which does not know if things are well-typed or not; a component may have been filled with implementations for the holes that don't actually fulfill the requirements..INVARIANT: the UnitId is NOT a InstalledUnitIdEETop-level driver for signature instantiation (run when compiling an hsig file.)ECTop-level driver for signature merging (run after typechecking an hsig file).Q The list of ss of *non-exported* (s which this ( may refer to. A non-exported (1 should be kept after thinning if an *exported* ( (or 8, perhaps) refers to it; we can't decide to keep it by looking at the exports of a module after thinning. Keep this synchronized with  rnIfaceDecl.EGiven a local 8), merge all inherited requirements from Q) into this signature, producing a final :? that matches the local signature and all required signatures.EETop-level driver for signature instantiation (run when compiling an hsig file.)QCheck if module implements a signature. (The signature is always un-hashed, which is why its components are specified explicitly.)EGiven :, instantiate a 8 from the indefinite library to use the actual implementations of the relevant entities, checking that the implementation matches the signature. EEEEEEEEEE EEEEEEEEEENone;<=)&OFRun a ;5 action inside the ;3 monad.FRun a ;5 action inside the L monad.Q5Build a set of desugarer environments derived from a :.FRun a ;5& action in the context of an existing 8uF(Get in-scope type constraints (pm check)F(Add in-scope type constraints (pm check)F(Get in-scope term constraints (pm check)F(Add in-scope term constraints (pm check)FxIncrease the counter for elapsed pattern match check iterations. If the current counter is already over the limit, failF<Reset the counter for pattern match check iterations to zeroFUEmit a warning for the current source location NB: Warns whether or not -Wxyz is setFDEmit a warning only if the correct WarnReason is set in the DynFlagsF\Issue an error, but return the expression for (), so that we can continue reporting errors.QQAttempt to load the given module and return its exported entities if successful.F'The COMPLETE* pragams provided by the user for a given .F+=Fail with an error message if the type is levity polymorphic.F,RCheck an expression for levity polymorphism, failing if it is levity polymorphic.F-Runs the thing_inside. If there are no errors, then returns the expr given. Otherwise, returns unitExpr. This is useful for doing a bunch of levity polymorphism checks and then avoiding making a core App. (If we make a core App on a levity polymorphic argument, detecting how to handle the let/app invariant might call isUnliftedType, which panics on a levity polymorphic type.) See #12709 for an example of why this machinery is necessary.QRun a ;5' with DPH things in scope if necessary.Q%Extend the global environment with a & containing the exported entities of,ST iff '-XParallelArrays' specified (see also Q).UV iff  '-fvectorise' specified.QIf '-XParallelArrays'< given, we populate the builtin table for desugaring those.F. Populate ; from ;.F/Get a name from Data.Array.Parallel for the desugarer, from the ;/ component of the global desugerar environment.F0Lookup a name exported by UV or UVA. Panic if there isn't one, or if it is defined multiple times.F1Lookup a name exported by UV or UV, returning Lx; if it's not defined. Panic if it's defined multiple times.F2Inject a trace message into the compiled program. Whereas pprTrace prints out information *while compiling*, pprRuntimeTrace captures that information and causes it to be printed *at runtime* using Debug.Trace.trace.pprRuntimeTrace hdr doc expr*will produce an expression that looks liketrace (hdr + doc) expr\When using this to debug a module that Debug.Trace depends on, it is necessary to import {- SOURCE -} Debug.Trace () in that module. We could avoid this inconvenience by wiring in Debug.Trace.trace, but that doesn't seem worth the effort and maintenance cost.F2headerinformation to output expressiond&$e:::;;;;;;;;;;;;;;;;5<:<@<!Slightly more general version of <R that allows the caller to specify the shape of the result of the syntax operator<bTypecheck a syntax operator The operator is always a variable at this stage (i.e. renamer output)Q5A data type to describe why a variable is not closed.QUType-check the arguments to a function, possibly including visible type applicationsQ=Checks if the given name is closed and emits an error if not.%See Note [Not-closed error messages].<"shape of syntax operator argumentsoverall result typeType check any argumentsQ'The function itself (for err msgs only))the (uninstantiated) type of the function"the origin for the function's typethe args the herald for matchActualFunTys8(a wrapper for the function, the tc'd args, result type)Qshape it is expected to havecheck the arguments@returns a wrapper :: (type of right shape) "->" (type passed in)Qargument shapes result shapecheck the argumentsreturns a wrapper to be applied to the original function, wrappers to be applied to arguments and a wrapper to be applied to the overall expression/?/@/A/B/C/D/a<<<<<< F?F@FAFBFCFDFEFFFGFHFIFJFKF=FBF:F;F?FDF>F@FAFFFGF<FHFIFJFKFCFEvNone)J$F%Use -XStrict to add a ! or remove a ~Examples: ~pat => pat -- when -XStrict (even if pat = ~pat') !pat => !pat -- always pat => !pat -- when -XStrict pat => pat -- otherwiseFUnconditionally make a 0 strict.Futicks to add, possibly The pattern(Expression to which the pattern is bound~Id the rhs is bound to, for desugaring strict binds (see Note [Desugar Strict binds] in DsBinds) and all the desugared bindsFOriginal patternFOriginal patternBanged pattern5EEEEEEEEEFUFVFXFWFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FF5EEEEF^F_EEEEEFUFVFXFWFYFZFbFaFcFdFeFfFjFkFmF`FlFnFoFpFhFgFqFrFsFtFiFwFvFxFyFzF{F|FuF[F\F]F}F~FFwNoneV)L FFFFFFFFFFFF FFFFFFFFFFFFxNone<FT)W Q+Represent result signature of a type familyQ Represent result signature using a Maybe Kind. Used with data families, where the result signature can be either missing or a kind but never a named result variable.Q!1Represent injectivity annotation of a type familyQ" Represent a type variable binderQ##Represent a type wrapped in a MaybeQ$:Construct Core expression for Nothing of a given type nameQ%5Construct Core expression for Nothing of a given typeQ&:Store given Core expression in a Just of a given type nameQ'5Store given Core expression in a Just of a given typeQ$%Name of the TyCon of the element typeQ%The element typeQ&%Name of the TyCon of the element typeQ'The element typeFFyNone)WFFFFFFFFzNone)XHFFFFFFFFFF{None<FT)XFF|NoneFT)iIF}Desugar top level binds, strict binds are treated like normal binds since there is no good time to force before first usage.FDesugar all other kind of bindings, Ids of strict binds are returned to later be forced in the binding group body, see Note [Desugar Strict binds]Q(7Desugar a single binding (or group of recursive binds).Q)yThis is where we apply INLINE and INLINABLE pragmas. All we need to do is to attach the unfolding information to the Id.5Other decisions about whether to inline are made in calcUnfoldingGuidance_ but the decision about whether to then expose the unfolding in the interface file is made in bW using this information.Q* Returns a CoreExpr :: TypeRep tyQ(The Ids of strict binds, to be forced in the body of the binding group see Note [Desugar Strict binds] and all bindings and their desugared right hand sides.Q+ EvTerm for  Typeable ty The type tyReturn CoreExpr :: TypeRep ty namely  typeRep# dictI Remember that typeRep# :: forall k (a::k). Typeable k a -> TypeRep a FFFFFFFFF FFFFFFFFF}NoneFT)iFFFF~None&'-FN)KQ,^The arity of a pattern/pattern vector is the number of top-level patterns that are not guardsQ-Either a list of patterns that are not covered, or their type, in case we have no patterns at hand. Not having patterns at hand can arise when handling EmptyCase expressions, in two cases:JThe type of the scrutinee is a trivially inhabited type (like Int or Char)4The type of the scrutinee cannot be reduced to WHNF.-In both these cases we have no inhabitation candidates for the type at hand, but we don't want to issue just a wildcard as missing. Instead, we print a type annotated wildcard, so that the user knows what kind of patterns is expected (e.g. (_ :: Int), or (_ :: F Int), where F Int does not reduce).Q.Pattern check resultRedundant clauses?Not-covered clauses (or their type, if no pattern is available)Clauses with inaccessible RHSMore details about the classification of clauses into useful, redundant and with inaccessible right hand side can be found here: 7https://ghc.haskell.org/trac/ghc/wiki/PatternMatchCheckQ/4When we learned that a given match group is completeQ09From the original definition of the type constructor.Q1From a user-provided COMPLETE pragmaQ2Term and type constraints to accompany each value vector abstraction. For efficiency, we store the term oracle state instead of the term constraints. TODO: Do the same for the type constraints?Q3Value Vector AbstractionsQ4The empty pattern check resultQ5:Non-exhaustive empty case with unknown/trivial inhabitantsF$Check a single pattern binding (let)Q6$Check a single pattern binding (let)F*Check a matchgroup (case, functions, etc.)Q7Check a matchgroup (case, functions, etc.). To be called on a non-empty list of matches. For empty case expressions, use checkEmptyCase' instead.Q8Check an empty case expression. Since there are no clauses to process, we only compute the uncovered set. See Note [Checking EmptyCase Expressions] for details.FReturns Lq if the argument '@ is a fully saturated application of a closed type constructor.Closed type constructors are those with a fixed right hand side, as opposed to e.g. associated types. These are of particular interest for pattern-match coverage checking, because GHC can exhaustively consider all possible forms that values of a closed type can take on.qNote that this function is intended to be used to check types of value-level patterns, so as a consequence, the '= supplied as an argument to this function should be of kind Type.FkGet rid of *outermost* (or toplevel) * type function redex * data family redex * newtypesBehaves exactly like $, but instead of returning a coercion, it returns useful information for issuing pattern matching warnings. See Note [Type normalisation for EmptyCase] for details.Q9Generate all inhabitation candidates for a given type. The result is either (Left ty), if the type cannot be reduced to a closed algebraic type (or if it's one trivially inhabited, like Int), or (Right candidates), if it can. In this case, the candidates are the signature of the tycon, each one accompanied by the term- and type- constraints it gives rise to. See also Note [Checking EmptyCase Expressions]Q:IA fake guard pattern (True <- _) used to represent cases we cannot handleQ;ECheck whether a guard pattern is generated by the checker (unhandled)Q< Generate a canFail" pattern vector of a specific typeQ=,Create an empty list pattern of a given typeQ>)Create a (non-overloaded) literal patternQ?%Translate an overloaded literal (see tidyNPat in deSugar/MatchLit.hs)Q@{Translate a list of patterns (Note: each pattern is translated to a pattern vector but we do not concatenate the results).QATranslate a constructor patternQB8Translate a list of guard statements to a pattern vectorQC)Check whether a pattern can fail to matchQD&Translate a guard statement to PatternQETranslate let-bindingsQFTranslate a pattern guardQGTranslate a boolean guardQHGet the type out of a PmPat. For guard patterns (ps <- e) we use the type of the first (or the single -WHEREVER IT IS- valid to use?) patternQIvGenerate a value abstraction for a given constructor (generate fresh variables of the appropriate type for arguments)QJCreate a guard patternQK9Create a term equality of the form: `(False ~ (x ~ lit))`QL/Create a term equality of the form: `(x ~ lit)`QMUCreate a term equality of the form: `(x ~ x)` (always discharged by the term oracle)QN+Generate a variable pattern of a given typeQO6Generate many variable patterns, given a list of typesQPGenerate a fresh  of a given typeQQtGenerate a fresh term variable of a given and return it in two forms: * A variable pattern * A variable expressionQR)Convert a value abstraction an expressionQSuConvert a pattern vector to a list of value abstractions by dropping the guards (See Note [Translating As Patterns])QTConvert a pattern to a list of value abstractions (will be either an empty list if the pattern is a guard pattern, or a singleton list in all other cases) by dropping the guards (See Note [Translating As Patterns])QUKCheck whether a data constructor is the only way to construct a data type.QV{For a given conlike, finds all the sets of patterns which could be relevant to that conlike by consulting the result type.lThese come from two places. 1. From data constructors defined with the result type constructor. 2. From COMPLETE] pragmas which have the same type as the result type constructor. Note that we only use COMPLETE< pragmas *all* of whose pattern types match. See #14135QW7Check whether a set of type constraints is satisfiable.QX%Compute the arity of a pattern vectorQYCompute the arity of a patternQZLift a pattern matching action from a single value vector abstration to a value set abstraction, but calling it on every vector and the combining the results.Q[jGenerate the initial uncovered set. It initializes the delta with all term and type constraints in scope.Q\fIncrease the counter for elapsed algorithm iterations, check that the limit is not exceeded and call Q]Q^fIncrease the counter for elapsed algorithm iterations, check that the limit is not exceeded and call Q_Q`fIncrease the counter for elapsed algorithm iterations, check that the limit is not exceeded and call QaQ]Matching function: Check simultaneously a clause (takes separately the patterns and the list of guards) for exhaustiveness, redundancy and inaccessibility.Q_Check the list of guardsQaWWorker function: Implements all cases described in the paper for all three functions (covered,  uncovered and  divergent) apart from the Guard cases which are handled by Q]QbFInitialise with default values for covering and divergent information.QcCTake the tail of all value vector abstractions in the uncovered setQdRPrepend a value abstraction to all value vector abstractions in the uncovered setQe"Given a data constructor of arity a^ and an uncovered set containing value vector abstractions of length `(a+n)`, pass the first nj value abstractions to the constructor (Hence, the resulting value vector abstractions will have length `n+1`)QfGet the union of two covered, uncovered and divergent value set abstractions. Since the covered and divergent sets are represented by a boolean, union means computing the logical or (at least one of the two is non-empty).QgFAdd a value vector abstraction to a value set abstraction (uncovered).Qh"Set the divergent set to not emptyQi2Set the divergent set to non-empty if the flag is LqFGenerate equalities when checking a case expression: case x of { p1 -> e1; ... pn -> en } When we go deeper to check e.g. e1 we record two equalities: (x ~ y), where y is the initial uncovered when checking (p1; .. ; pn) and (x ~ p1).FGenerate a simple equality when checking a case expression: case x of { matches } When checking matches we record that (x ~ y) where y is the initial uncovered. All matches will have to satisfy this equality.FCheck whether any part of pattern match checking is enabled (does not matter whether it is the redundancy check or the exhaustiveness check).QjApply a term substitution to a value vector abstraction. All VAs are transformed to PmExpr (used only before pretty printing).QkWrap up the term oracle's state once solving is complete. Drop any information about unhandled constraints (involving HsExprs) and flatten (height 1) the substitution.QlBIssue all the warnings (coverage, exhaustiveness, inaccessibility)QmcIssue a warning when the predefined number of iterations is exceeded for the pattern match checkerQnICheck whether the exhaustiveness checker should run (exhaustiveness only)QoLDenotes whether an exhaustiveness check is supported, and if so, via which   it's controlled. Returns Lx if check is not supported.QpValue Set AbstractionsQqPattern VectorsQrValue AbstractionsQsPatternsFFFFFFFFFFFFFFtNoneFT)FLFMFNFOFFOFFNFMFLNone$FT)GQt'the desugared rhs of the bind statement S in (>>=) :: Q -> (R -> S) -> TFFFFFFNoneFT)FFuNoneFT^*MFS Variant of FR that ensures that the result is not levity polymorphic. This should be used when the resulting expression will be an argument to some other function. See Note [Levity polymorphism checking] in DsMonad See Note [Levity polymorphism invariants] in CoreSynQu4The longest list length which we will desugar using build.This is essentially a magic number and its setting is unfortunate rather arbitrary. The idea here, as mentioned in Note [Desugaring explicit lists], is to avoid deforesting large static data into large(r) code. Ideally we'd want a smaller threshold with larger consumers and vice-versa, but we have no way of knowing what will be consuming our list in the desugaring impossible to set generally correctly.0The effect of reducing this number will be that buildP fusion is applied less often. From a runtime performance perspective, applying build more liberally on "moderately" sized lists should rarely hurt and will often it can only expose further optimization opportunities; if no fusion is possible it will eventually get rule-rewritten back to a list). We do, however, pay in compile time.QvTakes an expression and its instantiated type. If the expression is an HsVar with a hasNoBinding primop and the type has levity-polymorphic arguments, issue an error. See Note [Detecting forced eta expansion]QwIs this a hasNoBinding Id with a levity-polymorphic type? Returns the arguments that are levity polymorphic if they are bad; or an empty list otherwise See Note [Detecting forced eta expansion]FPFQFRFSFTFFFTFRFSFPFFFQNoneFT*FrConstruct default instances for any associated types that aren't given a user definition Returns [] or singletonFFFFFFFFFFFFFFFFFFFFFFFFFFFFNoneFT*F%Stuff needed to process a datatype's  `deriving` clausesFUThe data tycon for normal datatypes, or the *representation* tycon for data familiesF error contextFExtract  `deriving`2 clauses of proper data type (skips data families)QxProcess a single class in a  `deriving` clause.FFFFFFFFFFFFFFNoneFNT^*3QyCMaybe return a list of Bools that say whether a type family was declared injective in the corresponding type arguments. Length of the list is equal to the number of arguments (including implicit kind/coercion arguments). True on position N means that a function is injective in its Nth argument. False means it is not.QzFrom information about a source datacon definition, extract out what the universal variables and the GADT equalities should be. See Note [mkGADTVars].Q{9Check for ill-scoped telescopes in a tycon. For example: idata SameKind :: k -> k -> * -- this is OK data Bad a (c :: Proxy b) (d :: Proxy a) (x :: SameKind b d)The problem is that bG should be bound (implicitly) at the beginning, but its kind mentions a^, which is not yet in scope. Kind generalization makes a mess of this, and ends up including a twice in the final tyvars. So this function checks for duplicates and, if there are any, produces the appropriate error message.Q|Family TyCon (not knot-tied)DefaultsType checked RHSQ}Eqn LHS (for errors only)Eqn RHSInferred kind of left-hand side(New pats, inst'ed kind of left-hand sideF:Possibly, instantiations for vars (associated types only)%the kind of the tycon applied to patsthe kind signature might force instantiation of the tycon; this returns any extra args and the inst'ed kind See Note [Instantiating a family tycon] Used for 'data instance' only Ordinary 'data' is handled by kcTyClDecQ~The tycon varsThe datacon varsIThe matching between the template result type and the actual result typeiThe univ. variables, the GADT equalities, and a subst to apply to the GADT equalities and existentials. EFFFFFFFFFFFF FEFFFFFFFFFFFNone<FT*7"FUse DerivInfo for data family instances (produced by tcInstDecls1), datatype declarations (TyClDecl), and standalone deriving declarations (DerivDecl) to check and process all derived class instances.FFFFFFNone FKTVZ]*g<rCompares two things for equivalence between boot-file and normal code, reporting an error if they don't match up.F3How should we infer a type? See Note [TcRnExprMode]F"Instantiate the type fully (:type)F&Do not instantiate the type (:type +v)F#Default the type eagerly (:type +d)Q9A plan is an attempt to lift some code into the IO monad.F1Top level entry point for typechecker and renamerQdRuns TH finalizers and renames and typechecks the top-level declarations that they could introduce.FTCompares the two things for equivalence between boot-file and normal code. Returns Nothing on success or !Just "some helpful info for user"; failure. If the difference will be apparent to the user,  Just empty is perfectly suitable.Q%Combines two potential error messagesQ9If the test in the first parameter is True, succeed with Nothing'; otherwise, return the provided checkQRun the check provided for every pair of elements in the lists. The provided SDoc should name the element type, in the plural.Q9If the test in the first parameter is True, succeed with Nothing'; otherwise, fail with the given SDoc.QA more perspicuous name for Nothing, for  checkBootDecl and friends.QRWarn on local definitions of names that would clash with future Prelude elements.A name clashes if the following criteria are met: 1. It would is imported (unqualified) from Prelude 2. It is locally defined in the current module 3. It has the same literal name as the reference function 4. It is not identical to the reference functionQGet the unqualified name of the function to use as the "main" for the main module. Either returns the default name or the one configured on the command line with -main-isFThe returned [Id] is the list of new Ids bound by this statement. It can be used to extend the InteractiveContext via extendInteractiveContext.`The returned TypecheckedHsExpr is of type IO [ () ], a list of the bound values, coerced to ().QbTry the plans in order. If one fails (by raising an exn), try the next. If one succeeds, take it.QTypecheck (and lift4) a stmt entered by the user in GHCi into the GHCi  environment.By lift and 'environment we mean that the code is changed to execute properly in an IO monad. See Note [Interactively-bound Ids in GHCi] in HscTypes for more details. We do this lifting by trying different ways (plansX) of lifting the code into the IO monad and type checking each plan until one succeeds.QcTypecheck the statements given and then return the results of the statement in the form 'IO [()]'.QAGenerate a typed ghciStepIO expression (ghciStep :: Ty a -> IO a)F-tcRnExpr just finds the type of an expressionF)ASSUMES that the module is either in the 8 or is a package module with an interface on disk. If neither of these is true, then the result will be an error indicating the interface could not be found.F8Find all the Names that this RdrName could mean, in GHCi<True  =& an hs-boot file (could also be a sig)QInstances of this ... should also be instances of this <<<EEEEEEEFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFEEEEEEEF<<<Q0NoneFT*iF"Main entry point to the desugarer.FFFFNone*v+F0Holds the names of the types and functions from UV" that are used by the vectoriser.GPArrayGPDataGPDatasGPRGPRGPReprGPAGPAG PAG PAG  replicatePDG replicatePD_Int# etc.G emptyPDGemptyPD_Int# etc.G packByTagPDGpackByTagPD_Int# etc.G combinePDGcombine2PD_Int# etc.GScalarGmap, zipWith, zipWith3GVoidGvoidGfromVoidG Sum2 .. Sum3GWrapGpvoidGpvoidsG:->GclosureG liftedClosureG$:G  liftedApplyG!closure1 .. closure3G"Sel2G#Sels2G$ lengthSels2G% replicate2G&tagsSel2G'!elementsSel2_0 .. elementsSel_2_1G(lcQ)Get an element from one of the arrays of F4. Panic if the indexed thing is not in the array.QGet an entry from one of a z of F.. Panic if the named item is not in the array.Q4Name of the selector we've used, for panic messages.Field selector for the F.Index into the array.?FGGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G)G*G+G,G-G.G/G0G1G2G3G4G5G6G7G8G9G:G;G<G=?G)G*G+G,G-FGGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G.G/G1G2G3G0G4G5G6G7G8G9G:G;G<G=None*~G>6Create the initial map of builtin types and functions.G?DGet the mapping of names in the Prelude to names in the DPH library.QALookup a variable given its name and the module that contains it.QLike Q but wrap the  in a ".Q Lookup a  in UV-, given its name. Panic if there isn't one.Q Lookup some ' in UV, given its name.Q Lookup a 2 in UV, given its name.G>G?G>G?XNone*~=FGGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G,G.G/G0G1G2G3G4G5G6G7G8G9G:G;G<G=G>G?=G,FGGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G.G/G1G2G3G0G4G5G6G7G8G9G:G;G<G=G>G?None*pG@9The global environment: entities that exist at top-level.GBLq3 implies to avoid vectorisation as far as possible.GCZMapping from global variables to their vectorised versions  aka the /vectorisation map/.GDThe domain of GC.TThis information is not redundant as it is impossible to extract the domain from a  (which is keyed on uniques alone). Moreover, we have mapped variables that do not involve parallelism  e.g., the workers of vectorised, but scalar data types. In addition, workers of parallel data types that we could not vectorise also need to be tracked.GEMapping from global variables that have a vectorisation declaration to the right-hand side of that declaration and its type and mapping variables that have NOVECTORISE declarations to Lx.GFMapping from TyCons to their vectorised versions. The vectorised version will be identical to the original version if it is not changed by vectorisation. In any case, if a tycon appears in the domain of this mapping, it was successfully vectorised.GGdType constructors whose definition directly or indirectly includes a parallel type, such as '[::]'.ONB: This information is not redundant as some types have got a mapping in GF (to a type other than themselves) and are still not parallel. An example is '(->)'. Moreover, some types have *not* got a mapping in GFN (because they couldn't be vectorised), but still contain parallel types.GH3Mapping from DataCons to their vectorised versions.GI&Mapping from TyCons to their PA dfuns.GJ&Mapping from TyCons to their PR dfuns.GKFExternal package inst-env & home-package inst-env for class instances.GLGExternal package inst-env & home-package inst-env for family instances.GMKHoisted bindings  temporary storage for toplevel bindings during code gen.GNThe local environment.GPEMapping from local variables to their vectorised and lifted versions.GQIn-scope type variables.GR-Mapping from tyvars to their PA dictionaries.GSXLocal binding name. This is only used to generate better names for hoisted expressions.GT2Indicates what scope something (a variable) is in.GW"Create an empty local environment.GX%Create an initial global environment.We add scalar variables and type constructors identified by vectorisation pragmas already here to the global table, so that we can query scalarness during vectorisation, and especially, when vectorising the scalar entities' definitions themselves.GY6Extend the list of global variables in an environment.GZ)Extend the list of type family instances.G[/Set the list of PA functions in an environment.G\/Set the list of PR functions in an environment.G]1Compute vectorisation information that goes into 8u3 (and is stored in interface files). The incoming vectInfo is that from the 8 and 8 . The outgoing one contains only the declarations for the currently compiled module; this includes variables, type constructors, and data constructors referenced in VECTORISE pragmas, even if they are defined in an imported module.;The variables explicitly include class selectors and dfuns.G@GAGLGBGCGDGEGFGGGHGIGJGKGMGNGOGPGQGRGSGTGVGUGWGXGYGZG[G\G]GTGVGUGNGOGPGQGRGSGWG@GAGLGBGCGDGEGFGGGHGIGJGKGMGXGYGZG[G\G]None*ȵGaVectorisation can either succeed with new envionment and a value, or return with failure (including a description of the reason for failure).Gd;Lift a desugaring computation into the vectorisation monad.GeThrow a % saying we can't vectorise something.GfLike fromJust, but  on Nothing.GgLike Gf but in a L#.Gh4Output a trace message if -ddump-vt-trace is active.Gi4Output a trace message if -ddump-vt-trace is active.Gj%Dump the given program conditionally.Gk'Dump the given program unconditionally.Gl'Return some result saying we've failed.GmLike Gm, but also emit some trace message to stderr.GnIf Lq then carry on, otherwise fail.GoLike Gn7 but if we fail then emit some trace message to stderr.GpIf Lq0 then return the first argument, otherwise fail.Gq"Try some vectorisation computaton.If it succeeds then return Ly the result; otherwise, return Lx# after emitting a failure message.Gr"Try some vectorisation computaton.If it succeeds then return Ly the result; otherwise, return Lx% without emitting a failure message.GsIf Ly' then return the value, otherwise fail.GtLike Gs) but emit a message to stderr if we fail.GuTry the first computation,,if it succeeds then take the returned value,Uif it fails then run the second computation instead while emitting a failure message.GvTry the first computation,,if it succeeds then take the returned value,Wif it fails then run the second computation instead without emitting a failure message.Gw$Fixpoint in the vectorisation monad.G^G_G`GaGcGbGdGeGfGgGhGiGjGkGlGmGnGoGpGqGrGsGtGuGvGwGaGcGbG^G_G`GdGeGfGgGhGiGjGkGlGmGnGoGpGrGqGsGtGvGuGwNone* G}.Project something from the global environment.G~(Set the value of the global environment.G:Update the global environment using the provided function.G2Should we avoid as much vectorisation as possible?'Set by '-f[no]-vectorisation-avoidance'GKAdd a mapping between a global var and its vectorised version to the state.G:Remove the mapping of a variable in the vectorisation map.G9Check whether a variable has a vectorisation declaration.GThe first component of the result indicates whether the variable has a  NOVECTORISEX declaration. The second component contains the given type and expression in case of a  VECTORISE declaration.G)Get the set of global parallel variables.GGet the set of all parallel type constructors (those that may embed parallelism) including both both those parallel type constructors declared in an imported module and those declared in the current module.G&Determine the vectorised version of a a. The vectorisation map in the global environment contains a vectorised version if the original  embeds any parallel arrays.G+Add a mapping between plain and vectorised s to the global environment.nThe second argument is only to enable tracing for (mutually) recursively defined type constructors, where we must note pull at the vectorised type constructors (because that would pull too early at the recursive knot).G+Add a mapping between plain and vectorised s to the global environment.G0Get the set of all vectorised type constructors.G#Lookup the vectorised version of a  from the global environment.G-Add the mapping between plain and vectorised s to the global environment.G Lookup the PAA dfun of a vectorised type constructor in the global environment.G>Associate vectorised type constructors with the dfun of their PA& instances in the global environment.G}G~GGGGGGGGGGGGGGGGG}G~GGGGGGGGGGGGGGGGNone*GGGGGGNone* G-Project something from the local environment.GSet the local environment.G3Update the environment using the provided function.GnPerform a computation in its own local environment. This does not alter the environment of the current state.G4Perform a computation in an empty local environment.G=Get the name of the local binding currently being vectorised.GaRun a vectorisation computation in a local environment, with this id set as the current binding.G.Lookup a PA tyvars from the local environment.G%Add a tyvar to the local environment.GGAdd mapping between a tyvar and pa dictionary to the local environment.G1Get the set of tyvars from the local environment. GGGGGGGGGGG GGGGGGGGGGGNone+ GSCreate a localised variant of a name, using the provided function to transform its t.EIf the name external, encode the original name's module into the new t1. The result is always an internal system name.G%Produce the vectorised variant of an a with the given vectorised type, while taking care that vectorised dfun ids must be dfuns again.Force the new name to be a system name and, if the original was an external name, disambiguate the new name with the module name of the original.G5Make a fresh instance of this var, with a new unique.G3Make a fresh exported variable with the given type.GuMake a fresh local variable with the given type. The variable's name is formed using the given string as the prefix.GMake several fresh local variables with the given types. The variable's names are formed using the given string as the prefix.G Make a new local dummy variable.GtMake a fresh type variable with the given kind. The variable's name is formed using the given string as the prefix.G3Make a fresh coercion variable with the given kind. GGGGGGGGGG GGGGGGGGGGNone+ FG Run a vectorisation computation.G(Lift a desugaring computation using the F into the vectorisation monad.G+Project something from the set of builtins.GLift a function using the F into the vectorisation monad.GKLookup the vectorised, and if local, also the lifted version of a variable.@If it's in the global environment we get the vectorised version.OIf it's in the local environment we get both the vectorised and lifted version.GuMark the given variable as parallel  i.e., executing the associated code might involve parallel array computations.G[Mark the given type constructor as parallel  i.e., its values might embed parallel arrays.LG^G_G`GaGcGbGdGeGfGgGhGiGjGkGlGmGnGoGpGqGrGsGtGuGvGwG}G~GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGNone+#bGFrom a list of type constructors, extract those that can be vectorised, returning them in two sets, where the first result list must be' vectorised and the second result list  need not be vectorised. The third result list are those type constructors that we cannot convert (either because they use language extensions or because they dependent on type constructors for which no vectorised version is available).NB: In order to be able to vectorise a type constructor, we require members of the depending set (i.e., those type constructors that the current one depends on) to be vectorised only if they are also parallel (i.e., appear in the second argument to the function)."The first argument determines the conversion status* of external type constructors as follows:3tycons which have converted versions are mapped to Lq<tycons which are not changed by vectorisation are mapped to Lpmtycons which haven't been converted (because they can't or weren't vectorised) are not elements of the mapQGCollect the set of TyCons used by the representation of some data type.Q4Collect the set of TyCons that occur in these types.Q2Collect the set of TyCons that occur in this type.G%type constructor vectorisation status tycons involving parallel arrays,type constructors that need to be classifiedGGNone+1G:Contains the vectorised and lifted versions of some thing.G&Get the vectorised version of a thing.G"Get the lifted version of a thing.GJApply some function to both the vectorised and lifted versions of a thing.QCCombine vectorised and lifted versions of two things componentwise.G&Get the type of a vectorised variable.G6Wrap a vectorised variable as a vectorised expression.G2Wrap a vectorised type as a vectorised expression.GMake a vectorised note.G(Make a vectorised non-recursive binding.G$Make a vectorised recursive binding.G!Make a vectorised let expression.G%Make a vectorised lambda abstraction.2The lifted version also binds the lifting context lc.G3Apply an expression to a set of argument variables.JThe lifted version is also applied to the variable of the lifting context.G!Var bound to the lifting context.#Parameter vars for the abstraction.Body of the abstraction.GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGNone+NxGMake an application of the Wrap type constructor.G4Make an application of the closure type constructor.GMake an application of the PRepr type constructor.GMake an application of the PData tycon to some argument.GMake an application of the PDatas tycon to some argument.G+Checks if a type constructor is defined in V (e.g., 'Int#'); if so, returns it.G6Make a representational coercion to some builtin type.G%Apply the constructor wrapper of the Wrap newtype.G%Strip the constructor wrapper of the Wrap newtype.G%Apply the constructor wrapper of the PData newtype instance of Wrap.G%Strip the constructor wrapper of the PData newtype instance of Wrap.G%Apply the constructor wrapper of the PDatas newtype instance of Wrap.G%Strip the constructor wrapper of the PDatas newtype instance of Wrap.G$Get the representation tycon of the PData data family for a given type.ZThis tycon does not appear explicitly in the source program  see Note [PData TyCons] in YZ: #pdataReprTyCon {Sum2} = {PDataSum2} The type for which we look up a PData instance may be more specific than the type in the instance declaration. In that case the second component of the result will be more specific than a set of distinct type variables.G$Get the representation tycon of the PData* data family for a given type constructor.+For example, for a binary type constructor TH, we determine the representation type constructor for 'PData (T a b)'.G$Get the representation tycon of the PDatas* data family for a given type constructor.+For example, for a binary type constructor TI, we determine the representation type constructor for 'PDatas (T a b)'.G Unwrap a PData representation scrutinee.G$Get the representation tycon of the PRepr type family for a given type.GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGNone+]HGsConstruct the PA argument type for the tyvar. For the tyvar (v :: *) it's just PA v. For (v :: (* -> *) -> *) it's Eforall (a :: * -> *). (forall (b :: *). PA b -> PA (a b)) -> PA (v a)G#Get the PA dictionary for some typeG,Produce code that refers to a method of the PA class.Q Given a type ty, return the PR dictionary for PRepr ty.G Given a type tyA, its PRepr synonym tycon and its type arguments, return the PR PRepr ty. Suppose we have: %type instance PRepr (T a1 ... an) = t#which is internally translated into type :R:PRepr a1 ... an = t%and the corresponding coercion. Then, JprDictOfPReprInstTyCon (T a1 ... an) :R:PRepr u1 ... un = PR (T u1 ... un) Note that ty is only used for error messagesGNGet the PR dictionary for a type. The argument must be a representation type.Q`Apply a tycon's PR dfun to dictionary arguments (PR or PA) corresponding to the argument types.GGGGGGGGGGNone+gGVectorise under the PA? dictionary variables corresponding to a set of type arguments.dThe dictionary variables are new local variables that are entered into the local vectorisation map.<The purpose of this function is to introduce the additional PAJ dictionary arguments that are needed when vectorising type abstractions.GDetermine the number of PAU dictionary arguments required for a set of type variables (depends on their kinds).G4Apply a expression to its type arguments as well as PA' dictionaries for these type arguments.GGApply a vectorised expression to a set of type arguments together with PA( dictionaries for these type arguments.GGGGGGGGNone+p?G6Records whether we should inline a particular binding.G%Add to the arity contained within an G , if any.G Says to always inline a binding.GjHoist a polymorphic vectorised expression into a new top-level binding (representing a closure function).The hoisted expression is parameterised by (1) a set of type variables and (2) a set of value variables that are passed as conventional type and value arguments. The latter is implicitly extended by the set of PA. dictionaries required for the type variables. GGGGGGGGGG GGGGGGGGGGNone+GMake a closure.GMake a closure application.GBuild a set of n closures corresponding to an n^-ary vectorised function. The length of the list of types of arguments determines the arity.[In addition to a set of type variables, a set of value variables is passed during closure  constructiona. In contrast, the closure environment and the arguments are passed during closure application.GType of the argument.Type of the result.Type of the environment.The function to apply.The environment to use.GType of the argument.Type of the result.Closure to apply.Argument to use.G2Type variables passed during closure construction.-Variables passed during closure construction.Variables in the environment.Type of the arguments.Type of result.Q2Type variables passed during closure construction.-Variables passed during closure construction.Variables in the environment.Type of the closure argument.Type of the result.GGGGGGNone+xG@Collect all consecutive value binders that are not dictionaries.G!An empty array of the given type.G6Produce an array containing copies of a given element.GmSelect some elements from an array that correspond to a particular tag value and pack them into a new array. ZpackByTagPD Int# [:23, 42, 95, 50, 27, 49:] 3 [:1, 2, 1, 2, 3, 2:] 2 ==> [:42, 50, 49:]GCombine some arrays based on a selector. The selector says which source array to choose for each element of the resulting array.GLike G5 but use the lifting context in the vectoriser state.G(Number of copies in the resulting array.Value to replicate.G Element type. Source array.Length of resulting array.'Tag values of elements in source array.)The tag value for the elements to select.G Element typeLength of resulting array Selector.Arrays to combine.9GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGNone+PGVectorise a type constructor. Unless there is a vectorised version (stripped of embedded parallel arrays), the vectorised version is the same as the original.G5Produce the vectorised and lifted versions of a type.zNB: Here we are limited to properly handle predicates at the toplevel only. Anything embedded in what is called the body_ty5 below will end up as an argument to the type family PData.GVectorise a type.For each quantified var we need to add a PA dictionary out the front of the type. So forall a. C a => a -> a turns into forall a. PA a => Cv a => a :-> aQEAdd quantified vars and dictionary parameters to the front of a type.GGGGGGNoneN+G:Vectorise a binder variable, along with its attached type.GZVectorise a binder variable, along with its attached type, but give the result a new name.GDVectorise a binder then run a computation with that binder in scope.GYVectorise a binder, give it a new name, then run a computation with that binder in scope.HBVectorise some binders, then run a computation with them in scope.HCVectorise a variable, producing the vectorised and lifted versions.HEConstants are lifted by replication along the integer context in the G^7 state for the number of elements in the result array.GGGGHHHGGGGHHHNone+eH@Vectorise some (possibly recursively defined) type constructors.Q$Vectorise a single type constructor.QKVectorise a class method. (Don't enter it into the vectorisation map yet.)Q Convert a / to a  *, which discards the name field in the DefMeth constructor of the DefMeth.Q'Vectorise the RHS of an algebraic type.QKVectorise a data constructor by vectorising its argument and return types..HHNone+7HbConvert a vectorised expression such that it computes the non-vectorised equivalent of its value.OFor functions, we eta expand the function and convert the arguments and result:QCheck that the type is neutral under type vectorisation  i.e., all involved type constructor are not altered by vectorisation as they contain no parallel arrays.QpCheck that this type constructor is not changed by vectorisation  i.e., it does not embed any parallel arrays.H!The type of the original binding.)Expression giving the closure to use, eg $v_foo.HHNone+H>Describes the representation type of a data constructor field.HDescribes the representation type of the fields / components of a constructor. If the data constructor has multiple fields then we bundle them together into a generic product type.H Data constructor has no fields.H $Data constructor has a single field.H $Data constructor has several fields.H 0Representation tycon for the product (eg Tuple2)H 5PData version of the product tycon (eg PDataTuple2)HWPDatas version of the product tycon (eg PDatasTuple2s) Not all lifted backends use PDatas.HTypes of each field.H,Generic representation types for each field.H8Describes the representation type of a data constructor.HDescribes the generic representation of a data type. If the data type has multiple constructors then we bundle them together into a generic sum type.H#Data type has no data constructors.H#Data type has a single constructor.H$Data type has multiple constructors.H*Representation tycon for the sum (eg Sum2)HPData version of the sum tycon (eg PDataSum2) This TyCon doesn't appear explicitly in the source program. See Note [PData TyCons].H2PDatas version of the sum tycon (eg PDatasSum2)H,Type of the selector (eg Sel2)H-Type of multi-selector (eg Sel2s)H2Function to get the length of a Sels of this type.HType of each data constructor.H 6Generic representation types of each data constructor.H!EDetermine the generic representation of a data type, given its tycon.H"*Yield the type of this sum representation.H#QYield the original component type of a data constructor component representation.HHHHH H H H H HHHHHHHHHHHHHHHHHHH H!H"H#HHHHH H H H H HHHHHHHHHHHHHHHHHHH H!H"H#None+H(<Build the PData instance tycon for a given type constructor.H)=Build the PDatas instance tycon for a given type constructor.Q8Flatten a SumRepr into a list of data constructor types.H(H)H(H)None+ިQdThis says how to build the PR superclass and methods of PA Recall the definition of the PA class: f class class PR (PRepr a) => PA a where toPRepr :: a -> PRepr a fromPRepr :: PRepr a -> a toArrPRepr :: PData a -> PData (PRepr a) fromArrPRepr :: PData (PRepr a) -> PData a toArrPReprs :: PDatas a -> PDatas (PRepr a) fromArrPReprs :: PDatas (PRepr a) -> PDatas a Q Build the toRepr method of the PA class.Q Build the  fromPRepr method of the PA class.Q Build the  toArrRepr method of the PA class.Q Build the  fromArrPRepr method for the PA class.Q Build the  toArrPReprsa instance for the PA class. This converts a PData of elements into the generic representation.QVectorised TyCon$Coercion to the representation TyConPData TyConPDatas TyCon&Description of generic representation.Instance function.H*H+H*H+None+'H,IBuild the PA dictionary function for some type and hoist it to top level.]The PA dictionary holds fns that convert values to and from their vectorised representations.T@Recall the definition: class PR (PRepr a) => PA a where toPRepr :: a -> PRepr a fromPRepr :: PRepr a -> a toArrPRepr :: PData a -> PData (PRepr a) fromArrPRepr :: PData (PRepr a) -> PData a toArrPReprs :: PDatas a -> PDatas (PRepr a) fromArrPReprs :: PDatas (PRepr a) -> PDatas aPExample: df :: forall a. PR (PRepr a) -> PA a -> PA (T a) df = /a. (c:PR (PRepr a)) (d:PA a). MkPA c ($PR_df a d) ($toPRepr a d) ... $dPR_df :: forall a. PA a -> PR (PRepr (T a)) $dPR_df = .... $toRepr :: forall a. PA a -> T a -> PRepr (T a) $toPRepr = ... The "..." stuff is filled in by buildPAScAndMethods @H,#tycon of the type being vectorised.ACoercion between the type and its vectorised representation.PData instance tyconPDatas instance tycon2representation used for the type being vectorised.*name of the top-level dictionary function.H,H,None+iH-=Vectorise type constructor including class type constructors.H-H-NoneN,;z H.HVectorise a polymorphic expression that forms a *non-recursive* binding.Return Lx^ if the expression is scalar; otherwise, the first component of the result (which is of type LoO) indicates whether the expression is parallel (i.e., whether it is tagged as Q).wWe have got the non-recursive case as a special case as it doesn't require to compute vectorisation information twice.H/AVectorise a recursive group of top-level polymorphic expressions.Return Lxd if the expression group is scalar; otherwise, the first component of the result (which is of type LoT) indicates whether the expressions are parallel (i.e., whether they are tagged as Q).QLVectorise a polymorphic expression annotated with vectorisation information.wThe special case of dictionary functions is currently handled separately. (Would be neater to integrate them, though!)QVectorise an expression.QsVectorise an expression that *may* have an outer lambda abstraction. If the expression is marked as encapsulated (QJ), vectorise it as a scalar computation (using a generalised scalar zip)._We do not handle type variables at this point, as they will already have been stripped off by  vectPolyExpr. We also only have to worry about one set of dictionary arguments as we (1) only deal with Haskell 2011 and (2) class selectors are vectorised elsewhere.Q+Vectorise type and dictionary applications.These are always headed by a variable (as we don't support higher-rank polymorphism), but may involve two sets of type variables and dictionaries. Consider, $class C a where m :: D b => b -> a The type of m4 is 'm :: forall a. C a => forall b. D b => b -> a'.QVectorise the body of a dfun.MDictionary computations are special for the following reasons. The application of dictionary functions are always saturated, so there is no need to create closures. Dictionary computations don't depend on array values, so they are always scalar computations whose result we can replicate (instead of executing them in parallel).NB: To keep things simple, we are not rewriting any of the bindings introduced in a dictionary computation. Consequently, the variable case needs to deal with cases where binders are in the vectoriser environments and where that is not the case.H0nVectorise an expression of functional type, where all arguments and the result are of primitive types (i.e., Lu, Lt, Ls# etc., which have instances of the Scalar type class) and which does not contain any subcomputations that involve parallel arrays. Such functionals do not require the full blown vectorisation transformation; instead, they can be lifted by application of a member of the zipWith family (i.e., K, L, zipWith3', etc.)Dictionary functions are also scalar functions (as dictionaries themselves are not vectorised, instead they become dictionaries of vectorised methods). We treat them differently, though see "Note [Scalar dfuns]" in  Vectorise.H1NVectorise a dictionary function that has a 'VECTORISE SCALAR instance' pragma.]In other words, all methods in that dictionary are scalar functions  to be vectorised with H0>. The dictionary "function" itself may be a constant, though.NB: You may think that we could implement this function guided by the structure of the Core expression of the right-hand side of the dictionary function. We cannot proceed like this as H1| must also work for *imported* dfuns, where we don't necessarily have access to the Core code of the unvectorised dfun.Here an example  assume, class Eq a where { (==) :: a -> a -> Bool } instance (Eq a, Eq b) => Eq (a, b) where { (==) = ... } {-# VECTORISE SCALAR instance Eq (a, b) }IThe unvectorised dfun for the above instance has the following signature: 1$dEqPair :: forall a b. Eq a -> Eq b -> Eq (a, b)QWe generate the following (scalar) vectorised dfun (liberally using TH notation): $v$dEqPair :: forall a b. V:Eq a -> V:Eq b -> V:Eq (a, b) $v$dEqPair = /\a b -> \dEqa :: V:Eq a -> \dEqb :: V:Eq b -> D:V:Eq $(vectScalarFun True recFns [| (==) @(a, b) ($dEqPair @a @b $(unVect dEqa) $(unVect dEqb)) |]) NB: * '(,)' vectorises to '(,)'  hence, the type constructor in the result type remains the same. * We share the '$(unVect di)' sub-expressions between the different selectors, but duplicate the application of the unvectorised dfun, to enable the dictionary selection rules to fire.QLIf we process the RHS of a binding, whether that binding should be inlined%Whether the binding is a loop breaker,Expression to vectorise; must have an outer "H1 Original dfunQ'Should the RHS of a binding be inlined?&Whether the binding is a loop breaker.Body of abstraction.H.H/H0H1H.H/H0H1Q None,GH4Vectorise a single module.QMake the vectorised version of this top level binder, and add the mapping between it and the original to the state. For some binder foo the vectorised version is $v_fooNOTE: QN *MUST* be lazy in inline and expr because of how it is used inside of Gw in Q.QuProject out the vectorised version of a binding from some closure, or return the original body if that doesn't work.QName of the binding.2Whether it should be inlined, used to annotate it. RHS of binding, used to set the " of the returned .Name of the vectorised binding.Q!Name of the original binding (eg foo)*Name of vectorised version of binding (eg $vfoo)!The original body of the binding.H4H4None,G\H5H6H7H8H9H:H5H8H7H9H:H6None,GH;H;None,H H<H< None,OQ(If given the RHS of a let-binding, this Qc determines whether we should process the binding up (body before rhs) or down (rhs before body).We use LetDown if there is a chance to get a useful strictness signature. This is the case when there are manifest value lambdas or the binding is a join point (hence always acts like a function, not a value).Q@Extend an environment with the strictness IDs attached to the idHBHBNone,OIHDHEHDHESafe,QH[maybeFlipCond c returns Just c'= if it is possible to flip the arguments to the conditional c", and the new condition should be c'.HFHQHGHHHIHJHKHLHMHNHOHPHRHSHTHUHVHWHXHYHZH[HFHQHGHHHIHJHKHLHMHNHOHPHRHSHTHUHVHWHXHYHZH[None,Y#HqregSqueeze_class reg Calculate the maximum number of register colors that could be denied to a node of this class due to having this reg as a neighbour.Hz&The complete set of machine registers.H{Take the class of a register.H|.Get the name of the register with this number.HCthese are the regs which we cannot assume stay alive over a C call.Hw3desired stack offset in bytes, positive or negativeVH]H_H^H`HaHbHcHdHeHfHgHhHiHjHkHlHmHnHoHpHqHrHsHtHuHvHwHxHyHzH{H|H}H~HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHVHqHrHgHhHiHjHkHlHmHnHoHpHsHtHdHeHfHuHwHyHHHHHzH{H|H`HaHbHcH]H_H^HvH}H~HHHHHHHHHHHHHxHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHNone,\HHHHNone,\_HHHHHHHHHHHHNoneFT,j QHReturns which registers are read and written as a (read, written) pair.Q8Is this register interesting for the register allocator?Q~Applies the supplied function to all registers in instructions. Typically used to change virtual registers to real registers.QMake a spill instruction.Q Make a spill reload instruction.Q?See if this instruction is telling us the current C stack deltaQMake a reg-reg move instruction. On SPARC v8 there are no instructions to move directly between floating point and integer regs. If we need to do that then we have to go via memory.QCheck whether an instruction represents a reg-reg move. The register allocator attempts to eliminate reg->reg moves whenever it can, by assigning the src and dest temporaries to the same real register.Q)Make an unconditional branch instruction.I%-Instruction instance for x86 instruction set.jHHHHHHHHHHHHI HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIIIIII I I I IIIIIIIIIIIIIIIIIII I!I"I#I$jHHI HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIIIIII I I I IIIIIIIIIIIIIIIHHHHHHHHHHI!I"I$I#II IINone,pQOutput the ELF .size directive.Q@Print section header and appropriate alignment for that section.Q7Print appropriate alignment for the given section type.I&I'I(I)I*I+I&I'I+I(I)I*None,I-ISPARC instruction set. Not complete. This is only the ones we need.IVRegister or immediateIYiCheck if a RI represents a zero value. - a literal zero - register %g0, which is always zero.IZ^Calculate the effective address which would be used by the corresponding fpRel sequence.I[+Code to shift the stack pointer by n words.I\EAn instruction that will cause the one after it never to be exectutedQregUsage returns the sets of src and destination registers used by a particular instruction. Machine registers that are pre-allocated to stgRegs are filtered out, because they are uninteresting from a register allocation standpoint. (We wouldn't want them to end up on the free list!) As far as we are concerned, the fixed registers simply don't exist (for allocation purposes, anyway).Q\Interesting regs are virtuals, or ones that are allocatable by the register allocator.QJApply a given mapping to tall the register references in this instruction.Q[Make a spill instruction. On SPARC we spill below frame pointer leaving 2 words/spillQ Make a spill reload instruction.Q?See if this instruction is telling us the current C stack deltaQMake a reg-reg move instruction. On SPARC v8 there are no instructions to move directly between floating point and integer regs. If we need to do that then we have to go via memory.QCheck whether an instruction represents a reg-reg move. The register allocator attempts to eliminate reg->reg moves whenever it can, by assigning the src and dest temporaries to the same real register.Q)Make an unconditional branch instruction.I]"instance for sparc instruction setQregister to spillcurrent stack deltaspill slot to useQregister to load intocurrent stack deltaspill slot to use1-0I-I3IRI5ISI.I/I0I1I4I<I>I@IFIJITIUIQI2I6I7I8I9I:I;I=I?IAIBICIDIEIGIHIIIKILIMINIOIPIVIWIXIYIZI[I\1IVIWIXIYIZI[I\I-I3IRI5ISI.I/I0I1I4I<I>I@IFIJITIUIQI2I6I7I8I9I:I;I=I?IAIBICIDIEIGIHIIIKILIMINIOIP-0None,I^I_I`IaIbIcIdIeI^I_I`IaIbIcIdIeNone,#QPretty print a register.QPretty print a register name, based on this register number. The definition has been unfolded so we get a jump-table in the object code. This function is called quite a lot when emitting the asm file..Ii0Pretty print a format for an instruction suffix.QbPretty print a format for an instruction suffix. eg LD is 32bit on sparc, but LDD is 64 bit.QPretty print a condition code.QPretty print an address mode.Ij Pretty print an immediate value.QPretty print a section / segment header. On SPARC all the data sections must be at least 8 byte aligned incase we store doubles in them.Q7Print appropriate alignment for the given section type.IkPretty print a data item.IlPretty print an instruction.QPretty print a RIQ#Pretty print a two reg instruction.Q%Pretty print a three reg instruction.Q1Pretty print an instruction of two regs and a ri.IfIgIhIiIjIkIlIfIgIhIlIiIjIkNone,InEnforce intra-block invariants.InInNone,Io9Expand out synthetic instructions in this top level thingQ/Expand out synthetic instructions in this blockQExpand out some instructionsQIn the SPARC instruction set the FP register pairs that are used to hold 64 bit floats are refered to by just the first reg of the pair. Remap our internal reg pairs to the appropriate reg.-For example: ldd [%l1], (%f0 | %f1)'gets mapped to ldd [$l1], %f0Q(The the high partner for this float reg.IoIoNone,-IpCode to produce a result into a register. If the result must go in a specific register, it comes out as Fixed. Otherwise, the parent can decide which register to put it in.Is,Holds code that references a memory address.Iua.k.a  Register64{ Reg is the lower 32-bit temporary which contains the result. Use getHiVRegFromLo to find the other VRegUnique.fRules of this simplified insn selection game are therefore that the returned Reg may be modifiedIw#Condition codes passed up the tree.IyIys are the insn sequences generated by the insn selectors. They are really trees of insns to facilitate fast appending, where a left-to-right traversal yields the insns in the correct order.Iz&Change the format field in a Register.I{Grab the Reg for a CmmReg IpIrIqIsItIuIvIwIxIyIzI{I| IyIwIxIuIvIsItIpIrIqIzI{I|None,I}9Holds interesting statistics from the register allocator.IInitial code, with liveness.IThe initial, uncolored graph.I/Information to help choose which regs to spill.I(Code we tried to allocate registers for.IThe regs that were coalesced.ISpiller stats.I#Code with spill instructions added.ICoalesced and colored graph.ICode with coalescings applied.I"Code with vregs replaced by hregs.I-Code with unneeded spill/reloads cleaned out.I Final code.I0Spill/reload/reg-reg moves present in this code.I;Do all the different analysis on this list of RegAllocStatsIJDump a table of how many spill loads / stores were inserted for each vreg.IDDump a table of how long vregs tend to live for in the initial code.IJDump a table of how many conflicts vregs tend to have in the initial code.IjFor every vreg, dump it's how many conflicts it has and its lifetime good for making a scatter plot.I Count spillreloadJreg-reg moves. Lets us see how well the register allocator has done.Iglobal register conflict graphI}I~IIIIIIIIIIIIIIIIIIIIIII}I~IIIIIIIIIIIIIIIIIIIIIINoneV,Q5The maximum number of build/spill cycles we'll allow.It should only take 3 or 4 cycles for the allocator to converge. If it takes any longer than this it's probably in an infinite loop, so it's better just to bail out and report a bug.I7The top level of the graph coloring register allocator.Q;Perform solver iterations for the graph coloring allocator.We extract a register confict graph from the provided cmm code, and try to colour it. If that works then we use the solution rewrite the code with real hregs. If coloring doesn't work we add spill code and try to colour it again. After Q iterations we give up.QFBuild a graph from the liveness and coalesce information in this code.QlAdd some conflict edges to the graph. Conflicts between virtual and real regs are recorded as exclusions.QpAdd some coalesence edges to the graph Coalesences between virtual and real regs are recorded as preferences.QCPatch registers in code using the reg -> reg mapping in this graph.I#registers we can use for allocationset of available spill slots.)code annotated with liveness information.Ecode with registers allocated and stats for each stage of allocationQ4Number of solver iterations we've already performed.GFunction for calculating whether a register is trivially colourable.$Free registers that we can allocate.!Free stack slots that we can use.!Current regalloc stats to add to.$Liveness annotated code to allocate.IINone,Q5Get the registers that are being used by this instruction. regUsage doesn't need to do any trickery for jumps and such. Just state precisely the regs read and written by that insn. The consequences of control flow transfers, as far as register allocation goes, are taken care of by the register allocator.QJApply a given mapping to all the register references in this instruction.QChecks whether this instruction is a jump/branch instruction. One that can change the flow of control in a way that the register allocator needs to worry about.QChecks whether this instruction is a jump/branch instruction. One that can change the flow of control in a way that the register allocator needs to worry about.QyChange the destination of this jump instruction. Used in the linear allocator when adding fixup blocks for join points.Q5An instruction to spill a register into a spill slot.IOThe size of a minimal stackframe header including minimal parameter save area.Q&The maximum number of bytes required to spill a register. PPC32 has 32-bit GPRs and 64-bit FPRs, while PPC64 has 64-bit GPRs and 64-bit FPRs. So the maximum is 8 regardless of platforms unlike x86. Note that AltiVec's vector registers are 128-bit wide so we must not use this to spill them.I<The number of spill slots available without allocating more.QThe number of bytes that the stack pointer should be aligned to. This is 16 both on PPC32 and PPC64 at least for Darwin, and Linux (see ELF processor specific supplements).Q=Convert a spill slot number to a *byte* offset, with no sign.Q?See if this instruction is telling us the current C stack deltaQQCopy the value in a register to another one. Must work for all register classes.Q'Make an unconditional jump instruction.QaTake the source and destination from this reg -> reg move instruction or Nothing if it's not oneI Instruction instance for powerpcUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIINone,IIIIIIIIIIIINone,Q7Print appropriate alignment for the given section type.IINone, IIIIIIIIIIIJJJJJJJJJJ J J J J JJJJJIIIIIIIIIJJJIJJ JJJJJJ J J J JJ JJJINone,JJJJJJJNone-J,Generate code to reference a memory address.Jexpr producing an addressJJNone-qJ(Code to assign a 64 bit value to memory.J,Code to assign a 64 bit value to a register.J 6Get the value of an expression into a 64 bit register.J&expr producing the destination address expr producing the source value.Jthe destination registerexpr producing the source valueJJJ JJJ None- J*Make code to evaluate a 32 bit expression.JfThe dual to getAnyReg: compute an expression into a register, but we don't mind which one it is.Qsign extend and widenQFor nop word format conversions we set the resulting value to have the required size, but don't need to generate any actual code.Q)Generate an integer division instruction.QDo an integer remainder.NOTE: The SPARC v8 architecture manual says that integer division instructions _may_ generate a remainder, depending on the implementation. If so it is _recommended_ that the remainder is placed in the Y register.@The UltraSparc 2007 manual says Y is _undefined_ after division.The SPARC T2 doesn't store the remainder, not sure about the others. It's probably best not to worry about it, and just generate our own remainders.Q(Coerce a integer value to floating pointQ(Coerce a floating point value to integerNOTE: On sparc v9 there are no instructions to move a value from an FP register directly to an int register, so we have to use a load/store.QCCoerce a double precision floating point value to single precision.QBCoerce a single precision floating point value to double precisionQwidth of source expressionwidth of resultsource expressionJJJJNone-QdSays what we we have to add to our 'PIC base register' in order to get the address of a label. J!J"J#J$J%J&J'J(J)J*J+J,J- J(J!J"J#J$J%J&J'J)J+J*J,J-None&'Z-8 Q+Memory addressing modes passed up the tree.QRegister's passed up the tree. If the stix code forces the register to live in a pre-decided machine register, it comes out as Fixed#; otherwise, it comes out as Any>, and the parent can decide which register to put it in.Qa.k.a  Register64{ Reg is the lower 32-bit temporary which contains the result. Use getHiVRegFromLo to find the other VRegUnique.fRules of this simplified insn selection game are therefore that the returned Reg may be modifiedQ#Condition codes passed up the tree.J0J0s are the insn sequences generated by the insn selectors. They are really trees of insns to facilitate fast appending, where a left-to-right traversal yields the insns in the correct order.QConvert H instructions into H) instructions to capture changes in the spM register. See Note [What is this unwinding business?] in Debug for details.QGrab the Reg for a CmmRegQ Check whether an integer will fit in 32 bits. A CmmInt is intended to be truncated to the appropriate number of bits, so here we truncate it to Int64. This is important because e.g. -1 as a CmmInt might be either -1 or 18446744073709551615.R(Convert a BlockId to some CmmStatic dataRfThe dual to getAnyReg: compute an expression into a register, but we don't mind which one it is.RLike R, but on 32-bit use simple register addressing (i.e. no index register). This stops us from running out of registers on x86 when using instructions such as cmpxchg, which can use up to three virtual registers and one fixed register.RGiven a Q, produce a new QO with an instruction block which will check the value for alignment. Used for -falignment-sanitisation.J0J1J2J3J1J2J3J0None&'-Eo J4Top level code generationRDo code generation on a single block of CMM code. code generation may introduce new basic block boundaries, which are indicated by the NEWBLOCK instruction. We must split up the instruction stream into basic blocks again. Also, we extract LDATAs here too.R2Convert some Cmm statements to SPARC instructions.R(Convert a BlockId to some CmmStatic dataRXGenerate code to calculate an argument, and move it into one or two integer vregs.R zMove args from the integer vregs into which they have been marshalled, into %o0 .. %o5, and the rest onto the stack.R HAssign results returned from the call into their destination regs.R DGenerate a call to implement an out-of-line floating point operationR :Decide what C function to use to implement a CallishMachOpIyJ4J5J4J5IyNone&'-R{R Register's passed up the tree. If the stix code forces the register to live in a pre-decided machine register, it comes out as Fixed#; otherwise, it comes out as Any>, and the parent can decide which register to put it in.J6J6s are the insn sequences generated by the insn selectors. They are really trees of insns to facilitate fast appending, where a left-to-right traversal yields the insns in the correct order.J7J6s are the insn sequences generated by the insn selectors. They are really trees of insns to facilitate fast appending, where a left-to-right traversal (pre-order?) yields the insns in the correct order.RGrab the Reg for a CmmRegR(Convert a BlockId to some CmmStatic dataROCompute an expression into a register, but we don't mind which one it is.J6J7J8J7J8J6None-RJ9J:J;J<J=J>J?J9J:J;J<J=J>J?None-S7JAJBJCJDJEJFJGJAJBJCJDJEJFJGNone-SJIJJJKJLJMJNJIJJJKJLJMJNNone-iSJSFor a jump instruction at the end of a block, generate fixup code so its vregs are in the correct regs for its destination.R.Construct a graph of register/spill movements.1Cyclic components seem to occur only very rarely.We cut some corners by not handling memory-to-memory moves. This shouldn't happen because every temporary gets its own stack slot.RdExpand out the destination, so InBoth destinations turn into a combination of InReg and InMem.RGenerate fixup code for a particular component in the move graph This component tells us what values need to be moved to what destinations. We have eliminated any possibility of single-node cycles in expandNode above.R(Move a vreg between these two locations.JSnmaps the unique of the blockid to the set of vregs that are known to be live on the entry to each block.id of the current block,branch instr on the end of the source block.Rnmaps the unique of the blockid to the set of vregs that are known to be live on the entry to each block.acc blocks of fixup code.id of the current block,branch instr on the end of the source block.&branch destinations still to consider.Rsource of movedestination of moveRcurrent C stack delta.%unique of the vreg that we're moving.source location.destination location.move instruction.JSJSNoneV-~RDo register allocation on some basic blocks. But be careful to allocate a block in an SCC only if it has an entry in the block map or it is the first block.R*Do register allocation on this basic blockRmLoad the freeregs and current reg assignment into the RegM state for the basic block with this BlockId.R-Do allocation for a sequence of instructions.R'Do allocation for a single instruction.RQMark all these real regs as allocated, and kick out their vreg assignments.R:Calculate a new location after a register has been loaded.R=Load up a spilled temporary if we need to (read from memory).R entry points&live regs on entry to each basic block$instructions annotated with "deaths"R entry points&live regs on entry to each basic block$instructions annotated with "deaths"R&live regs on entry to each basic block"block to do register allocation onblock with registers allocatedR2map of what vregs are live on entry to each block./accumulator for instructions already processed.%accumulator for blocks of fixup code.'id of the current block, for debugging..liveness annotated instructions in this block.R2map of what vregs are love on entry to each block./accumulator for instructions already processed.*the id of the current block, for debugging9the instr to have its regs allocated, with liveness info.-----------.......... . . . . ...JTJTNone-JULanguage ID used for Haskell.J.Mapping of registers to DWARF register numbersJ2Virtual register number to use for return address.VJUJVJWJXJYJZJ[J\J]J^J_J`JaJbJcJdJeJfJgJhJiJjJkJlJmJnJoJpJqJrJsJtJuJvJwJxJyJzJ{J|J}J~JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJVJUJYJ\J_J`JWJ^JZJXJVJ]J[JaJcJbJdJeJfJgJhJiJjJkJlJmJnJoJpJqJrJsJtJuJvJwJxJyJzJ{J|J}JJ~JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJNone-`&JIUnwind instructions for a block. Will become part of the containing FDE.JLthese unwind points must occur in the same order as they occur in the blockJlUnwind instructions for an individual procedure. Corresponds to a "Frame Description Entry" (FDE) in DWARF.J%List of blocks. Order must match asm!JxInformation about unwind instructions for a procedure. This corresponds to a "Common Information Entry" (CIE) in DWARF.JA DWARF address range. This is used by the debugger to quickly locate which compilation unit a given address belongs to. This type assumes a non-segmented address-space.R;Abbreviation codes used for encoding above records in the  .debug_info section.R )Pseudo, used for marking the end of listsJGIndividual dwarf records. Each one will be encoded as an entry in the  .debug_info section.J)label of DIE belonging to the parent tickR!1Generate assembly for the given abbreviation codeJUAbbreviation declaration. This explains the binary encoding we use for representing J1. Be aware that this must be updated along with J.J Generate assembly for DWARF dataR"tPrints assembler data corresponding to DWARF info records. Note that the binary format of this is parameterized in  abbrevDecls and has to be kept in synch.R#'Close a DWARF info record with childrenJ4Print assembler directives corresponding to a DWARF .debug_aranges address table entry.JHeader for the  .debug_frame section. Here we emit the "Common Information Entry" record that etablishes general call frame parameters and the default stack layout.R$Writes a "Frame Description Entry" for a procedure. This consists mainly of referencing the CIE and writing state machine instructions to describe how the frame base (CFA) changes.R%Generates unwind information for a block. We only generate instructions where unwind information actually changes. This small optimisations saves a lot of space, as subsequent blocks often have the same unwind information.R&+Get DWARF register ID for a given GlobalRegR'~Generate code for setting the unwind information for a register, optimized using its known old value in the table. Note that Sp/ is special: We see it as synonym for the CFA.R('Print the register number of the given )' as an unsigned LEB128 encoded number.R)BGenerates a DWARF expression for the given unwind expression. If spIsCFA is true, we see Sp0 as the frame base CFA where it gets mentioned.R*GGenerate code for re-setting the unwind information for a register to  undefinedJ)Align assembly at (machine) word boundaryJ1Assembly for a single byte of constant DWARF dataJ(Assembly for a two-byte constant integerR+"Assembly for a constant DWARF flagJ*Assembly for 4 bytes of dynamic DWARF dataR,+Assembly for 4 bytes of constant DWARF dataJaAssembly for a DWARF word of dynamic data. This means 32 bit, as we are generating 32 bit DWARF.JoAssembly for a machine word of dynamic data. Depends on the architecture we are currently generating code for.JPrints a number in "little endian base 128" format. The idea is to optimize for small numbers by stopping once all further bytes would be 0. The highest bit in every byte signals whether there are further bytes to read.JSame as  pprLEBWord, but for a signed numberR-{Generates a dynamic null-terminated string. If required the caller needs to make sure that the string is escaped properly.R.>Generate a string constant. We take care to escape the string.R/%Escape a single non-unicode characterJGenerate an offset into another section. This is tricky because this is handled differently depending on platform: Mac Os expects us to calculate the offset using assembler arithmetic. Linux expects us to just reference the target directly, and will figure out on their own that we actually need an offset. Finally, Windows has a special directive to refer to relative offsets. Fun.R'4the register to produce an unwinding table entry for&the old and new values of the register/JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ/JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJNone- J Generate DWARF/debug informationR0Build an address range entry for one proc. With split sections, each proc needs its own entry, since they may get scattered in the final binary. Without split sections, we could make a single arange based on the first/last proc.R1EHeader for a compilation unit, establishing global format parametersR2CCompilation unit footer, mainly establishing size of debug sectionsR3Splits the blocks by procedures. In the result all nested blocks will come from the same procedure as the top-level block. See Note [Splitting DebugBlocks] for details.R4/Generate DWARF info for a procedure debug blockR5Generate DWARF info for a blockR6rGenerates the data for the debug frame section, which encodes the desired stack unwind behaviour for the debuggerR78Generates unwind information for a procedure debug blockJJNone&'V-GR8uData accumulated during code generation. Mostly about statistics, but also collects debug data for DWARF generation.R9Native code generated, for statistics. This might hold a lot of data, so it is important to clear this field as early as possible if it isn't actually required.R:bsee Note [Unwinding information in the NCG] and Note [What is this unwinding business?] in Debug.JJgiven the instruction sequence of a block, produce a list of the block's .Nts See Note [What is this unwinding business?] in Debug and Note [Unwinding information in the NCG] in this module.R;,Do native code generation on all these cmms.JComplete native code generation phase for a single top-level chunk of Cmm. Dumping the output of each stage along the way. Global conflict graph and NGC statsR<6Compute unwinding tables for the blocks of a procedureR= Build a doc for all the imports.Jthe cmm to generate code for!sequence number of this top thingR<+the native code generated for the procedure?unwinding tables for all points of all blocks of the procedureJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJNone-J8additional files to be compiled with with the C compilerJJJJNoneDZ..`R>Vlog warning in the monad, and if there are errors then throw a SourceError exception.R?Throw some errors.J<Deal with errors and warnings returned by a compilation stepIn order to reduce dependencies to other parts of the compiler, functions outside the "main" parts of GHC return warnings and errors as a parameter and signal success via by wrapping the result in a Lw_ type. This function logs the returned warnings and propagates errors as exceptions (of type 9)./This function assumes the following invariants: {If the second result indicates success (is of the form 'Just x'), there must be no error messages in the first result.If there are no error messages, but the second result indicates failure there should be warnings in the first result. That is, if the action failed, it must have been due to the warnings (i.e., -Werror).R@Blike ioMsgMaybe, except that we ignore error messages and return Lx instead.J+Lookup things in the compiler's environmentKRename some import declarationsK+parse a file, returning the abstract syntaxRAFIf the renamed source has been kept, extract it. Dump it if requested.KHRename and typecheck a module, additionally returning the renamed syntaxK$Convert a typechecked module to CoreKMake a 8` from the results of typechecking. Used when typechecking only, as opposed to full compilation.RBThis function runs GHC's frontend with recompilation avoidance. Specifically, it checks if recompilation is needed, and if it is, it parses and typechecks the input module. It does not write out the results of typechecking (See compileOne and hscIncrementalCompile).K Given a 8+, parses and typechecks it, returning the : resulting from type-checking.RCCheck that the safe imports of the module being compiled are valid. If not we either issue a compilation error if the module is explicitly using Safe Haskell, or mark the module as unsafe if we're in safe inference mode.RDValidate that safe imported modules are actually safe. For modules in the HomePackage (the package the module we are compiling in resides) this just involves checking its trust type is Safe or  Trustworthy. For modules that reside in another package we also must check that the external pacakge is trusted. See the Note [Safe Haskell Trust Check] above for more information.WThe code for this is quite tricky as the whole algorithm is done in a few distinct phases in different parts of the code base. See RnNames.rnImportDecl for where package trust dependencies for a module are collected and unioned. Specifically see the Note [RnNames . Tracking Trust Transitively] and the Note [RnNames . Trust Own Package].K&Check that a module is safe to import.We return True to indicate the import is safe and False otherwise although in the False case an exception may be thrown first.KGReturn if a module is trusted and the pkgs it depends on to be trusted.RE.Is a module trusted? If not, throw or log errors depending on the type. Return (regardless of trusted or not) if the trust type requires the modules own package be trusted and a list of other packages required to be trusted (these later ones haven't been checked) but the own package trust has been.RF'Check the list of packages are trusted.RG>Set module to unsafe and (potentially) wipe trust information.Make sure to call this method to set a module to inferred unsafe, it should be a central and single failure method. We only wipe the trust information when we aren't in a specific Safe Haskell mode.While we only use this for recording that a module was inferred unsafe, we may call it on modules using Trustworthy or Unsafe flags so as to allow warning flags for safety to function correctly. See Note [Safe Haskell Inference].RH.Figure out the final correct safe haskell modeKCompile to hard-code.K9Compile a stmt all the way to an HValue, but don't run itWWe return Nothing to indicate an empty statement (or comment only), not a parse error.K9Compile a stmt all the way to an HValue, but don't run itWWe return Nothing to indicate an empty statement (or comment only), not a parse error.KCompile a declsKCompile a declsK|Load the given static-pointer table entries into the interpreter. See Note [Grand plan for static forms] in StaticPtrTable.K*Typecheck an expression (but don't run it)KSFind the kind of a type Currently this does *not* generalise the kinds of the type RIKeep renamed source?RJKeep renamed source?KJust f  = _stub.c is fK The statement The source Starting lineKThe parsed statementK The statementK The statement The source Starting lineKThe expressionKNormalise the typeThe type as a string-Resulting type (possibly normalised) and kind899 9 9 9 9 FFFFJJJJJJJJKKKKKKKKKK K K K K KKKKKKKKKKKKKKKKKKK K!K"K#K$K%8JJK 99 9 9 9 9 K KKKKKKKKKKK!JJJKKJKKKKKKFFFFKKK K"K#KKKKJKKK K K K$JK%KNone"#&'.;=DFTV^.@z<(Releases the external interpreter state.RKSForce the contents of the Serialized value so weknow it doesn't contain any bottomsRL8Adds a mod finalizer reference to the local environment.RMvcommunicate with a remotely-running TH computation until it finishes. See Note [Remote Template Haskell] in librariesghci GHCi/TH.hs.RN+Read a value of type QResult from the iservRORetrieve (or create, if it hasn't been created already), the remote TH state. The TH state is a remote reference to an IORef QState living on the server, and we have to pass this to each RunTH call we make.>The TH state is stored in tcg_th_remote_state in the TcGblEnv.RPAnnotate (with TH.SigT) a type if the first parameter is True and if the type contains a free variable. This is used to annotate type patterns for poly-kinded tyvars in reifying class and type instances. See #8953 and th/T8953.RQzFor every type variable in the input, report whether or not the tv is poly-kinded. This is used to eventually feed into RP.<< < < < < <<<<<<<K&K'<<<<<<< < < << K&K'< <None"#DZ.eRR,Finds the enclosing top level function name RS=Update fixity environment in the current interactive context.K-default ExecOptionsK.3Run a statement in the current interactive context.K0VRun some declarations and return any user-visible names that were brought into scope.K7'Set the interactive evaluation context.m(setContext imports) sets the ic_imports field (which in turn determines what is in scope at the prompt) to imports>, and constructs the ic_rn_glb_env environment to reflect it.We retain in scope all the things defined at the prompt, and kept in ic_tythings. (Indeed, they shadow stuff from ic_imports.)K9Get the interactive evaluation context, consisting of a pair of the set of modules from which we take the full top-level scope, and the set of modules from which we take just the exports respectively.K:Returns True[ if the specified module is interpreted, and hence has its full top-level scope available.K;>Looks up an identifier in the current interactive context (for :info) Filter the instances by the ones whose tycons (or clases resp) are in scope (qualified or otherwise). Otherwise we list a whole lot too many! The exact choice of which ones to show, and which to hide, is a judgement call. (see Trac #1581)K<=Returns all names in scope in the current interactive contextK= Returns all \s in scope in the current interactive context, excluding any that are internally-generated.K>:Parses a string as an identifier, and returns the list of sGs that the identifier can refer to in the current interactive context.K?Returns True! if passed string is a statement.K@Returns True, if passed string has an import declaration.KAReturns True+ if passed string is an import declaration.KBReturns True' if passed string is a declaration but  not a splice.KC@Get the type of an expression Returns the type as described by FKDGet the kind of a typeKEeParse an expression, the parsed expression can be further processed and passed to compileParsedExpr.KF@Compile an expression, run it, and deliver the resulting HValue.KG@Compile an expression, run it, and deliver the resulting HValue.KHYCompile a parsed expression (before renaming), run it, and deliver the resulting HValue.KJACompile an expression, run it and return the result as a Dynamic.K. a statement (bind or expression)X'U'V'X'Y'W'Z'['\']'^'_'`'a'b'c'd'e'f'k'l'm'n'o'p'q'r't's'u'v'w'x'y'z'{C C"C!C#C$C%C*C(C&C'C+C)C,C-K)K*K+K,K-K.K/K0K1K2K3K4K5K6K7K8K9K:K;K<K=K>K?K@KAKBKCKDKEKFKGKHKIKJKKKLKMKNKOX'Z'['\']'^'_'`'a'b'c'd'e'f'U'V'X'Y'WK.'v'w'x'y'z'{K-'k'l'm'n'o'p'qK2K/K0K?K@KAKBK1'r't's'uK5K6K)K+K,K*K3K4K7K9K8K<K=K:K;KCKDK>KKKLKEKIKFKJKGKHC C"C!C#C$C%C*C(C&C'C+C)C,C-KNKMKONone$Z. KPsJust preprocess a file, put the result in a temp. file (used by the compilation manager during the summary phase).eWe return the augmented DynFlags, because they contain the result of slurping in the OPTIONS pragmasKQCompileFCompile a single module, under the control of the compilation manager.This is the interface between the compilation manager and the compiler proper (hsc), where we deal with tedious details like reading the OPTIONS pragma from the source file, converting the C or assembly that GHC produces into an object file, and compiling FFI stub files.@NB. No old interface can also mean that the source has changed.RT:Run a compilation pipeline, consisting of multiple phases.This is the interface to the compilation pipeline, which runs a series of compilation steps on a single source file, specifying at which stage to stop.The DynFlags can be modified by phases in the pipeline (eg. by OPTIONS_GHC pragmas), and the changes affect later phases in the pipeline.RU2pipeLoop runs phases until we reach the stop phaseKW/Computes the next output filename after we run  next_phase. Like KX, but it operates in the =9 monad (which specifies all of the ambient information.)KXwComputes the next output filename for something in the compilation pipeline. This is controlled by several variables:  !: the last phase to be run (e.g.  stopPhasen). This is used to tell if we're in the last phase or not, because in that case flags like -o may be important.=: is this intended to be a = or =K build output? Temporary files just go in a fresh temporary name.L3: what was the basename of the original input file? : the obvious thing 8: the phase we want to determine the output filename of.Maybe ModLocation: the   of the module we're compiling; this can be used to override the default output of an object file. (TODO: do we actually need this?)RV`The fast LLVM Pipeline skips the mangler and assembler, emitting object code directly from llc.Eslow: opt -> llc -> .s -> mangler -> as -> .o fast: opt -> llc -> .ohidden flag: -ffast-llvmhif keep-s-files is specified, we need to go through the slow pipeline (Kavon Farvardin requested this).RWLLVM Options. These are flags to be passed to opt and llc, to ensure consistency we list them in pairs, so that they form groups.KYwEach phase in the pipeline returns the next phase to execute, and the name of the file in which the output was placed.We must do things dynamically this way, because we often don't know what the rest of the phases will be until part-way through the compilation: for example, an {- OPTIONS -fasm -} at the beginning of a source file can change the latter stages of the pipeline from taking the LLVM route to using the native code generator.RXLinking a static lib will not really link anything. It will merely produce a static archive of all dependent static libraries. The resulting library will still need to be linked with any remaining link flags.K_BWhat phase to run after one of the backend code generators has runRYFind out path to  ghcversion.h fileKPfilename and starting phaseKQ!summary for module being compiled module N ...... of Mold interface, if we have oneold linkable, if we have one'the complete HomeModInfo, if successfulKR!summary for module being compiled module N ...... of Mold interface, if we have oneold linkable, if we have one 'the complete HomeModInfo, if successfulRT When to stopCompilation environment$Input filename (and maybe -x suffix))original basename (if different from ^^^)Output filename*A ModLocation, if this is a Haskell moduleforeign objects(final flags, output filename)RZ When to startCompilation environmentInput filename*A ModLocation, if this is a Haskell moduleforeign objects, if we have one(final flags, output filename)RWpairs of (opt, llc) argumentsKYRun this phasename of the input file.for convenience, we pass the current dflags in',======================KPKQKRKSKTKUKVKWKXKYKZK[K\K]K^K_'KUKVK[KPKQKRKS==================KWKX==K_KZ==KYK\K]KT,K^None$VZ/DKaLo indicating if a module is a boot module or not. We need to treat boot modules specially when building compilation graphs, since they break cycles. Regular source files and signature files are treated equivalently.R[?The graph of modules to compile and their corresponding result R\ and R].R]Each module is given a unique R]) to redirect compilation messages to. A LxU value contains the result of compilation, and denotes the end of the message queue.R^|Stability tells us which modules definitely do not need to be recompiled. There are two main reasons for having stability:zavoid doing a complete upsweep of the module graph in GHCi when modules near the bottom of the tree have not changed.to tell GHCi when it can load object code: we can only load object code for a module when we also load object code fo all of the imports of the module. So we need to know that we will definitely not be recompiling any of these modules, and we can use the object code.nThe stability check is as follows. Both stableObject and stableBCO are used during the upsweep phase later.  stable m = stableObject m || stableBCO m stableObject m = all stableObject (imports m) && old linkable does not exist, or is == on-disk .o && date(on-disk .o) > date(.hs) stableBCO m = all stable (imports m) && date(BCO) > date(.hs) ,These properties embody the following ideas:if a module is stable, then:pif it has been compiled in a previous pass (present in HPT) then it does not need to be compiled or re-linked.~if it has not been compiled in a previous pass, then we only need to read its .hi file from disk and link it to produce a 8.uif a modules is not stable, we will definitely be at least re-linking, and possibly re-compiling it during the R_W. All non-stable modules can (and should) therefore be unlinked before the R_.Note that objects are only considered stable if they only depend on other objects. We can't link object code against byte code.Note that even if an object is stable, we may end up recompiling if the interface is out of date because an *external* interface has changed. The current code in GhcMake handles this case fairly poorly, so be careful.Kd>Describes which modules of the module graph need to be loaded.Ke&Load all targets and its dependencies.Kf0Load only the given module and its dependencies.KgKLoad only the dependencies of the given module, but not the module itself.KhrPerform a dependency analysis starting from the current targets and update the session with the new module graph.(Dependency analysis entails parsing the importE directives and may therefore require running certain preprocessors.Note that each 8 in the module graph caches its   . These   are determined by the current session   and the OPTIONS and LANGUAGEA pragmas of the parsed module. Thus if you want changes to the  6 to take effect you need to call this function again.KiTry to load the program. See Kd for the different modes.+This function implements the core of GHC's --make mode. It preprocesses, compiles and loads the specified modules, avoiding re-compilation wherever possible. Depending on the target (see  C) compiling and loading may result in files being created on disk. Calls the => after each compiling each module, whether successful or not.Throw a 9 if errors are encountered before the actual compilation starts (e.g., during dependency analysis). All other errors are reported using the =.KjGeneralized version of Ki which also supports a custom J (for reporting progress) and 8! (generally produced by calling Kh.R`Finish up after a load.RaDForget the current program, but retain the persistent info in HscEnvRbDiscard the contents of the InteractiveContext, but keep the DynFlags. It will also keep ic_int_print and ic_monad if their names are from external packages.RcmIf there is no -o option, guess the name of target executable by using top-level source file name as a base.RdPrune the HomePackageTable+Before doing an upsweep, we can throw away:For non-stable modules:all ModDetails, all linked codeJall unlinked code that is out of date with respect to the source fileThis is VERY IMPORTANT otherwise we'll end up requiring 2x the space at the end of the upsweep, because the topmost ModDetails of the old HPT holds on to the entire type environment from the previous compilation.ReXReturn (names of) all those in modsDone who are part of a cycle as defined by theGraph.Rf UnloadingRgBuild a R[j out of a list of strongly-connected modules, also returning the first, if any, encountered module cycle.Kk Tests if an  9 is a boot file, primarily for constructing elements of Rh.Ri(The entry point to the parallel upsweep.!See also the simpler, sequential R_.R_ The upsweepmThis is where we compile each module in the module graph, in a pass from the bottom to the top of the graph.DThere better had not be any cyclic groups here -- we check for them.RjCompile a single module. Always produce a Linkable for it if successful. If no compilation happened, return the old Linkable.RkGiven a non-boot ModSummary msC of a module, for which there exists a corresponding boot file in graph, return the set of modules which transitively depend on this boot file. This function is slightly misnamed, but its name "getModLoop" alludes to the fact that, when getModLoop is called with a graph that does not contain ms (non-parallel case) or is an SCC with hs-boot nodes dropped (parallel-case), the modules which depend on the hs-boot file are typically (but not always) the modules participating in the recursive module loop. The returned list includes the hs-boot file.Example: let g represent the module graph: C.hs A.hs-boot imports C.hs B.hs imports A.hs-boot A.hs imports B.hs genModLoop A.hs g == Just [A.hs-boot, B.hs, A.hs]mIt would also be permissible to omit A.hs from the graph, in which case the result is [A.hs-boot, B.hs]Example: A counter-example to the claim that modules returned by this function participate in the loop occurs here:let g represent the module graph: C.hs A.hs-boot imports C.hs B.hs imports A.hs-boot A.hs imports B.hs D.hs imports A.hs-boot genModLoop A.hs g == Just [A.hs-boot, B.hs, A.hs, D.hs]iArguably, D.hs should import A.hs, not A.hs-boot, but a dependency on the boot file is not illegal.Kl$Topological sort of the module graph Calculate SCCs of the module graph, possibly dropping the hi-boot nodes The resulting list of strongly-connected-components is in topologically sorted order, starting with the module(s) at the bottom of the dependency graph (ie compile them first) and ending with the ones at the top.'Drop hi-boot nodes (first boolean arg)?Falsea: treat the hi-boot summaries as nodes of the graph, so the graph must be acyclicTrue: eliminate the hi-boot nodes, and instead pretend the a source-import of Foo is an import of Foo The resulting graph has no hi-boot nodes, but can be cyclicRlIf there are {- SOURCE -} imports between strongly connected components in the topological sort, then those imports can definitely be replaced by ordinary non-SOURCE imports: if SOURCE were necessary, then the edge would be part of a cycle.RmDownsweep (dependency analysis)Chase downwards from the specified root set, returning summaries for all home modules encountered. Only follow source-import links.We pass in the previous collection of summaries, which is used as a cache to avoid recalculating a module summary if the source is unchanged.The returned list of [ModSummary] nodes has one node for each home-package module, plus one for any hs-boot files. The imports of these nodes are all there, including the imports of non-home-package modules.RnUpdate the every ModSummary that is depended on by a module that needs template haskell. We enable codegen to the specified target, disable optimization and change the .hi and .o file locations to be temporary files. See Note [-fno-code mode]RoIReturns the dependencies of the ModSummary s. A wrinkle is that for a {- SOURCE 8-} import we return *both* the hs-boot file *and* the source file as "dependencies". That ensures that the list of all relevant modules always contains B.hs if it contains B.hs-boot. Remember, this pass isn't doing the topological sort. It's just gathering the list of all relevant ModSummariesKnLike Ko, but for SOURCE imports.Ko2All of the (possibly) home module imports from a 8; that is to say, each of these module names could be a home import if an appropriately named file existed. (This is in contrast to package qualified imports, which are guaranteed not to be home imports.)Khexcluded modulesallow duplicate rootsRi0The number of workers we wish to run in parallelRp The module we wish to compile-The map of home modules and their result MVar:The list of all module loops within the compilation graph.The thread-local DynFlags The messager/The callback for cleaning up intermediate files>The semaphore for limiting the number of simultaneous compiles7The MVar that synchronizes updates to the global HscEnv The old HPT Sets of stable objects and BCOs The index of this module The total number of modules The result of this compileR_!HPT from last time round (pruned)#stable modules (see checkStability)"How to clean up unwanted tmp filesMods to do (the worklist)Returns: 3A flag whether the complete upsweep was successful.The 8 in the monad has an updated HPT*A list of modules which succeeded loading.KlDrop hi-boot nodes? (see below)Root module name. If Nothing, use the full graph.RqStarting phaseEEK`KaKbKcKdKeKfKgKhKiKjKkKlKmKnKoKpKqKrKhKiKjKdKeKfKgKlKnKoKaKbKcKpKkEEKqKrKmK`None$NVZ/̃;Kw"Container for information about a .Kx.A CoreModule consists of just the fields of a 8u that are needed for the K interface.Kz Module nameK{2Type environment for types declared in this moduleK| DeclarationsK}Safe Haskell modeK~The result of successful desugaring (i.e., translation to core). Also contains all the information of a typechecked module.KNThe result of successful typechecking. It also contains the parser result.K!The result of successful parsing.KInstall some default exception handlers and run the inner computation. Unless you want to handle exceptions yourself, you should wrap this around the top level of your program. The default handlers output the error message(s) to stderr and exit cleanly.KMThis function is no longer necessary, cleanup is now done by runGhc/runGhcT.KRun function for the = monad.0It initialises the GHC session and warnings via Kk. Each call to this function will create a new session which should not be shared among several threads."Any errors not handled inside the =) action are propagated as IO exceptions.KRun function for = monad transformer.0It initialises the GHC session and warnings via Kk. Each call to this function will create a new session which should not be shared among several threads.KInitialise a GHC session.If you implement a custom =z you must call this function in the monad run function. It will initialise the session variable and clear all warnings.The first argument should point to the directory where GHC's library files reside. More precisely, this should be the output of ghc --print-libdirj of the version of GHC the module using this API is compiled with. For portability, you should use the  ghc-paths package, available at  ,http://hackage.haskell.org/package/ghc-paths.RrThe binutils linker on ARM emits unnecessary R_ARM_COPY relocations which breaks tables-next-to-code in dynamically linked modules. This check should be more selective but there is currently no released version where this bug is fixed. See  5https://sourceware.org/bugzilla/show_bug.cgi?id=16177 and 7https://ghc.haskell.org/trac/ghc/ticket/4210#comment:29K#Updates both the interactive and program DynFlags in a Session. This also reads the package database (unless it has already been read), and prepares the compilers knowledge about packages. It can be called again to load new packages: just add new package flags to (packageFlags dflags).\Returns a list of new packages that may need to be linked in using the dynamic linker (see  linkPackages) as a result of new package flags. If you are not doing linking or doing static linking, you can ignore the list of packages returned.KSets the program  i. Note: this invalidates the internal cached module graph, causing more work to be done the next time Ki is called.KaSet the action taken when the compiler produces a message. This can also be accomplished using K , but using K- avoids invalidating the cached module graph.KReturns the program  .KSet the  e used to evaluate interactive expressions. Note: this cannot be used for changes to packages. Use K, or K and then copy the  L into the interactive DynFlags.KGet the  * used to evaluate interactive expressions.RsYChecks the set of new DynFlags for possibly erroneous option combinations when invoking K@ and friends, and if found, returns a fixed copy (if possible).K Sets the targets for this session. Each target may be a module name or a filename. The targets correspond to the set of root modules for the program/library. Unloading the current program is achieved by setting the current set of targets to be empty, followed by Ki.K"Returns the current set of targetsKAdd another target.KRemove a targetKQAttempts to guess what Target a string refers to. This function implements the --make(/GHCi command-line syntax for filenames:Rif the string looks like a Haskell source filename, then interpret it as suchVif adding a .hs or .lhs suffix yields the name of an existing file, then use that/otherwise interpret the string as a module nameKInform GHC that the working directory has changed. GHC will flush its cache of module locations, since it may no longer be valid.Note: Before changing the working directory make sure all threads running in the same session have stopped. If you change the working directory, you should also unload the current program (set targets to empty, followed by load).K Return the 8! of a module with the given name.1The module must be part of the module graph (see 8 and 89). If this is not the case, this function will throw a 9.lThis function ignores boot modules and requires that there is only one non-boot module with the given name.KParse a module. Throws a 9 on parse error.K%Typecheck and rename a parsed module. Throws a 9 if either fails.KDesugar a typechecked module.K3Load a module. Input doesn't need to be desugared.iA module must be loaded before dependent modules can be typechecked. This always includes generating a 8 and, depending on the  #, may also include code generation.This function will always cause recompilation and will always overwrite previous compilation results (potentially files on disk).KOThis is the way to get access to the Core bindings corresponding to a module.  compileToCore parses, typechecks, and desugars the module, then returns the resulting Core module (consisting of the module name, type declarations, and function declarations) if successful.KbLike compileToCoreModule, but invokes the simplifier, so as to return simplified and tidied Core.K Get the module dependency graph.KReturn True  == module is loaded.K8Return the bindings for the current interactive session.K9Return the instances for the current interactive session.K#Request information about a loaded K2The list of top-level entities defined in a moduleKmReturns the instances defined by the specified module. Warning: currently unimplemented for package modules.K!Retrieve module safe haskell modeKTLooks up a global name: that is, any top-level name in any visible module. Unlike Kf, lookupGlobalName does not use the interactive context, and therefore does not require a preceding K7.K"get the GlobalRdrEnv for a sessionKGRetrieve all type and family instances in the environment, indexed by sf. Each name's lists will contain every instance in which that name is mentioned in the instance head.Kprint a  0, adding parentheses if the name is an operator.K9Return module source as token stream, including comments.SThe module must be in the module graph and its source must be available. Throws a 9 on parse error.K.Give even more information on the source than KB This function allows reconstructing the source completely with K.KGiven a source location and a StringBuffer corresponding to this location, return a rich token stream with the source associated to the tokens.K/Take a rich token stream such as produced from Kf and return source code almost identical to the original code (except for insignificant whitespace.)KTakes a  and possibly a N, and consults the filesystem and package database to find the corresponding +, using the algorithm that is used for an import declaration.KLike Kf, but differs slightly when the module refers to a source file, and the file has not been loaded via Ki. In this case, K/ will throw an error (module not loaded), but K_ will check to see whether the module can also be found in a package, and if so, that package M will be returned. If not, the usual module-not-found error will be thrown.KBCheck that a module is safe to import (according to Safe Haskell).{We return True to indicate the import is safe and False otherwise although in the False case an error may be thrown first.KGReturn if a module is trusted and the pkgs it depends on to be trusted.K.Set the monad GHCi lifts user statements into.;Checks that a type (in string form) is an instance of the GHC.GHCi.GHCiSandboxIOO type class. Sets it to be the GHCi monad if it is, throws an error otherwise.K.Get the monad GHCi lifts user statements into.K Returns the & for a s. The s2 may refer to any entity known to GHC, including ss defined using runStmt.K&A pure interface to the module parser.KSee argument to K.The action to perform.KSee argument to K.The action to perform.Kuvisible modules. An orphan instance will be returned if and only it is visible from at least one module in the list.K6Haskell module source text (full Unicode is supported) the flags#the filename (for source locations)-syz}{|~                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  Ma !&'Z[\]^_`a                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v   $XYZ[\]^_`ieabcdfghjklmnopqrstuvwxyz{|}~1352=?ABH   .  q r s t u v w x y z!O!P!Q!R!S!T!U!V!W!X!Y!Z![!\!]!^!_!r!x!!!!#$d$$$$$$$$$$'U'X'Y'Z'['\']'^'_'`'a'b'c'd'e'f'g'j'i'k'l'm'n'o'p'q'r't's'u'v'w'x'y'z'{'}'~'''''''0|0}0~0000000000000000000000000000000000000002{2|2}2~2222222222222222222222200000000000000000000000000000000000000006u6v6w6x06660666660555506#6$6%6&6'6(6)6*6+6,06;6?6W6C6:6465666768696<6=6>6@6A6B6D6E6F6G6H6I6J6K6L6M6N6O6P6Q6R6S6T6U6V6X6Y6Z6[6\6]6^6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p000000000000000000000000001111111111 1 1 1 1 111&11!1111111111111111 1"1#1$1%1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~1111111111111111111111111111111111111111111111111111111111111111111111111111111111122222222 222 2 22 2 222222222222222222 2!2"2#2$2%2&2'2(2)2*2+2,2-2.2/202122232425262728292:2;2<2=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P2l2m2o2n2p2q2r2s2t2u2v2w2x2y2z22222222222222222222224'46494:4S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555 5 5 5 5 555555555555555555"5#5,55 5!5$5%5&5'5(5)5*5+5-5.5/505152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555556666666666 6 6 6 6 66666666666 6"6!6-6.6/606162636q6r6s6t6y6z6{6|6}6~66666666666666666666666666666666666666666666666666666666666666666666666666666666667777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7{7|7}7~78888 8 8 8 8 88888888T8U8V888888888888888888888888888888888888888888899u9v9x9z9{9~9=========BFFFFFK)K*K-K.K/K0K1K2K3K4K5K6K7K9K:K;K<K=K>K?K@KAKBKCKDKEKFKGKHKIKJKKKLKOKdKeKfKgKhKiKlKrKwKxKyKzK{K|K}K~KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK~KK$K=====8KKK=99u                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v  K=KKKKKK88888888 KKKKKKhKiKdKeKfKg8T8U8V==KKKKKKKKKKKKKKKKKKKKKKK~KKKKKKKKKKxKyKzK{K|K}KK89{9v9~9x9z8888 8 8 8 8 8888889 KKKKlKwKKKKKKKKKKKKK8888888888888888888888888888888888 MaK.'v'w'x'y'z'{K-'k'l'm'n'o'p'qK2K/K0K1K7K9KKKKKKKKKK<K=KK:K;KKKLKKCFFFFKDK>KKEKIKFKJKGKHFK?K@KAKB'r't's'u'Z'['\']'^'_'`'a'b'c'd'e'f'U'X'YKK*K5K6K)KKKOK'}'~''''''''g'j'iK3K4  sK  $d$$513$$$$$$$K$  .!K!x!!!!O!P!Q!r2=AB?H4'46494:B#'   !&]^_`Z[\yz}{|~KKKKK`ieabcdfghjklmnopqrstuvwxyz{|}~XYZ[\]^_KrNone/uKKNoneD/KThe :print & friends commandsRtoGive names, and bind in the interactive environment, to all the suspensions included (inductively) in a termKKKKKKNone;=Z0+Ru&Backpack environment. NB: this has a = and not an 8&, because we are going to update the 8 as we go.Rv The sessionRw,The filename of the bkp file we're compilingRx2Table of source units which we know how to compileRy{When a package we are compiling includes another package which has not been compiled, we bump the level and compile that.RzBackpack monad is a =7 which also maintains a little extra state beyond the =, c.f. Ru.R{9Tiny enum for all types of Backpack operations we may do.R|SA compilation operation which will result in a runnable executable being produced.R}PA type-checking operation which produces only interface files, no object files.R~NA compilation operation which produces both interface files and object files.K'Entry point to compile a Backpack file.RLCreate a temporary Session to do some sort of type checking or compilation.R\Compute the dependencies with instantiations of a syntactic HsUnit; e.g., wherever you see dependency p[A= A] in a unit file, return the  corresponding to p[A= A]. The  include_sigs4 parameter controls whether or not we also include dependency signature" declarations in this calculation..Invariant: this NEVER returns InstalledUnitId.RGet the current Ru.R:Get the nesting level, when recursively compiling modules.RApply a function on   on an 8RRun a Rz0 computation, with the nesting level bumped one.RUpdate the EPS from a =(. TODO move to appropriate library spot.RGet the EPS from a =.RRun Rz in =.RIPrint a compilation progress message, but with indentation according to level (for nested compilation).R Creates a J? for Backpack compilation; this is basically a carbon copy of K  but calling R, which handles indentation.RX for Backpack messages; here we usually want the module to be qualified (so we can tell how it was instantiated.) But we try not to qualify packages so we can use simple names for them.R2Message when we initially process a Backpack unit.R,Message when we instantiate a Backpack unit.R(Message when we include a Backpack unit.RGThis is our version of GhcMake.downsweep, but with a few modifications: Every module is required to be mentioned, so we don't do any funny business with targets or recursively grabbing dependencies. (We could support this in principle).GWe support inline modules, whose summary we have to synthesize ourself.iWe don't bother trying to support GhcMake for now, it's more trouble than it's worth for inline modules.R\Up until now, GHC has assumed a single compilation target per source file. Backpack files with inline modules break this model, since a single file may generate multiple output files. How do we decide to name these files? Should there only be one output file? This function our current heuristic, which is we make a "fake" module and use that.R>Create a new, externally provided hashed unit id from a hash.KKR[\][^_[`a[`b[`c[^d[`efg[h[ij[ik[il[im[no[pq[pr[st[uv[uw[ux[ux[yz[{|[{}[{~[[[[[[[[{[{[h[[[`[J      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUUVVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~C  !!!!"""""""""""" " " " " "##############$$$$ $!$"$#$$$%$&$'$($)$*$+$,$-$.$/$0$1$2$3$4$5$6$7$8$9$:$;$<$=$>$?$@$A$B$C$D$E$F$G$H$I$J$K$L$M$$$$$N$O$P$Q$R$S$T$U$V$W$X$Y$Z$[$\$]$^$_$`$a$b$c$d$e$f$g$h$i$j$k$l$m$n$o$p%q%%%r%s%t%u%v%%w%x%y&&&&&z&{&|&}&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&''(((((((((((( (((((( ( ( ()))))))))) ) ) ) ) )*******q****z****++,----- !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~.............................////////////////////////////////////////////////// / / 0 0 0 00000001111111        ! " # $ % & ' (2)2)2*2+2,2-2.2/20313233343536363738393:3;3<3=3>3?3@3A33B3C3D3E3F33G3H3I3J3K3L3M3N3O3P3Q3R3S3T3U3V3W3X3Y3Z3[3\3]3^3_3`3a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t!u!v!w!x!y!z!{!|!}!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!G!!!A!B!C!D!S!T!U!V!W!![!]!\!Y!Z!!!!X!!!!!!!!!!H!I!J!L!K!!!!M!N!O!P!Q!R!!!!!b!h!i!f!g!_!`!a!j!k!m!l!c!d!e!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!! !!!"!#!$!%!&!'!(!)!*!+!,!-!.!/!015234566478797:7;7<88888=8>8?8@8A8B8C8D8E8F8G8H8I8J8K8L8M8N8O8P99999Q9R9S9T9U9V9W9X9Y9Z9[9\9]9^:::_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q;r;s;t;u;v;w;x;y;z;{;|;};~<<<<<<<<<<<=========================================================================================>>>>>>>????????@@@@@@@@@@@@@ABBBBBBBBBBBBBBBBB B B B B B BBBBBB}BBBBBBBBBBBBBBBBB B!B"B#B$B%B&B'B(B)B*B+B,B-B.B/B0B1B2B3B3B4B5B6B7B8B9B:B;B<B=B>B?B@BABBBCBDBEBEBFBGBHBIBJBKBLBMBNBOBPBQBRBSBTBUBVBWBXBYBZB[B\B]B^B_B_B`BaBaBbBcBcBdBeBxBfBgBhBiBjBkBlBmBnBoBpBqBrBsBtBuBvBwBxByBzB{B|B}B~BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B !B "B #B $B %B &B 'B (B )B *B +C ,C -CCC .C /C 0C 1C 2C 3C 4C 5C 6C 7C 8C 9C :C ;C <C =C >C ?C @C AC BC CC DC EC FC GC HC IC JC KC LC MC NC OC PC QC RC SC TC UC VC WC XD YD ZD [D \D ]DDD ^D _D `D aD bD cD dD eD fD gD hD iD jD kD lD mD nD oD pD qEEE rE sE tE uE vE wE xE yE zE {E |E }E ~E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E FFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F GGG G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G H H H H H H H H H H H H H H H H III I I I I I I I I I I I I I I I I I I I I I !I "I #I $I %I &I 'I (I )I *I +I ,I -I .I /I 0I 1I 2I 3I 4I 5I 6I 7I 8JJJ 9J :J ;J <J =J >J ?J @J AJ BJ CJ DJ EJ FJ GJ HJ IJ JJ KJ LJ MJ NK OKKK PK QK RK SK TK UK VK WK XK YK ZK [K \K ]K ^K _K `K aK bK cK dK eLLL fL gL hL iL jL kL lM mM nM oM pMOMOM mMLM qM rM sM tM uM vM wM xM yM lM zM {M |M }M ~M M N N N N N uN wOOO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O xO O O O O O O P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q R R R R R R R R R R R R R R R R R R R R R S S T T T T T T T T T T T T T T T T T T T T T T T T U VVV W W W W W W W W W WWW WWW W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W !W "W #W $W %W &W 'W (W )W *W +W ,W -W .W /W 0W 1W 2W 3W 4W 5W 6W 7W 8W 9W :W ;W <W =W >W ?W @W AW BW CW DW EW FW GW HW IW JW KW LW MW NW O0 P0 Q0 R0 S0 T0 U0 V0 V0 W0 X0 X0 Y0 Z0 0 [0 \0 \0 ]0 ^0 _0 _0 `0 a0 b0 c0 d0 e0 f0 g0 h0 i0 j000 k0 k0 l0 m0 n0 o0 p0 q0 r0 s0 t0 u0 v0 w0 x0 y0 z0 {0 |0 }0 ~0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X                       Y Z !Z !Z "Z "Z #Z $Z $Z %Z &Z 'Z (Z )Z *Z +Z ,Z ,Z -Z .Z /Z 0Z 1Z 2ZZZ 3Z 4Z 5Z 6Z 7Z 8Z 9Z :Z ;Z <Z =Z >Z ?Z @Z AZ BZ CZ DZ EZ FZ GZ HZ IZ JZ KZ LZ MZ NZ OZ PZ QZ RZ SZ TZ UZ VZ WZ XZ Y[[[x[ Z[ [[ \[ ][ ^[ _[ `[ a[ b[ c[ d[ e[ f[ g[ h[ i[ j[ k[ l[ m[ n[ o[ p[ q[ r\\ s\ t\ u\ v\ w\ x\ y\ z\ {\ |\ }\ ~\ \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \     ]]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^Y^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ !^ "^ #^ $^ %^ &^ '^ (% )% )% *% +% ,% -% .% /% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% :% ;% <% =% >% >% ?% @% A% B% C% D% C% E% E% F% F% G% H% I% J% K% L% M% N% O% P% Q% R% S% T% U% V% W% X% Y% Z% [% \% ]% ^% _% `% a% b% c% d% e% f% g% g% h% i% j% j% k% l% m% n% o% p% q% r% s% t% u% v% w% x% y% z% {% |% |% }% ~% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %%% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%%% (%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%________````````````````````````````````````````````````````` ` ` ` ` ``````````````````` `!`"`#`$`%`&`'a(a(a)a*a+a,a-a. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            E F G                                  bbbbbbbbbbbbbb b b b b bbbbbbbbbbbbbbbbbbb b!b"b#b$b%b&c'ccc(c)c*c+c,c-c.c/c0c1c2c3c4c5c6c7c8c9c:c;c<c=c>c?c@cAcBdCdDdEdFdGdHdIeJeeeKeLeMeeeNeOePeQeReSeTeUeVeWfXfYfZg[g\g]g^g_g`gagagbgcgdgegfggghgigjgkglgmgngogp q q  r s t u v w x y z { | } ~                 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@11111111111111111111111111111111111111111111111111111111 1 1 1 1 hiiiiiiiiiiiiijjjjjj j!j"j#j$j%j&j'j(j)j*j+j,j-j.k/k0k1k2k3l4l5l6m7m8m9m:m;m<m=m>m?m@mAmBmCmDmmmEmFmGmHmImJmKmLmMmNmOmPmQmRmSmTmUmVmWmXmYmZm[m\m]m^m_m`mambmcmdmemfmgmhmimjmkmlmmmnmompmqmrmsmtmumvmwmxmymzm{m|m}m~mmmnnnnnnnnnnnnnnnnnnnnnooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo o o o o ooooooooooooooooooo o!o"o#o$o%o&o'o(o)o*o+o,o-o.o/o0o1o2o3o4o5o6o7o8o9o:o;o<o=o>o?o@oAoBoCoDoEoFoGoHoIoJoKoLpMpNpOpPpQpRpSpTpUpVpWqqqXqYqZq[q\r]r^rrr_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrssstsusvswsxsxsyszs{s|s}s~ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;X<X=X>X?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXtttttttttttttttttttttttttttt t t t t ttttttttttttttttttt t!t"t#t$t%t&t't(t)t*t+t,t-t.t/t0t1t2t3t4t5t6t7t8t9t:t;t<t=t>t?t@tAtBtCtDtEtFtGtHtItJtKtLtMtNtOtPtQtRtStTtUtVtWtXtYtZt[t\t]t^t_t`tatbtctdtetftgthtitjtktltmtntotptqtrtstttutvtwtxtytzt{t|t}t~ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt t t t t ttttttttttttttttttt t!t"t#t$t%t&t't(t)t*t+t,t-t.t/t0t1t2t3t4t5t6t7t8t9t:t;t<t=t>t?t@tAtBtCtDtEtFtGtHtItJtKtLtMtNtOtPtQtRtStTtUtVtWtXtYtZt[t\t]t^t_t`tatbtctdtetftgthtitjtktltmtntotptqtrtstttutvtwtxtytzt{t|t}t~ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuuuuuuuuuuuuuuuuuuu uu+u7uuu5uuuAuu'uuDuuu uu"uuuuu<u uu:uuu%uu uuu,uuu9uu;uuu6uu u.u u=uu!u u8uu4u uu?u@uu&uuuuuuBuu uu/uuuu uuCuu*uuuuuuuu-uu>uuu0uu1uu2uu3uuuuuu u!u"u#u$u%u&u'u(u)u*u+u,u-u.u/u0u1u2u3u4u5v6v7v7v8v9v9v:v;v<v=v>v?v@vAvBvCvDvEvFvGvHvIvJvKvLvMvNvOvPvPvQvRvSvTvUvVvWvXvYvZv\v]v^v_v`vavbvcvdvevfvgvhvivjvkvlvmvnvovpvqvrvsvtvuvvvwvxvyvzv{v|v}v~vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv v v v v vvvvvvvvvvvvvvvvvvv v!v"v#v$v%v&v'v(v)v*v+v,w-w-w.w/w0w1w2w3w4x5x6x7x8x9x:x;xxx=x<x=x>x?x@xAxBxCxDxExFxGxHxIxJxKxLxMxNxOxPxQxRxxSxTxUxVxWxXxYxZx[x\x]x^x_x`xaxbxcxdxexfxgxhxixjxkxlxmxnxoxpxqxrxsxtxuxvxwxxxyxzx{x|x}x~xxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyzzzzzz{{{{{{{{{{||||||||||||||}}}}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQ6R6S6T6U6V6W6X6Y6Z6[6\6]6^6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6opqrstuvwxyz{|}~------------------------------------------------------------------------------------------------------------------------ - - - - ------------------- -!-"-#-$-%-&-'-(-)-*-+-,---.-/-0-1-2-3-4-5-6-7-8-9-:-;-<-=->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[--\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l4m4n4o4p4q4r4s4t4u4v4w4xy{z{{{|{}{~{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~4                                  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  5 5 5 5 5 5 5 5 5!5!4!4!4!4!4!4!4!4! 4! 4! 4! 4! 4! 4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4! 4!!4!"4!#4!$4!%4!&4!'4!(4!)4!*4!+4!,4!-4!.4!/4!04!14!24!34!44!54!64!74!84!94!:4!;4!<4!=4!>4!?4!@4!A4!B4!C4!D4!E4!F4!G4!H4!I4!J4!K4!L4!M4!N4!O4!P4!Q4!R4!S4!T4!U4!V4!W4!X4!Y4!Z4![4!\4!]4!^4!_4!`4!a4!b4!c4!d4!e4!f4!g4!h4!i4!j4!k4!l4!m4!n4!o4!p4!q4!r4!s4!t4!u4!v4!w4!x4!y4!z4!{4!|4!}4!~4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!4!!!!!!!!!!z!z!z!z!z!z!z!z!z!z!z!z!z!z!z!z!z!z!z!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!6!6!6!6!6"6"6"6"6"6"6"6"6"6" 6" 6" 6" 6" 6"6"6"6"6"6"6"6"6"6"6"6"6"6"6"6"6"6"6" 6"!6""6"#6"$6"%6"&6"'6"(6")6"*6"+6",6"-6".6"/6"06"16"26"36"46"56"66"76"86"96":6";6"<6"=6">6"?6"@6"A6"B6"C6"D6"E6"F6"G6"H6"I6"J6"K6"L6"M6"N6"O6"P6"Q6"R6"S6"T6"U6"V"W"X"Y"Z"["\"]"^"_"`"a"b"c"d"e"f"g"h"i"j"k"l"m"n"o"p"q"r"s"t"u"v"w"x"y"z"{"|"}|"~|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|"|""""""""""""""""""""""""""""""""########### # # # # ################### #!#"###$#%#&#'#(#)#*#+#,#-#.#/#0#1#2#3#4#5#6#7#8#9#:#;#<#=#>#?#@#A#B#C#D#E#F#G#H#I#J#K#L#M#N#O#P#Q#R#S#T#U#V#W#X#Y#Z#[#\#]#^#_#`#a#b#c#d#e#f#g#h#i#j#k#l#m#n#o#p#q#r#s#t#u#v#w#x#y#z#{#|#}#~############################}#}#}#}#}#}#}#}#}#}#}#}#}#}#}#}#}#}###/####6#7.#############################################################################$$$$$$$$$$$ $ $ $ $ $$$$$$$$$$$$$$$$$$$ $!$"$#$$$%$&$'$($)$*$+$,$-$.$/$0$1x$2$3$4$5$6$7$846$9$:$;$<$=$>$?$@$A$B$C$D$E$F$G$H$I$J$K$L$M$N$O$P$Q$R$S$T$U$V$W$X$Y$Z$[$\$]$^$_$`$a$b$c$d$e$f$g$h$i$j$k$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$OO$$$$%%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%->%.>%/>%0>%1>%2>%3>%4>%5>%5>%6>%7>%8>%9>%:>%;>%<>%=>%>>%?>%@>%A>%B>%C>%D>%E>%F>%G>%H>%I>%J>%K>%L>%M>J>%N>F>%O>%P>%Q>%R>%S>%T>%U>%V>%W>%X>%Y>%Z>%[>%\>%]>%^>%_>%`>%a>%b>%c>%d>%e>%f>%g>%h>%i>%j>%k>%l>%m>%n>%o>%p>%q>%r>%s>%t>%u>%v>%w>%x>%y>%z%{%|%}%~%%wx%t%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%y%y%y%y&y&y&y&y&y&y&y&y&y& y& y& y& y& y&y&y&y&y&y&y&y&y&y&y&y&y&y&y&y&y&y&y& y&!y&"y&#y&$y&%y&&y&'y&(y&)y&*y&+y&,y&-y&.y&/y&0y&1y&2y&3y&4y&5y&6y&7y&8y&9y&:y&;y&<y&=y&>y&?y&@y&Ay&By&Cy&Dy&Ey&Fy&Gy&Hy&Iy&Jy&Ky&Ly&My&Ny&Oy&Py&Qy&Ry&Sy&Ty&Uy&Vy&Wy&Xy&Yy&Zy&[y&\y&]y&^y&_y&`y&ay&by&cy&dy&ey&fy&gy&hy&iy&jy&ky&ly&my&ny&oy&py&qy&ry&sy&ty&uy&v'&w'&w'&x'&y'&z'&{'&|'&}'&~'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'''''''''''''''''''' '' '' '' '' '''''''''''''''''''''''''''''''''''''' ''!''"''#''$''%''&'''''('')''*''+'',''-''.''/''0''1''2''3''4''5''6''7''8''9'':'';''<''=''>''?''@''A''B''C''D''E''F''G''H''I''J''K''L''M''N''O''P''Q''R''S''T''U''V''W''X''Y''Z''[''\'']''^''_''`''a''b''c''d''e''f''g''h''i''j''k''l''m''n''o''p''q''r''s''t''u''v''w''x''y''z''{''|''}''~'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''~'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''('('('('('('('('('( '( '( '( '( '('('('('('('('('('('('('('('('('('('( '(!'("'(#'($'(%'(&'(''(('()'(*'(+'(,'(-'(.'(/'(0'(1'(2'(3'(4'(5'(6'(7'(8'(9'(:'(;'(<'(='(>'(?'(@'(A'(B'(C'(D'(E'(F'(G'(H'(I'(J'(K'(L'(M'(N'(O'(P'(Q'(R'(S'(T'(U'(V'(W'(X'(Y'(Z'(['(\'(](^(_(`(a(b(c(d(e(e(f(g(h(i(i(j(k(l(m(n(o(p(q(r(s(t(u(u(v(w(x(y(z({(|(}(~((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((()))))))))) ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)2)3)3)4)5)6)7)8)9):);)<)=)>)?)@)A)B)C)D)E)F)G)H)I{)J)K)L)M)N)O)P)Q)R)S)T)U)V)W)X)Y)Z)[)\)])^)_)`)a)b)c)d)e)f)g)h)h)i)j)j)k)l)m)m)n)o)p)q)r)s)t)u)v)v)w)x)y)z){){)|)})~))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))********** * * * * ******************* *!*"*#*$*%*&*'*(*)***+*,*-*.*/*0*1*2*3*4*5*6*7*8*9*:*;*<*=*>*?*@*A*B*C*D*E*F*G*H*I*J*K*L*M*N*O*P*Q*R*S*T*U*V*W*X*Y*Z*[*\*]*^*_*`*a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*q*r*s*t*u*v*w*x*y*z*{*|*}V*~V*V******************************************************o*************************************************************************************************************************++++++++++ + + + + +++n++++++++++++++++ +!+"+#+$+%+&+'+(+)+*+++,+-+.+/+0+1+2+3+4+5+6+7+8+9+:+;+<+=+>+?+@+A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z+[+\+]+^+_+`+a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+v+w+x+y+z+{+|+}+~++++++++++++++++++++++++++++++++*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,,,,,,,,, , , , , ,,,,,,,,,,,,,,, ,,,, ,!,",#,$,%,&,',(,),*,+,,,-,.,/,0,1,2,2,3,4,5,6,7,8,9,:,;,<,=,>,?,@,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,[,\,],^,_,`,a,b,c,d,e,f,g,h,i,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,{,|,},~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,$7,,,,,,,,,,,,,,,,,,$1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,----------- - - - - ------------------- -!-"-#-$-%-&-'-(-)-*-+-,---.-/-0-1-2-3-4-5-6-7-8-9-:-;-<-=->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z-{-|-}-~------------------------+-----------------------------------------------------------------------------------+++++++++++++++-------+++-----------------------------------------.......... . . . . ................... .!.".#.$.%.&.'.(.).*.+.,.-.../.0.1.2.3.4.5.6.7.8.9.:.;.<.=.>.?.@.A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.R.S.T.U.V.V.W.X.Y.Z.[.\.]*.^._.`.a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.r.s.t.u.v.w.x.y.z.{.{.|.}.~.....,*...............................................................................................................................////////// / / / / //////////////////,/ /!/"/#/$/#/%/&/'/(a/)/*/+/,/-/.///0/1/2/3/4/5/6/7/8/9/:/;/</=/>/?/@/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/[/\/]/^/_/`/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/{/|/}/~///////////7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7~7/7/7/7/7/7/7/7/7/7/7/7/7/7/777/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/70707070707070707070 70 70 70 70 70707070707070707070707070707070707070 70!70"70#70$70%70&70'70(70)70*70+70,70-70.70/70070170270370470570670770870970:70;70<70=70>70?70@70A70B70C70D70E70F70G70H70I70J70K70L70M70N70O70P70Q70R70S70T70U70V70W70X70Y70Z70[70\70]70^70_70`70a70b70c70d70e70f70g70h70i70j0k0l0m0n0o0p0q0r0s0t0u0vL0w0x0y0z0{0n0k0q0|0}0}0~0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111 1 1 1 1 11111111111111111111 1!1"1#1$1%1&1'1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O*1P1Q1R1S1T1T1U1V1W1X1Y1Z1[1\1\1]1^1_1`1a1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~1111111111n11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112222222222 2 2 2 2 2222222222222222222 2!2"2#2$2%2&2'2(2)2*2+2,2-2.2/20212223242526272728292:2;2<2=2>2?2@2A2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P2P2Q2R2S2T2U2V2W2X2Y2Z2[2\2]2^2_2`2a2b2c2d2e2T2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2y2z2{2|2}2~222222R22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223333333333 3 3 3 3 33333333333333333333 3!3"3#3$3%3&3'3(3)3*3+3,3-3.3/303132333435363738393:3;3<3=3>3?3@3A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3S3T3U3V3W3X3Y3Z3[3\3]3^3_3`,3a3b3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3y3z3{3|3}3~3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333363333333333333333333333333333333333333333333344447444444 4 4 4 4 4444444444444444444 4!4"4#4$4%4&4'4(4)4*4+4,4-4.4/404142434445464748494:4;4<4=4>4?4@4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4d4e4f4g4h4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444455555555555 5 5 5 5 5 555555555555555555555 5!5"5#5#5$5%5&5'5(5)5*5+5,5-5.5/505152535455565758595:5;5<5<5=5>5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y5Z5[5\5]5^5_5`5a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5y5z5{5|5}5~5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555z5555555555555555555555555555555555566666666666 6 6 6 6 6666666666666666666 6!6"6#6$6%6&6'6(6)6*6+6,6-6.6/6061626363641H6566tt6768696:6;6<6=6>6?6@6A6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O6P6Q6Q6R6S6T6U6V6W6X6Y6Z6[26\6]6^1h6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u56v6w6x6y6z6{6|6}6~666666666666666666661G66666666666666666666(666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7{7|7}7~77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8! 8" 8# 8$ 8% 8& 8' 8( 8) 8) 8* 8+ 8, 8- 8. 8/ 80 81 82 83 84 85 86 87 88 89 8: 8; 8< 8= 8> 8? 8@ 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 8O 8P 8Q 8R 8S 8T 8U 8V 8W 8X 8Y 8Y 8Z 4 8[ 8\ 8] 8^ 8_ 8` 8a 8b 8c 8d 8e 8f 8g 8g 8h 8i 8j 8k 8l 8m 8n 8o 8p 8q 8r 8s 8t 8t 8u 8v 8u 8w 8w 8x 8y 8z 8{ 8| 8} 8~ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9  v  v 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9! 9" 9# 9$ 9% 9& 9' 9( 9) 9* 9+ 9, 9- 9. 9/ 90 91 92 93 94 95 96 97 98 99 9: 9; 9< 9= 9> 9? 9@ 9A 9B 9C 9D 9E 9F 9G 9H 9I 9J 9K 9L 9M 9N 9O 9P 9Q 9R 9S 9T 9U 9V 9W 9X 9Y 9Z 9[ 9\ 9] 9^ 9_ 9` 9a 9b 9c 9d 9e 9f 9g 9h 9i 9j 9k 9l 9m 9n 9o 9p 9q 9r 9s 9t 9u 9v 9w 9x 9y 9z 9{ 9| 9} 9~ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99999999999999999999999999999999999999999999999999999999999999999999999::::::::::: : : : : ::::::::::::::::::: :!:":#:$:%:&:':(:):*:+:,:-:.:/:0:1:2:3:4:5:6:7:8:9:::;:<:=:>:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:S:T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:o:pK:q:r:s:t:u:v:w:x:x:y:z:{:|:}:~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::PP::::::::O:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;;;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;;33;; ;!;";#;$;%;&;';(;);*;+;,;-;.;/;0;1;2;3;4;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z;[;\;];^;_;`;a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z;{;|;};~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<<<<<< < < < < <<<<<<<<<<<<<<<<<<<  =? =@ =A =B =C =D =E =F =G =H =I =J =K =L =M =N =O =P =Q =R =S =T =U =V =W =X =Y =Z =[ =\ =] =^ =_ =`=a=b=c=d=e=f=g=h=i=j=k=l=m=n=o=p=q=r=s=t=u=v=w=x=y=z={=|=|=}=~============78====================================================================================================(j===================e==>>>>>>>>>> > > > > >>>>>>>>>>>>>>>>>>> >!>">#>$>%>&>'>(>)>*>+>,>->->.>/>0>1>2>3>4>5>6 >7 >8 >9 >: >; >< >= >> >?!>@!>A!>B!>C!>D!>E!>F!>G">H">I">I">J">K">L">L">M">N">O">P">Q">R">S">T">U">V">W">X">X">Y">Z">[">\">]">\">^">_">`">a">a">b">b">c">d">e#>f#>g#>h#>i#>j#>k#>l#>m#>n#>o#>p#>q#>r$<[$>s$>t$>u$>v$>w%>x%>y%>z%>{%>|%>}%>~%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>%>&>'>'>'>'>'Q''>'''>'>'>'>'>'''>''>'>'>'''''>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>'>(>)>)>)>)>)>)>)>)>)>)>)>) ) ) )=g)>)>)>)>)>)>)>) )>)>)>)>)?)?)?)?)?)?)?)?)?)? )? )? )? )? ) +) ,) )?) %)?)?)?)?)?)?)?)?)?*?*?*?*?*?*?*?*?*? *?!*?"*?#*?$+?%+?&+?'+?(+?)+?*,?+,?,,?-,?.,?/-?0-?1-?2-?3-?4-?5-?6-?7-?8-?9-?:-?;-?<.?=.?>.??.?@.?A.?B.?C.?D.?E.?F.?G.?H.?I.?J.?K.?L/?M/?N/?O/?P/?Q/?R/?S/?T/?U/?V/?W/?X/?Y/?Z/?[/?\/?]/?^/?_/?`/?a/?b/?c/?d/?e/?f/?g/?h/?i/?j/?k/?l0?m0?n0?o0?p0?q0?r0?s0?t0?u0?v?w?x?y?z?{?|?}?~????????????????????1?1?2?????????????????????????????3?3?3?3?3?3?3?3?3?3?4?4?4?5?????6?7?8?8?8?8?8?8?8?8?8?8?8?8?9?9?9????????????????????????????????????????????????@@@@@@@@@@ @ @ @ @ @@@@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@'@(@)@*@+@,@-@.@/@0@1@2@3@4@5:@6:@7;@8;@9;@:;@;;@<;@=;@>;@?;@@;@A;@B;@C;@D;@E;@F;@G;@H;@I;@J;@K;@L;@M;@N;@O;@P;@Q;@R;@S;@T;@U;@V;@W;@X;@Y;@Z;@[;@\;@];@^;@_;@`;@a;@b;@c;@d;@e;@f<@g<$8<@h<@i<@j<@k<@l<@m<@n<@o<@p<@q<@r<@s<@t<@u<@v<@w<@x<@y<@z<@{<@{<@|<@}<@~<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<,<a<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@<@>@>@>@>@>@>@>@>@>@>@>@>@>@>@>@>@?@?@?@?@?@?@?@?@?@?@?@?@?????@?@?@?@?@?@?@?@?@?@?@?@?>? ? ?@?@?@?A?A?A?>?A?A?A?A?A?A?A ?A ?A ?A ?A ?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A ??? ? "? (? %?A!?A"?A#?A$@@A%@A&@A'@A(@A)@A*@A*@A+@A,@A-@A.@A/@A0@A1@A2@A3@A4@A5@A6@A7@A8@A9@A:@A;@A<@A=@A>@A?@A@@AA@AB@AC@AD@AE@AF@AG@AH@AI@AJ@AK@AL@AM@AN@AO@AP@AQ@AR@AS@AT@AU@AV@AW@AX@AY@AZ@A[@A\@A]@A^@A_@A`@Aa@Ab@Ac@Ad@Ae@Af@Ag@Ah@Ai@Aj@Ak@Al@Am@An@AoAApAAqAArBAsBAtBAuBAvBAwBAxBAyBAyBAzBA{BA|BA}BA~BABABABABABABABABABABAgAAfAAAAACACADAEAEAEAEAEAEAFAFAFAFAF/FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAHAHAHAHAHAHAHAHAHBHBHBHBHBHBHBHBHBHB HB HB HB HB HBIBIBIBIBIBIBIBIBIBIBIBJBJBKBKBKBKBKB KB!KB"KB#KB$KB%KB&KB'KB(LB)LB*LB+ B, B, B- B. B/ B0 B1 B2 B3 B4B5B6MB7MB8MB9MB:MB;MB<MB=MB>MB?MB@MBAMBBMBCMBDMBEN% NBFNBGNBHNBINBJNBKOBLOBMOBNOBOOBPOBQOBROBSOBTOBUOBVPBWPBXPBYPBZPB[PB\PB]PB^PB_PB`PBaPBbPBcQBdQBeQBfQBgQBhQBiQBjQBkQBlQBmQBnQBoQBpQBqQBrQBsQBtQBuQBvBwBxByBzB{B|B}B~BBBBBBBBBBBBBBBBBBBBBBBBBBBBBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBR.RBRBRBRRRRRBRBRBRBRBRBRBRBRBRVRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBRBSBSBSBSBSBSBSBSBSBSBSBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTCTCTCTCTCTCTCTCTCTC TC TC TC TC TCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC TC!TC"TC#TC$TC%TC&TC'TC(TC)TC*TC+TC,TC-TC.TC/TC0TC1TC2TC3TC4TC5TC6TC7TC8TC9TC:TC;TC<TC=TC>TC?TC@TCATCBTCCTCDTCETCFTCGTCHTCITCJTCKTCLTCMTCNTCOTCPTCQTCRTCST`D?``D@`DA`DB`DC`DD`DE`DF`DG`DH`)(`))`)*`DIaDJaDKaDLaDMaDNaDOaDPaDQbDRbDSbDTbDUbDVbDWcDXcDYdDZdD[eD\eD]eD^eD_eD`eDaeDbeDceDdeDeeDfeDgeDheDieDjeDkeDleDmeDneDoeDpeDqeDreDseDteDueDveDweDxeDyeDzeD{eD|eD}eD~eDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeD D D D D D D DfDfDfDfDfDfDfDfDfDfDfDfDfDgDgDgDgDgDgDgDgDgDgDgDgDgDgDgDgDgDgDgDgDgDhDhDhDhDhDhDhDhD D D D D D DiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiDiEiEiEiEiEiEiEiEiEiE jE jE jE jE jEjEjEjEjEjEjEjEjEjEjEjEkEkEkEkEkEkEkE kE!kE"kE#kE$kE%lE&mE'mE(mE)mE*mE+mE,mE-mE.mE/mE0nE1nE2nE3nE4oE5oE6oE7oE8oE9oE:oE;oE<oE=oE>oE?oE@oEAoEBECEDEEEFEGEHEIEJEKELEMENEOEPEQERESpETqEUqEVqEWqEXqEYqEZqE[qE\qE]qE^E_E`EaEbEcEcEdEeEfEgEhEiEiEjEkElEmEnEoEpEqErEsEtEuEvEwExEyEzE{E|E}E~EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE@4EEEEErEsEsEsEsEsEsEsEsEsEsEsEsEsEsEsEsEsEsEtEtEtEtEuEuEuEuEuEv5vEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEvEwEwEwEwEwEwEwEwEwEwEwEwExEyEyEyEyEzEzEzEzEzE{E|F|F|F|F|F|F|F|F|F}F }F ~F ~F ~F ~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F~F ~F!~F"~F#tF$F%F&F'F(uF)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F8F9F:F;F<F=F>F?F@FAFBFCFDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFF&0FFFFFFFFFFFHHFFFFFFFFFFFFFFFFFFF,RFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8bFFF8aFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGGG G G G G GGG#GGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G)G*G+G,G-G.G/G0G1G2G3G4G5G6G7G8G9G:G;G<G=G>G?G@GAGBGCGDGEGFGGGHGIGJGKGLGMGNGOGPGQGRGSGTGUGVGWGXGYGZG[G\G]G^G_G`GaGbGcGdGeGfGgGhGiGjGkGlGlGmGnGoGpGq7GrGsGtGuGvGwGxGyGzG{G|G}G~GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG GGGG   GGGGGGGG+GG++++++++++--+++G-G----GGGGGGGGGGGGGGGGGGGGGGGGG--GGGGGGGGGGGGGGGGGGGGG--G-G---GGGGGGGGGGGGGGGG.XGGGGGGGGGGGGGGGGGGHHHHHHHHHH H H H H HHHHHHHHHHHHHHHHHHH H!H"H#H$H%H&H'H(H)H*H+H,H-H.H/H0H1H2DH3H4H5H6H7H8H9H:H;H<H=H>H?H@HAHBHCHD-HEHFHGHHHIHJHKHLHMHNHOHPHQHR.XGGGGHSHTGGHUHVHWHXHYHZHH[HH\HH]H^H_H`HaHHbHcHdH,HeHfHgHhHiHjHkHlDH5H6HmHnHoHpHqHrHsHKGHtHuHGHHHIHJHvHLHwHMHNHOHPHQHRHxHyHzH{H|H}H}H~H~HHHHHH.{HHHHHHHHHHHHHHHH.HHHHHHHH.XGGGGHSHHHHTHHHHHHH/HHHDHHHHGHHHHHHHHHHHHHHHHHHHHHHHHHHH`HHHHcHiHfH,HbHgHdHHHHHHHH9HHHHHHmHnHoHDHFH-HHKGHtHGHHHIHJHLHRHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIIIIII I HI I I I I HI I ----------------IIIII-IIIIIHIIIIIIIII I!I"I#I$I%I&I'I(I)I*I+I,I-I.I/I0I1I2I3I4I5I6I7I8I9I:I;I<I=I>I?I@IAIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZI[I\I]I^I_I`IaIbIcIdIeIfIgIhIiIjIkIlImInInIoIpIqIqIrIsItIuIuIvIwIxIyIyIzI{I|I}I~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I HGHHHJHIHL--IIIII IIIIIIIIIIII@IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIILIIIIIIIIIII>y!IIIIIIIIIIIJJJJJJJJJJ J J J J JJJJJJJJJJJMJJIJJJJJJJ J!J"J#J$J%J%J&J'J(J)J*J+J,J-J-J.J/J0J0J1J2J3J4J5J6J7J8J9J:J;J<J=J>J?J@JAJBJCJDJEJFJGJHJIJJJKJLJMJNJOJPJQJR>fJSJTJUJVJWJXJYJZJ[J\J]J^J_J`JaJbJcJdJeJfJgJhJiJjJkJlJmJnJoJpJqJrJsJtJuJvJwJxK?[K<K@[K<KA[KKB[KKC[KKD[KKE[KKF[KKG[KKH[KKI[KKJ[KKKL[KKKM[KKKN[KKKO[KPKQ[KPKR[K,KS[JKT[JKU[KVKW[JKX[JKY[JKZ[JK[[JK\[JK][JK^[JK_[JK`[JKa[JKb[Kc[Kd[Ke[Kf[Kg[Kh[Ki[Kj[Kk[Kl[Km[Kn[Ko[Kp[Kq[Kr[Ks[Kt[Ku[Kv[Kw[Kx[Ky[Kz[K{[[[K|K}[JK~[JK[JK[`K[`K[`K[`K[`K[`K[`K[`K[`K[KK[KK[KKJJKJJKJJK[K>K[K>K[K>K[K[K[K[`K[KK[KK[KK[KK[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K<K[K>K[K>K[K>K[K>K[K>K[K>K[K>K[K>K[K>K[K>K[K<K[K[K[K[K[K[K[K[K[K[K[K[K[KKKKKKKKKK#K#KKK[K|K[K|K[K|K[K|K[K|K[K|K[K|K[K|K[KK/K[KK K K K K K3K3K3K3K3K!K!K8K=K=K=KBKBKCKIKIKMLMLRLRLSLTLULULULL L L 0L 0L ^L^L%L%L%LLL%L%L%L%L%L%L%L%L%L%L%L%L %L!%L"%L#%L$%L%%L&%L'%L(%L)%L*%L+%L,%L-%L.%L/%L0%L1%L2%L3%L4`L5 L6 L7[L8L9@L:@L;@L<@L=1L>1L?1L@1LA1LB1LC1LD1LE1LF1LG1LH1LI1LJ1LK1LL1LM1LN1LO1LP1LQ1LR1LS1LT1LU1LV1LW1LX1LY1LZ1L[1L\1L]1L^1L_1L`1La1Lb1Lc1Ld1Le1Lf1Lg1Lh1LihLjhLkhLlhLmhLnhLoLpLqLrl+lLslLtlLulLvlLwlLxlLylLzlL{lL|lL}lL~lLlLlLlLlLlLnLnLnLnLsLvLvLvLxLxLxLxL-L-L-L-L-L-L-/-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L{L{L{L{L3LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL4L4L4L4L4L4L6L6L6L6L6LLLLL|LLLMMMMMM<M<MMMM M M M M MMMMMMMMMM>MyMyMyMyMyMyMyMaM M!M"M#M$M%M&M'M(M)M*M+M,M-M.+M/M0+M1M2M3M4M5M6BM7M8M9+M:M;M<M=M>M?M@MAMBMCMDME*MFMGMHMIMJMKMLMMMNMOMPMQMRMSMTMUMVMWMXMYMZM[M\M]M^M_M`MaMbMcMdMeMfMgqMhMiMjMkMlMmMnMoMpMqMrMsMtMuMvMwMxMyMzM{M|M}M~MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM3MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMqMMM$uMMMMMMMMMMMM3MMMMMMMMMMMMM7M7MMMMMMMMMMMMMMMMMNNNNNNNNNN N N N N NNNNNNNNNNNNNNNNNNN N!N"N#N$N%N&N'N(N)N*N+N,N-N.N/N0N1N2N3N4N5 N6 N7 N8N9N:N;N<N=N>N?N@NANBNCNDNENF NG NH NINJNKNLNMNNNONPNQNRNSNTNUNVNWNXNYNZN[N\N]N^N_N`NaNbNcNdNeNfNgNhNiNjNkNlNmNnNoNp Nq Nr Ns!Nt!Nu!Nv!Nw!Nx!Ny!Nz!N{!N|N}(6!N~N}(N#N#N#N#N#N#N#N#N#N#N#N#N#N#N#N#N#N#N%N%N%N%N%N'N'N(N)N*N+N.N.N/N/N/N/N/N/N/N0N0N0NNN1N1N1N1N1N1N2N2N3N5N6N6N6N6N8NNNNN;N<N=N=N=N=2i=NANANANNNNNNNNNNNNNDNENFNGNGNGNGNGNGNGNGNGNGNGNGNINININJNLNLNLNLNLNLJ[LNLN NNNNNNNNNNNNNNNNNMNMNMNMNMNMNMNMNMNONONOOOOOOOOOOOOOOOOQOQO QO RO RO SO SOSOSOSOSOSOTOUOUOUOUOUOUOU@UOUOUOUOVOVO VO!VO"VO#VO$VO%VO&WO'WO(WO)WO*WO+WO,WO-WO.WO/WO0WO1WO2WO3WO4WO5WO6O7O8XO9XO:XO;XO<YO=YO>YO?YO@YOAYOBYOCYOD[OE[OF[OG]OH]OI]OJ`OK`OL`OM`ON`OO`OP`OQaORaOSaOTaOUaEaOVaOWaOXaOYaOZaO[cO\cO]cO^fO_fO`fOafObfOcgOdgOegOfgOg Oh Oi Oj OkiOliOmiOniOoiOpiOqiOriOsiOtiOuiOvjOwkOxmOynOznO{nO|nO}nO~nOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOoOoOOOOOqOqOqOqOqOOOOOOOOOOOOxOxOxOxOxOxOxOxOxO|O|O|O|O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~O~OOuOuPuPPPPPPPPP P P P P PPPPPPPPPPPPPPPPPP!P P!P"P#P$P%P&P'P(P)P*P+P,P-P.P/P0P1P2P3P4P5P6P7P8P9P:P;P<P=P>P?P@PAPBPCPDPEPFPGPHPIPJPKPLPMPBPNPOPPPQPRPSPTPUPVPWPXPYPKPLPZP[P\P]P^P_P`PaPbPcPdPePfPgPhPiPjPkPlPmPn-PoPpPqPrPLPsPtPuPvPwPxPyPzP{H}HzH~HP|HP}HP~HPMMP}PPPPPHzHP}HPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP[PBPPPPPPPPPDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPQQQghcPanic MonadUtilsPlugins FingerprintUtil SpecConstr PackageConfigDsMonadIOEnvDigraphHscTypesLexeme ByteCodeAsmGHCiGHCMaybes FiniteMap FastMutInt FastFunctions ExceptionEnumSetEncodingConfig ConstantsArHooks Hoopl.BlockHoopl.Collections Hoopl.UniqueListTNameOccName OutputablePPC.CondCtypePlatformDynFlagsPlatformConstantsPrimOp SPARC.CondStateStreamSysTools.BaseDirSysTools.TerminalTyCon PprColour FastStringModulePackagesBufWritePrettyTypeKindCoercionTcType StringBufferPairOrdList ListSetOpsJsonSrcLocIdInfoHsDocErrUtilsAsmUtils BasicTypesUnique UniqSupplyUniqFMUniqSetUniqMap GraphBaseUniqDFMUniqDSet FastStringEnvRegClassRegAlloc.Graph.ArchBaseRegAlloc.Graph.ArchX86RegRegAlloc.Graph.TrivColorable Hoopl.Label Hoopl.GraphGraphPprGraphOps GraphColorBlockIdBinary PrelNamesDynamicLoading ForeignCallBooleanFormula DriverPhasesBag CmdLineParser SPARC.BaseSMRepRegAlloc.Linear.StackMapNameSetNameEnv KnownUniques FieldLabelBinFingerprint Annotations LlvmMangler FileCleanupSysTools.Process SysTools.InfoElfCmmType CmmSwitch CmmMachOpCPrimBitmapAvailRdrNameTHNames ApiAnnotationLexerCmmMonadVar TysWiredInPatSyn IfaceTypeDataConConLike CostCentreCoAxiomClass TcTypeNatsMkIdVarSetVarEnvToIfaceFVTysPrim PlaceHolderLiteralUnifyRepTypeDemandCoreSynTrieMap FamInstEnvId UnVarGraph NameCacheInteractiveEvalTypes ByteCodeTypes CoreStatsPprCoreStgSynStgStatsStgLintStgCseIfaceSynCLabelProfInitCmmExpr PprCmmExprCodeGen.Platform.X86_64CodeGen.Platform.X86CodeGen.Platform.SPARCCodeGen.Platform.PPC_DarwinCodeGen.Platform.PPCCodeGen.Platform.NoRegsCodeGen.Platform.ARM64CodeGen.Platform.ARMCodeGen.PlatformCmmNodeCmmLexCmm SPARC.ImmSPARC.AddrMode PprCmmDeclPprBase Llvm.Types Llvm.MetaData Llvm.AbsSyn Llvm.PpLlvmLlvmCodeGen.RegsLlvmCodeGen.BaseSysTools.TasksSysTools.ExtraObjSysToolsLlvmCodeGen.DataLlvmCodeGen.Ppr InstructionHoopl.DataflowFormat SPARC.Regs SPARC.StackRegAlloc.Linear.SPARC.FreeRegsPPC.RegsRegAlloc.Linear.PPC.FreeRegsCmmUtilsPprCmmRegAlloc.LivenessRegAlloc.Linear.BaseRegAlloc.Linear.StatsRegAlloc.Linear.StateRegAlloc.Graph.SpillCostRegAlloc.Graph.SpillCleanRegAlloc.Graph.SpillRegAlloc.Graph.CoalescePprCLlvmCodeGen.CodeGenDebugCmmOptCmmLiveCmmSinkCmmLintCmmInfo CmmProcPointCmmImplementSwitchPlansCmmContFlowOptCmmCommonBlockElim CmmCallConvMkGraphCmmBuildInfoTablesCgUtils LlvmCodeGenCoreSeqCoreFVs TcEvidence HsExtensionHsPatHsImpExpHsExprHsTypesHsLitHsBinds StgCmmClosure StgCmmMonad StgCmmUtils StgCmmProf StgCmmExtCode StgCmmBind StgCmmEnv StgCmmArgRep StgCmmTicky StgCmmLayout StgCmmHeap StgCmmForeign StgCmmPrimCmmLayoutStackInstEnv OptCoercionHsDeclsHsUtilsHsSynRdrHsSynPmExpr TcRnTypesTcUnifyTcSplice TcSimplify TcRnDriver TcMatchesTcExprTcEnvRnHsDocRnExpr TcRnMonadTcPatSynTcMType TcAnnotationsRnSpliceTcIfaceTcHsSynTmOracle StgCmmHpc RnUnbound PipelineMonad LoadIfaceIfaceEnv NameShape RnModIface DebuggerUtilsGhcMonadFinderDsUsage CmmPipeline ByteCodeLink ByteCodeItblsHscStats HsDumpAst HaddockUtilsCoverageConvertBkpSynParser HeaderInfo CoreUtilsSATMkCoreExitify CoreSubst CoreArity OccurAnalCoreTidyCoreOptRules CoreUnfold PrelRules UnariseStgSimplStgPrelInfo StgCmmCon StgCmmExprCmmParseStgCmmBinIface FlagCheckerStaticPtrTableRnUtils CoreMonad Specialise SimplMonadSimplEnv SimplUtilsSimplify SetLevelsFloatOutFloatInRnFixityRnEnvRnTypesRnPatRnNames TcRnExportsRnBindsRnSourceMkIface PprTyThingFamInstFunDepsInstRtClosureInspectTcErrorsTcSMonad TcFlatten TcCanonical TcInteract TcValidity TcGenDeriv TcGenFunctor TcGenGenerics TcDerivUtils TcDerivInfer CoreToStg LiberateCaseCoreLintCorePrepTidyPgmCSE CallArity ByteCodeInstrLinker ByteCodeGen BuildTyClTcHsTypeTcSigsTcPat TcDefaultsTcBinds TcTypeable TcTyDeclsTcArrows TcBackpackTcRules TcForeignMatchDsExprDsUtilsMatchLitDsMetaDsGRHSsDsCCall DsForeignDsBindsMatchConCheck DsListCompDsArrows TcClassDclTcDeriv TcInstDcls TcTyClsDeclsDesugarVectorise.Builtins.BaseVectorise.Builtins.Initialise Vectorise.EnvVectorise.Monad.BaseVectorise.Monad.GlobalVectorise.Monad.InstEnvVectorise.Monad.LocalVectorise.Monad.NamingVectorise.MonadVectorise.Type.ClassifyVectorise.VectVectorise.Utils.BaseVectorise.Utils.PADictVectorise.Utils.PolyVectorise.Utils.HoistingVectorise.Utils.ClosureVectorise.UtilsVectorise.Type.Type Vectorise.VarVectorise.Type.TyConDeclVectorise.ConvertVectorise.Generic.DescriptionVectorise.Generic.PDataVectorise.Generic.PAMethodsVectorise.Generic.PADictVectorise.Type.Env Vectorise.Exp VectoriseWwLibWorkWrapDmdAnal SimplCoreX86.CondX86.Regs X86.RegInfo TargetReg X86.InstrX86.Ppr SPARC.InstrSPARC.ShortcutJump SPARC.PprSPARC.CodeGen.SanitySPARC.CodeGen.ExpandSPARC.CodeGen.BaseRegAlloc.Graph.StatsRegAlloc.Graph.Main PPC.Instr PPC.RegInfoPPC.PprNCGMonadSPARC.CodeGen.Gen32SPARC.CodeGen.CondCodeSPARC.CodeGen.AmodeSPARC.CodeGen.Gen64PIC X86.CodeGen SPARC.CodeGen PPC.CodeGenRegAlloc.Linear.X86_64.FreeRegsRegAlloc.Linear.X86.FreeRegsRegAlloc.Linear.FreeRegsRegAlloc.Linear.JoinToTargetsRegAlloc.Linear.MainDwarf.Constants Dwarf.TypesDwarf AsmCodeGen CodeOutputHscMainInteractiveEvalDriverPipelineGhcMakeDriverMkDependDebugger DriverBkp GhcPreludeunsafeGlobalDynFlags initGhcMonad TcPluginM Data.Listunconsheadtailnullhs AnnKeywordIdAnnOpenAnnClose AnnHeaderAnnValcleanCurrentModuleTempFiles runPipelinerunGhcputIfaceTopBndrgetIfaceTopBndrAnnDecl parseDynFlagsAnnType AnnBackquote AnnTildehshAnnTildeMx ParsedModuleTyCoRepfunTyConAnnCommaRdrNames mkCoreApps mkCoreConApps mkIntExpr mkWordExpr mkCharExpr mkStringExpr mkFloatExpr mkDoubleExpr mkCoreLams mkCoreLetsLlvm AnnPattern AnnDotdot AnnModule AnnImportAnnSafe AnnQualifiedAnnPackageNameAnnAs AnnHidingAnnSemi AnnDcolon AnnForallAnnDot AnnDarrow AnnRarrowAnnBangAnnSimpleQuoteAnnUnit AnnDefaultAnnInfix AnnInstanceAnnVbarAnnEqual AnnLarrowAnnWhere tcMonoBindsAnnFunIdAnnAtAnnRoleAnnClass AnnForeign AnnExport AnnDerivingAnnStock AnnAnyClassApi AnnNewtypeAnnData AnnNewTypeAnnCLose AnnFamilyAnnOpenP AnnClosePLanguage.Haskell.TH.SyntaxaddModFinalizerAnnThenAnnByAnnGroupAnnUsingAnnLetAnnRec Annlarrowtail Annrarrowtail AnnLarrowtail AnnRarrowtailAnnOpenB AnnCloseBAnnLamAnnCaseAnnOfAnnIfAnnElseAnnInAnnDoAnnMinus AnnValStrAnnOpenE AnnOpenEQ AnnCloseQAnnProc AnnStaticAnnColonmkVectTyConOccmkVectDataConOcc mkVectIsoOcc GlobalEnvtopSortModuleGraph flattenSCC imp_dep_mods setContextload HscNoRecomptcg_type_env_varTcGblEnv mkCoreLet GhcPlugins Data.ArrayParallelData.Array.ParallelPrim addExternalVectorise.BuiltinsVectorise.Generic Descriptionbase Debug.TracetraceControl.Monad.FixmfixGHC.Base<*>pure*>MonadFix ApplicativePluginFrontendPluginGHC.Fingerprint.TypeGHC.ExtssortWithForceSpecConstr NoSpecConstrSpecConstrAnnotation Data.Data mkNoRepTypeControl.Monad.IO.ClassliftIOMonadIO Control.Monad mapAndUnzipM Data.Version versionTags versionBranchVersionData.TraversablemapMGHC.Fingerprint getFileHashfingerprintData fingerprint0Control.Exception.Basetry GHC.Conc.SyncthrowTo GHC.IORefIORef GHC.ExceptiondisplayException fromException toExceptionfingerprintFingerprintsfingerprintString Data.Functor<$>GHC.Listfoldl1'<*GHC.Stack.Types HasCallStackcontainers-0.5.11.0 Data.Graph flattenSCCs CyclicSCC AcyclicSCCSCCghc-boot-th-8.4.1GHC.ForeignSrcLang.Type LangObjcxxLangObjcLangCxxLangCForeignSrcLangghc-boot-8.4.1 GHC.PackageDbtrustedexposed indefinite hiddenModulesexposedModules haddockHTMLshaddockInterfaces includeDirsincludes ccOptions ldOptions frameworkDirs frameworkslibraryDynDirs libraryDirsextraGHCiLibrariesextraLibraries hsLibraries importDirs abiDependsdependsabiHash sourceLibNamepackageVersion packageNamesourcePackageIdinstantiatedWith componentIdunitIdInstalledPackageInfo GHC.Lexeme startsConId startsVarId startsConSym startsVarSym ghci-8.4.1SizedSeqsizeSSssElts GHCi.MessageRunModFinalizersRunTHStartTHGetBreakpointVarBreakpointStatusEnableBreakpoint NewBreakArrayCostCentreStackInfo MkCostCentresEvalIOEvalStringToString EvalString AbandonStmt ResumeStmtEvalStmtMkConInfoTableFreeFFIPrepFFI MallocStrings MallocData AddSptEntryFreeHValueRefs CreateBCOsFindSystemLibrary ResolveObjsRemoveLibrarySearchPathAddLibrarySearchPath UnloadObjLoadObj LoadArchiveLoadDLL LookupClosure LookupSymbol InitLinkerShutdownMessageEvalAppEvalThisEvalExpr EvalStatus EvalBreak EvalComplete EvalStatus_ EvalSuccess EvalException EvalResultGHCi.RemoteTypesHValue ForeignHValuetransformers-0.5.5.0Control.Monad.Trans.Maybe runMaybeTMaybeT insertListinsertListWith deleteList foldRightfoldRightWithKeyreadHexFingerprintfingerprintByteString FastMutPtr newFastMutIntreadFastMutIntwriteFastMutInt newFastMutPtrreadFastMutPtrwriteFastMutPtrinlinePerformIOExceptionMonadgcatchgmaskgbracketgfinallycatchIOhandleIOtryIOgtryghandle gonException$fExceptionMonadIOmemberinsertdeletetoListfromListemptyutf8DecodeChar#utf8DecodeChar utf8PrevChar utf8CharStartutf8DecodeByteStringutf8DecodeStringLazycountUTF8Charsutf8EncodeCharutf8EncodeStringutf8EncodedLength zEncodeString zDecodeStringtoBase62PaddedtoBase62IntegerLibrary IntegerGMP IntegerSimplecBuildPlatformStringcHostPlatformStringcTargetPlatformString cProjectNamecProjectGitCommitIdcProjectVersioncProjectVersionIntcProjectPatchLevelcProjectPatchLevel1cProjectPatchLevel2cBooterVersioncStagecIntegerLibrarycIntegerLibraryTypecSupportsSplitObjscGhcWithInterpretercGhcWithNativeCodeGen cGhcWithSMP cGhcRTSWayscGhcRtsWithLibdwcGhcEnableTablesNextToCodecLeadingUnderscorecGHC_UNLIT_PGMcGHC_SPLIT_PGMcLibFFI cGhcThreaded cGhcDebugged$fEqIntegerLibrary hiVersionmAX_TUPLE_SIZEmAX_CTUPLE_SIZE mAX_SUM_SIZEmAX_REDUCTION_DEPTHmAX_SOLVER_ITERATIONS wORD64_SIZE fLOAT_SIZEtARGET_MAX_CHARArchive ArchiveEntryfilenamefiletimefileownfilegrpfilemodefilesizefiledataafilter isBSDSymdef isGNUSymdefparseAr writeBSDAr writeGNUArloadArloadObj$fEqArchiveEntry$fShowArchiveEntry $fEqArchive $fShowArchive$fSemigroupArchive$fMonoidArchive emptyHooksBlockBlockCOBlockCCBlockOCBNilBMiddleBCatBSnocBConsMaybeOJustONothingO IndexedCOCO isEmptyBlock emptyBlock blockCons blockSnoc blockJoinHead blockJoinTail blockJoin blockAppend firstNodelastNodeblockSplitHeadblockSplitTail blockSplit blockToList blockFromListreplaceFirstNodereplaceLastNodemapBlock mapBlock' mapBlock3'foldBlockNodesFfoldBlockNodesB3foldBlockNodesB$fFunctorMaybeO$fFunctorMaybeCIsMapKeyOfmapNullmapSize mapMember mapLookupmapFindWithDefaultmapEmpty mapSingleton mapInsert mapInsertWith mapDeletemapUnionmapUnionWithKey mapDifferencemapIntersection mapIsSubmapOfmapMap mapMapWithKeymapFoldmapFoldWithKey mapFiltermapElemsmapKeys mapToList mapFromListmapFromListWithIsSetElemOfsetNullsetSize setMembersetEmpty setSingleton setInsert setDeletesetUnion setDifferencesetIntersection setIsSubsetOfsetFoldsetElems setFromList setInsertList setDeleteList setUnions mapInsertList mapDeleteList mapUnions UniqueMap UniqueSet intToUnique$fIsSetUniqueSet$fIsMapUniqueMap $fEqUniqueSet$fOrdUniqueSet$fShowUniqueSet $fEqUniqueMap$fOrdUniqueMap$fShowUniqueMap$fFunctorUniqueMap$fFoldableUniqueMap$fTraversableUniqueMapunListTselectfoldrunListT$fMonadPlusListT$fMonadFailListT $fMonadListT$fAlternativeListT$fApplicativeListT$fFunctorListTSDoctext warnPprTraceshowSDocUnsafe GhcExceptionSignal UsageError CmdLineErrorPprPanicSorryPprSorryInstallationError ProgramErrorPprProgramErrorprogName showExceptionsafeShowExceptionshowGhcExceptionthrowGhcExceptionthrowGhcExceptionIOhandleGhcExceptionpanicsorrypgmErrorpanicDocsorryDoc pgmErrorDoc assertPanictryMostwithSignalHandlers$fShowGhcException$fExceptionGhcExceptionCondALWAYSEQQGEGEUGTTGULELEULTTLUNE condNegate condUnsigned condToSignedcondToUnsigned$fEqCondis_ident is_symbolis_anyis_spaceis_loweris_upperis_digit is_alphanumhexDigit octDecDigit is_decdigit is_hexdigit is_octdigit is_bindigit PPC_64ABIELF_V1ELF_V2ArmABISOFTSOFTFPHARD ArmISAExtVFPv2VFPv3VFPv3D16NEONIWMMX2ArmISAARMv5ARMv6ARMv7OS OSUnknownOSLinuxOSDarwin OSSolaris2 OSMinGW32 OSFreeBSD OSDragonFly OSOpenBSDOSNetBSD OSKFreeBSDOSHaikuOSQNXNTOOSAIXArch ArchUnknownArchX86 ArchX86_64ArchPPC ArchPPC_64 ArchSPARC ArchSPARC64ArchARM ArchARM64 ArchAlpha ArchMipseb ArchMipselArchJavaScript ppc_64ABIarmISA armISAExtarmABI platformArch platformOSplatformWordSizeplatformUnregisterisedplatformHasGnuNonexecStackplatformHasIdentDirective platformHasSubsectionsViaSymbolsplatformIsCrossCompilingisARM target32Bit osElfTarget osMachOTargetplatformUsesFrameworksosSubsectionsViaSymbols$fReadOS$fShowOS$fEqOS $fReadArmISA $fShowArmISA $fEqArmISA$fReadArmISAExt$fShowArmISAExt $fEqArmISAExt $fReadArmABI $fShowArmABI $fEqArmABI$fReadPPC_64ABI$fShowPPC_64ABI $fEqPPC_64ABI $fReadArch $fShowArch$fEqArch$fReadPlatform$fShowPlatform $fEqPlatformDumpFlaghasNoDebugOutput hasPprDebugshouldUseColoruseUnicodeSyntax useUnicodepprCols pprUserLengthtargetPlatformpc_platformConstantspc_CONTROL_GROUP_CONST_291pc_STD_HDR_SIZEpc_PROF_HDR_SIZE pc_BLOCK_SIZEpc_BLOCKS_PER_MBLOCKpc_TICKY_BIN_COUNTpc_OFFSET_StgRegTable_rR1pc_OFFSET_StgRegTable_rR2pc_OFFSET_StgRegTable_rR3pc_OFFSET_StgRegTable_rR4pc_OFFSET_StgRegTable_rR5pc_OFFSET_StgRegTable_rR6pc_OFFSET_StgRegTable_rR7pc_OFFSET_StgRegTable_rR8pc_OFFSET_StgRegTable_rR9pc_OFFSET_StgRegTable_rR10pc_OFFSET_StgRegTable_rF1pc_OFFSET_StgRegTable_rF2pc_OFFSET_StgRegTable_rF3pc_OFFSET_StgRegTable_rF4pc_OFFSET_StgRegTable_rF5pc_OFFSET_StgRegTable_rF6pc_OFFSET_StgRegTable_rD1pc_OFFSET_StgRegTable_rD2pc_OFFSET_StgRegTable_rD3pc_OFFSET_StgRegTable_rD4pc_OFFSET_StgRegTable_rD5pc_OFFSET_StgRegTable_rD6pc_OFFSET_StgRegTable_rXMM1pc_OFFSET_StgRegTable_rXMM2pc_OFFSET_StgRegTable_rXMM3pc_OFFSET_StgRegTable_rXMM4pc_OFFSET_StgRegTable_rXMM5pc_OFFSET_StgRegTable_rXMM6pc_OFFSET_StgRegTable_rYMM1pc_OFFSET_StgRegTable_rYMM2pc_OFFSET_StgRegTable_rYMM3pc_OFFSET_StgRegTable_rYMM4pc_OFFSET_StgRegTable_rYMM5pc_OFFSET_StgRegTable_rYMM6pc_OFFSET_StgRegTable_rZMM1pc_OFFSET_StgRegTable_rZMM2pc_OFFSET_StgRegTable_rZMM3pc_OFFSET_StgRegTable_rZMM4pc_OFFSET_StgRegTable_rZMM5pc_OFFSET_StgRegTable_rZMM6pc_OFFSET_StgRegTable_rL1pc_OFFSET_StgRegTable_rSppc_OFFSET_StgRegTable_rSpLimpc_OFFSET_StgRegTable_rHppc_OFFSET_StgRegTable_rHpLimpc_OFFSET_StgRegTable_rCCCS!pc_OFFSET_StgRegTable_rCurrentTSO%pc_OFFSET_StgRegTable_rCurrentNurserypc_OFFSET_StgRegTable_rHpAllocpc_OFFSET_stgEagerBlackholeInfopc_OFFSET_stgGCEnter1pc_OFFSET_stgGCFunpc_OFFSET_Capability_rpc_OFFSET_bdescr_startpc_OFFSET_bdescr_freepc_OFFSET_bdescr_blockspc_OFFSET_bdescr_flagspc_SIZEOF_CostCentreStack#pc_OFFSET_CostCentreStack_mem_alloc pc_REP_CostCentreStack_mem_alloc#pc_OFFSET_CostCentreStack_scc_count pc_REP_CostCentreStack_scc_countpc_OFFSET_StgHeader_ccspc_OFFSET_StgHeader_ldvwpc_SIZEOF_StgSMPThunkHeaderpc_OFFSET_StgEntCounter_allocspc_REP_StgEntCounter_allocspc_OFFSET_StgEntCounter_allocdpc_REP_StgEntCounter_allocd#pc_OFFSET_StgEntCounter_registeredppc_OFFSET_StgEntCounter_link#pc_OFFSET_StgEntCounter_entry_countpc_SIZEOF_StgUpdateFrame_NoHdrpc_SIZEOF_StgMutArrPtrs_NoHdrpc_OFFSET_StgMutArrPtrs_ptrspc_OFFSET_StgMutArrPtrs_size"pc_SIZEOF_StgSmallMutArrPtrs_NoHdr!pc_OFFSET_StgSmallMutArrPtrs_ptrspc_SIZEOF_StgArrBytes_NoHdrpc_OFFSET_StgArrBytes_bytespc_OFFSET_StgTSO_alloc_limitpc_OFFSET_StgTSO_cccspc_OFFSET_StgTSO_stackobjpc_OFFSET_StgStack_sppc_OFFSET_StgStack_stack pc_OFFSET_StgUpdateFrame_updatee"pc_OFFSET_StgFunInfoExtraFwd_aritypc_REP_StgFunInfoExtraFwd_aritypc_SIZEOF_StgFunInfoExtraRev"pc_OFFSET_StgFunInfoExtraRev_aritypc_REP_StgFunInfoExtraRev_aritypc_MAX_SPEC_SELECTEE_SIZEpc_MAX_SPEC_AP_SIZEpc_MIN_PAYLOAD_SIZEpc_MIN_INTLIKEpc_MAX_INTLIKEpc_MIN_CHARLIKEpc_MAX_CHARLIKEpc_MUT_ARR_PTRS_CARD_BITSpc_MAX_Vanilla_REGpc_MAX_Float_REGpc_MAX_Double_REGpc_MAX_Long_REGpc_MAX_XMM_REGpc_MAX_Real_Vanilla_REGpc_MAX_Real_Float_REGpc_MAX_Real_Double_REGpc_MAX_Real_XMM_REGpc_MAX_Real_Long_REGpc_RESERVED_C_STACK_BYTESpc_RESERVED_STACK_WORDSpc_AP_STACK_SPLIM pc_WORD_SIZEpc_DOUBLE_SIZE pc_CINT_SIZE pc_CLONG_SIZEpc_CLONG_LONG_SIZEpc_BITMAP_BITS_SHIFT pc_TAG_BITSpc_WORDS_BIGENDIANpc_DYNAMIC_BY_DEFAULT pc_LDV_SHIFTpc_ILDV_CREATE_MASKpc_ILDV_STATE_CREATEpc_ILDV_STATE_USE$fReadPlatformConstantsNEGNEVERPOSVCVS runState'getgetsputmodify evalState execStaterunState $fMonadState$fApplicativeState$fFunctorState runStreamyieldcollectmap mapAccumL $fMonadStream$fApplicativeStream$fFunctorStream expandTopDir findTopDirstderrSupportsAnsiColors isFunTyConisUnboxedTupleTyCon isTupleTyConOverridingBoolAutoAlwaysNeverHasDebugCallStack DirectionForwards BackwardsSuffix ghciSupported debugIsOn ncgDebugIsOnghciTablesNextToCode isWindowsHost isDarwinHostnTimesfstOf3sndOf3thdOf3fst3snd3third3uncurry3liftFstliftSndfirstMfirst3M filterOut partitionWith splitEithers chkAppendzipEqual zipWithEqual zipWith3Equal zipWith4EqualzipLazy zipWithLazy zipWith3Lazy filterByList filterByListspartitionByListstretchZipWithmapFstmapSnd mapAndUnzip mapAndUnzip3zipWithAndUnzip mapAccumL2nOfThematLength lengthExceeds lengthAtLeastlengthIs lengthIsNot lengthAtMostlengthLessThan listLengthCmp equalLengthneLength compareLengthleLengthltLength singleton isSingletonnotNullonlyisInisn'tIn chunkList changeLastminWithnubSorttransitiveClosurefoldl2all2counttakeListdropList splitAtListdropTaildropWhileEndLEspanEndsnocViewsplit capitaliseisEqualthenCmpeqListBy eqMaybeBycmpList removeSpaces<&&><||> fuzzyMatch fuzzyLookup unzipWithseqListglobal consIORefglobalM sharedGlobal sharedGlobalMlooksLikeModuleNamelooksLikePackageNamegetCmd toCmdArgstoArgs exactLog2 readRationalreadHexRational maybeReadmaybeReadFuzzydoesDirNameExistgetModificationUTCTimemodificationTimeIfExists hSetTranslitsplitLongestPrefix escapeSpacesreslashmakeRelativeToabstractConstrabstractDataTypecharToC hashString overrideWith$fShowOverridingBoolSchemesHeadersMessagesWarningsErrorsFatalsMargin renderColourrenderColourAfresh colCustomcolResetcolBold colBlackFgcolRedFg colGreenFg colYellowFg colBlueFg colMagentaFg colCyanFg colWhiteFg defaultScheme parseScheme$fMonoidPprColour$fSemigroupPprColourMaybeErr SucceededFailed firstJust firstJusts expectJust whenIsJustorElse liftMaybeT tryMaybeT isSuccessfailME$fMonadMaybeErr$fApplicativeMaybeErr$fFunctorMaybeErrliftIO1liftIO2liftIO3liftIO4 zipWith3M zipWith3M_ zipWith4MzipWithAndUnzipM mapAndUnzip3M mapAndUnzip4M mapAndUnzip5M mapAccumLMmapSndM concatMapM mapMaybeM fmapMaybeM fmapEitherManyMallMorMfoldlMfoldlM_foldrM maybeMapMwhenMunlessM LitStringuniqn_charsfs_bsfs_ref FastZStringfastStringToByteStringfastZStringToByteStringunsafeMkByteStringhashByteStringhPutFZSzString lengthFZS mkFastString#mkFastStringBytesmkFastStringForeignPtrmkFastStringByteString mkFastStringmkFastStringByteListlengthFS hasZEncodingnullFSunpackFSbytesFS zEncodeFSappendFSconcatFSheadFStailFSconsFS uniqueOfFSnilFSgetFastStringTablehPutFS mkLitString# mkLitStringunpackLitStringlengthLSsLitfsLit$fDataFastString$fShowFastString$fMonoidFastString$fSemigroupFastString$fIsStringFastString$fOrdFastString$fEqFastString$fNFDataFastZString ComponentIdInstalledUnitIdUnitId ModuleName unitIdString moduleUnitId moduleNamePackageConfigMap PackageStategetPackageConfigMap improveUnitIddisplayInstalledUnitIdcomponentIdStringemptyPackageStateisLexConisLexVarisLexIdisLexSym isLexConId isLexVarId isLexConSym isLexVarSymokVarOccokConOccokTcOcc okVarIdOcc okVarSymOcc okConIdOcc okConSymOcc BufHandle newBufHandlebPutCharbPutStrbPutFSbPutFZS bPutLitStringbFlushModePageMode ZigZagModeLeftMode OneLineModeStylemode lineLengthribbonsPerLine TextDetailsChrStrPStrZStrLStrDoccharftextptextztext sizedText zeroWidthTextisEmptysemicommacolonspaceequalslparenrparenlbrackrbracklbracerbraceintintegerfloatdoublerationalquotesquote doubleQuotesparensbracketsbraces maybeParenshcathsepvcatnesthang hangNotEmpty punctuate$$$+$<><+>sepcatfcatfsepstyle renderStyle fullRenderprintDoc printDoc_ bufLeftRender $fShowDocOutputableBndrpprBndr pprPrefixOcc pprInfixOccbndrIsJoin_maybe BindingSite LambdaBindCaseBind CasePatBindLetBindpprpprPrecrunSDoc QualifyName NameUnqualNameQualNameNotInScope1NameNotInScope2QueryQualifyPackageQueryQualifyModuleQueryQualifyNamePrintUnqualified QueryQualifyqueryQualifyNamequeryQualifyModulequeryQualifyPackageDepth AllTheWayPartWay CodeStyleCStyleAsmStylePprStylereallyAlwaysQualifyNamesalwaysQualifyNamesneverQualifyNamesalwaysQualifyModulesneverQualifyModulesalwaysQualifyPackagesneverQualifyPackagesreallyAlwaysQualify alwaysQualify neverQualifydefaultUserStyledefaultDumpStyle mkDumpStyledefaultErrStyle mkErrStylecmdlineParserStyle mkUserStylesetStyleColouredinitSDocContext withPprStylewithPprStyleDoc pprDeeper pprDeeperList pprSetDepth getPprStylesdocWithDynFlagssdocWithPlatformqualName qualModule qualPackage queryQual codeStyleasmStyle dumpStyle debugStyle userStyle getPprDebug ifPprDebug whenPprDebug printSDoc printSDocLn printForUserprintForUserPartWay printForCbufLeftRenderSDocpprCode mkCodeStyleshowSDocshowPprshowSDocUnqualshowSDocForUser showSDocDump showSDocDebugrenderWithStyleshowSDocOneLineshowSDocDumpOneLine docToSDoc doublePrec angleBrackets paBracketscparen blankLinedcolonarrowlarrowdarrowarrowtlarrowtarrowttlarrowtt underscoredotvbar forAllLitkindStarbullet unicodeSyntaxppWhenppUnlesscolouredkeyword pprHsChar pprHsString pprHsBytesprimCharSuffixprimFloatSuffix primIntSuffixprimDoubleSuffixprimWordSuffixprimInt64SuffixprimWord64Suffix pprPrimChar pprPrimInt pprPrimWord pprPrimInt64 pprPrimWord64 pprPrefixVar pprInfixVarpprFastFilePath pprWithCommas pprWithBars interppSP interpp'SP pprQuotedListquotedListWithOrquotedListWithNor intWithCommasspeakNthspeakNspeakNOfpluralisOrAredoOrDoes callStackDocpprPanicpprSorry pprPgmError pprTraceDebugpprTrace pprTraceItpprTraceException pprSTraceassertPprPanicpprDebugAndThen$fIsStringSDoc$fOutputableExtension$fOutputableSerialized$fOutputableSCC$fOutputableFingerprint$fOutputableIntMap$fOutputableMap$fOutputableFastString$fOutputable(,,,,,,)$fOutputable(,,,,,)$fOutputable(,,,,)$fOutputable(,,,)$fOutputable(,,)$fOutputableEither$fOutputableMaybe$fOutputable(,)$fOutputableSet$fOutputable[]$fOutputable()$fOutputableWord$fOutputableWord32$fOutputableWord16$fOutputableInteger$fOutputableInt$fOutputableInt64$fOutputableInt32$fOutputableOrdering$fOutputableBool$fOutputableChar$fOutputablePprStyle$fOutputableQualifyName ThetaTypePredTypeTyBinderTCvSubstUnivCoProvenanceTyThingpprTypepprKindTcTyVarDetails MetaDetailsvanillaSkolemTvpprTcTyVarDetailsbuflencurhGetStringBufferhGetStringBufferBlockappendStringBuffersstringToStringBuffernextChar currentCharprevCharstepOn offsetBytesbyteDiffatEndatLinelexemeToStringlexemeToFastStringdecodePrevNCharsparseUnsignedInteger$fShowStringBufferpFstpSndunPairtoPairswappLiftFstpLiftSnd$fOutputablePair $fMonoidPair$fSemigroupPair$fTraversablePair$fFoldablePair$fApplicativePair $fFunctorPairnilOLunitOLsnocOLconsOLconcatOLlastOLisNilOLappOLfromOLmapOLfoldrOLfoldlOLtoOL$fTraversableOrdList$fFoldableOrdList$fFunctorOrdList$fMonoidOrdList$fSemigroupOrdList$fOutputableOrdListAssocgetNth unionLists minusListassocDefaultUsingassoc assocDefault assocUsing assocMaybe hasNoDups equivClasses removeDups findDupsEqToJsonjsonJsonDocJSNullJSBoolJSIntJSStringJSArrayJSObject renderJSONescapeJsonString RealLocatedLocated GenLocatedLSrcSpan RealSrcSpan UnhelpfulSpan srcSpanFile RealSrcLoc UnhelpfulLocmkSrcLoc mkRealSrcLocnoSrcLocgeneratedSrcLocinteractiveSrcLocmkGeneralSrcLoc srcLocFile srcLocLine srcLocCol advanceSrcLoc sortLocated noSrcSpanwiredInSrcSpaninteractiveSrcSpanmkGeneralSrcSpan srcLocSpanrealSrcLocSpan mkRealSrcSpan mkSrcSpancombineSrcSpanssrcSpanFirstCharacter isGoodSrcSpan isOneLineSpan containsSpansrcSpanStartLinesrcSpanEndLinesrcSpanStartCol srcSpanEndCol srcSpanStart srcSpanEndrealSrcSpanStartrealSrcSpanEndsrcSpanFileName_maybepprUserRealSpanunLocgetLocnoLocmkGeneralLocated combineLocsaddCLoc eqLocated cmpLocated rightmostleftmost_smallestleftmost_largestspans isSubspanOf$fShowRealSrcLoc$fOutputableRealSrcLoc$fOutputableSrcLoc$fOutputableRealSrcSpan$fShowRealSrcSpan$fOrdRealSrcSpan$fToJsonRealSrcSpan$fDataRealSrcSpan$fOutputableSrcSpan$fNFDataSrcSpan$fToJsonSrcSpan $fDataSrcSpan$fOutputableGenLocated$fEqRealSrcLoc$fOrdRealSrcLoc $fEqSrcLoc $fOrdSrcLoc $fShowSrcLoc$fEqRealSrcSpan $fEqSrcSpan $fOrdSrcSpan $fShowSrcSpan$fEqGenLocated$fOrdGenLocated$fDataGenLocated$fFunctorGenLocated$fFoldableGenLocated$fTraversableGenLocated IdDetails pprIdDetailsisCoVarDetails coVarDetails vanillaIdInfo LHsDocString HsDocString ppr_mbDoc$fOutputableHsDocString$fEqHsDocString$fShowHsDocString$fDataHsDocStringMsgDocSeverity SevOutputSevFatalSevInteractiveSevDumpSevInfo SevWarningSevErrordumpSDocgetCaretDiagnosticmkLocMessageAnn mkLocMessage sectionTypeSpliceExplicitFlagExplicitSpliceImplicitSplice IntWithInf FractionalLitFLfl_textfl_negfl_value IntegralLitILil_textil_negil_value InlineSpecInline InlinableNoInline NoUserInline InlinePragmainl_src inl_inlineinl_satinl_actinl_rule RuleMatchInfoFunLike Activation NeverActive AlwaysActive ActiveBefore ActiveAfter CompilerPhasePhase InitialPhasePhaseNum SourceText NoSourceText SuccessFlag DefMethSpec VanillaDM GenericDM TailCallInfoAlwaysTailCalledNoTailCallInfo OneBranch InsideLamInterestingCxtOccInfoManyOccsIAmDeadOneOccIAmALoopBreakerocc_tail occ_in_lam occ_one_br occ_int_cxtocc_rules_onlyEPfromEPtoEP TupleSort BoxedTuple UnboxedTupleConstraintTupleTyPrecTopPrecFunPrecTyOpPrec TyConPrec OverlapMode NoOverlap Overlappable OverlappingOverlaps Incoherent OverlapFlag overlapMode isSafeOverlap DerivStrategy StockStrategyAnyclassStrategyNewtypeStrategyOrigin FromSource GeneratedRecFlag Recursive NonRecursiveBoxityBoxedUnboxed TopLevelFlagTopLevel NotTopLevel LexicalFixityPrefixInfixFixityDirectionInfixLInfixRInfixNFixityRuleName WarningTxt DeprecatedTxt StringLiteralsl_stsl_fsFunctionOrData IsFunctionIsDataSwapFlag NotSwapped IsSwapped OneShotInfo NoOneShotInfo OneShotLam AlignmentConTagZConTag JoinArityRepArityArity LeftOrRightCLeftCRightpickLR fIRST_TAG noOneShotInfo isOneShotInfohasNoOneShotInfo worstOneShot bestOneShotflipSwap isSwappedunSwap bumpVersioninitialVersionpprWarningTxtForMsg pprRuleName maxPrecedence minPrecedence defaultFixity negateFixity funTyFixity compareFixity isNotTopLevel isTopLevelisBoxedisRecisNonRec boolToRecFlag isGeneratedsetOverlapModeMaybehasIncoherentFlaghasOverlappableFlaghasOverlappingFlag maybeParentupleSortBoxityboxityTupleSort tupleParens sumParenspprAlternative noOccInfo isManyOccs seqOccInfo insideLam notInsideLam oneBranch notOneBranch tailCallInfozapOccTailCallInfoisAlwaysTailCalledstrongLoopBreakerweakLoopBreakerisWeakLoopBreakerisStrongLoopBreaker isDeadOccisOneOcc zapFragileOcc successIf succeededfailedpprWithSourceText isConLike isFunLikenoUserInlineSpecdefaultInlinePragmaalwaysInlinePragmaneverInlinePragmainlinePragmaSpecdfunInlinePragmaisDefaultInlinePragmaisInlinePragmaisInlinablePragmaisAnyInlinePragmainlinePragmaSatinlinePragmaActivationinlinePragmaRuleMatchInfosetInlinePragmaActivationsetInlinePragmaRuleMatchInfo pprInlinepprInlineDebugisActive isActiveIn competesWith isNeverActiveisAlwaysActive isEarlyActive mkIntegralLitnegateIntegralLitmkFractionalLitnegateFractionalLitintegralFractionalLitinfinity intGtLimittreatZeroAsInf mkIntWithInf$fOutputableLeftOrRight$fOutputableOneShotInfo$fOutputableSwapFlag$fOutputableFunctionOrData$fOutputableFixityDirection$fOutputableLexicalFixity$fOutputableTopLevelFlag$fOutputableBoxity$fOutputableRecFlag$fOutputableOrigin$fOutputableDerivStrategy $fOrdTyPrec $fEqTyPrec$fOutputableTailCallInfo$fOutputableOccInfo$fOutputableDefMethSpec$fOutputableSuccessFlag$fOutputableSourceText$fOutputableOverlapMode$fOutputableOverlapFlag $fEqFixity$fOutputableFixity$fOutputableStringLiteral$fEqStringLiteral$fOutputableWarningTxt$fOutputableCompilerPhase$fOutputableActivation$fOutputableRuleMatchInfo$fOutputableInlineSpec$fOutputableInlinePragma$fOutputableIntegralLit$fOrdIntegralLit$fEqIntegralLit$fOutputableFractionalLit$fOrdFractionalLit$fEqFractionalLit$fNumIntWithInf$fOutputableIntWithInf$fOrdIntWithInf$fEqLeftOrRight$fDataLeftOrRight$fEqOneShotInfo$fEqFunctionOrData$fOrdFunctionOrData$fDataFunctionOrData$fEqFixityDirection$fDataFixityDirection$fDataLexicalFixity$fEqLexicalFixity $fEqBoxity $fDataBoxity $fEqRecFlag $fDataRecFlag $fEqOrigin $fDataOrigin$fEqDerivStrategy$fDataDerivStrategy $fEqTupleSort$fDataTupleSort$fEqTailCallInfo $fEqOccInfo$fDataSourceText$fShowSourceText$fEqSourceText$fEqOverlapMode$fDataOverlapMode$fEqOverlapFlag$fDataOverlapFlag $fDataFixity$fDataStringLiteral$fEqWarningTxt$fDataWarningTxt$fEqActivation$fDataActivation$fEqRuleMatchInfo$fDataRuleMatchInfo$fShowRuleMatchInfo$fEqInlineSpec$fDataInlineSpec$fShowInlineSpec$fEqInlinePragma$fDataInlinePragma$fDataIntegralLit$fShowIntegralLit$fDataFractionalLit$fShowFractionalLit$fEqIntWithInf$fDataSpliceExplicitFlag Uniquable getUnique uNIQUE_BITSmkUniqueGrimilygetKey deriveUnique newTagUniquemkUnique unpkUniqueisValidKnownKeyUniquehasKeynonDetCmpUniquepprUniqueAlwaysmkAlphaTyVarUnique mkCoVarUniquemkPreludeClassUniquemkPreludeTyConUniquetyConRepNameUniquemkPreludeDataConUniquedataConWorkerUniquedataConRepNameUniquemkPrimOpIdUniquemkPreludeMiscIdUniquemkPArrDataConUniqueinitTyVarUniquemkBuiltinUniquemkPseudoUniqueDmkPseudoUniqueEmkPseudoUniqueHmkRegSingleUniquemkRegSubUniquemkRegPairUniquemkRegClassUniquemkCostCentreUniquemkVarOccUniquemkDataOccUnique mkTvOccUnique mkTcOccUniqueinitExitJoinUnique $fShowUnique$fOutputableUnique $fEqUnique$fUniquableUnique$fUniquableInt$fUniquableFastString MonadUniquegetUniqueSupplyM getUniqueM getUniquesMUniqSMinitUniqSupplymkSplitUniqSupplysplitUniqSupplylistSplitUniqSupplyuniqFromSupplyuniqsFromSupplytakeUniqFromSupplysplitUniqSupply3splitUniqSupply4initUsinitUs_ lazyThenUsgetUniqueSupplyM3liftUs lazyMapUs$fMonadFixUniqSM$fApplicativeUniqSM$fFunctorUniqSM $fMonadUniqSM$fMonadUniqueUniqSMemptyUFM isNullUFMunitUFMunitDirectlyUFM listToUFMlistToUFM_Directly listToUFM_CaddToUFM addListToUFMaddListToUFM_DirectlyaddToUFM_Directly addToUFM_C addToUFM_AccalterUFMaddListToUFM_C adjustUFMadjustUFM_Directly delFromUFMdelListFromUFMdelListFromUFM_DirectlydelFromUFM_DirectlyplusUFM plusUFM_C plusUFM_CDplusMaybeUFM_C plusUFMListminusUFM intersectUFMintersectUFM_C disjointUFMfoldUFMmapUFMmapUFM_Directly filterUFMfilterUFM_Directly partitionUFMsizeUFMelemUFMelemUFM_Directly lookupUFMlookupUFM_DirectlylookupWithDefaultUFMlookupWithDefaultUFM_DirectlyeltsUFMufmToSet_DirectlyanyUFMallUFM seqEltsUFM nonDetEltsUFM nonDetKeysUFM nonDetFoldUFMnonDetFoldUFM_DirectlynonDetUFMToList ufmToIntMap equalKeysUFM pprUniqFMpprUFMpprUFMWithKeys pluralUFM$fOutputableUniqFM$fMonoidUniqFM$fSemigroupUniqFM $fDataUniqFM $fEqUniqFM$fFunctorUniqFM emptyUniqSet unitUniqSet mkUniqSetaddOneToUniqSetaddListToUniqSetdelOneFromUniqSetdelOneFromUniqSet_DirectlydelListFromUniqSetdelListFromUniqSet_Directly unionUniqSetsunionManyUniqSets minusUniqSetintersectUniqSetsrestrictUniqSetToUFMuniqSetMinusUFMelementOfUniqSetelemUniqSet_Directly filterUniqSetfilterUniqSet_DirectlypartitionUniqSet uniqSetAny uniqSetAll sizeUniqSetisEmptyUniqSet lookupUniqSetlookupUniqSet_DirectlynonDetEltsUniqSetnonDetKeysUniqSetnonDetFoldUniqSetnonDetFoldUniqSet_Directly mapUniqSet getUniqSetunsafeUFMToUniqSet pprUniqSet$fOutputableUniqSet $fEqUniqSet $fDataUniqSet$fSemigroupUniqSet$fMonoidUniqSet emptyUniqMap isNullUniqMap unitUniqMap listToUniqMaplistToUniqMap_C addToUniqMapaddListToUniqMapaddToUniqMap_CaddToUniqMap_Acc alterUniqMapaddListToUniqMap_C adjustUniqMapdelFromUniqMapdelListFromUniqMap plusUniqMap plusUniqMap_CplusMaybeUniqMap_CplusUniqMapList minusUniqMapintersectUniqMapdisjointUniqMap mapUniqMap filterUniqMappartitionUniqMap sizeUniqMap elemUniqMap lookupUniqMaplookupWithDefaultUniqMap anyUniqMap allUniqMap$fOutputableUniqMap$fMonoidUniqMap$fSemigroupUniqMap $fDataUniqMap $fEqUniqMap$fFunctorUniqMapNodenodeId nodeClass nodeColor nodeConflictsnodeExclusionsnodePreference nodeCoalesceGraphgraphMapTriv initGraphgraphMapModifynewNode emptyUDFMunitUDFM addToUDFM addToUDFM_C addListToUDFM delFromUDFM plusUDFM_CplusUDFM lookupUDFMlookupUDFM_DirectlyelemUDFMfoldUDFMnonDetFoldUDFMeltsUDFM filterUDFMfilterUDFM_Directly udfmToList isNullUDFMsizeUDFM intersectUDFMudfmIntersectUFMintersectsUDFM disjointUDFMdisjointUdfmUfm minusUDFM udfmMinusUFM partitionUDFMdelListFromUDFM udfmToUfm listToUDFM adjustUDFM alterUDFMmapUDFManyUDFMallUDFMalwaysUnsafeUfmToUdfmpprUDFM$fFunctorTaggedVal $fEqTaggedVal$fOutputableUniqDFM$fMonoidUniqDFM$fSemigroupUniqDFM$fDataTaggedVal $fDataUniqDFM$fFunctorUniqDFM emptyUniqDSet unitUniqDSet mkUniqDSetaddOneToUniqDSetaddListToUniqDSetdelOneFromUniqDSetdelListFromUniqDSetunionUniqDSetsunionManyUniqDSets minusUniqDSetuniqDSetMinusUniqSetintersectUniqDSetsuniqDSetIntersectUniqSetintersectsUniqDSets foldUniqDSetelementOfUniqDSetfilterUniqDSet sizeUniqDSetisEmptyUniqDSetlookupUniqDSetuniqDSetToListpartitionUniqDSetDFastStringEnv emptyFsEnv unitFsEnv extendFsEnvextendFsEnvList lookupFsEnv alterFsEnvmkFsEnv elemFsEnv plusFsEnv plusFsEnv_C extendFsEnv_CmapFsEnvextendFsEnv_AccextendFsEnvList_C delFromFsEnvdelListFromFsEnv filterFsEnvlookupFsEnv_NF emptyDFsEnv dFsEnvEltsmkDFsEnv lookupDFsEnv RcIntegerRcFloatRcDouble RcDoubleSSE$fOutputableRegClass$fUniquableRegClass $fEqRegClassRegSubSubL16SubL8SubL8HClassG32ClassG16ClassG8ClassF64worstboundsqueese$fUniquableReg$fShowRegClass$fEnumRegClass $fShowRegSub $fEnumRegSub $fOrdRegSub $fEqRegSub $fShowReg$fEqReg classOfReg regsOfClassregNameregAlias RegVirtualRegRealRealReg RealRegSingle RealRegPair VirtualReg VirtualRegI VirtualRegHi VirtualRegF VirtualRegD VirtualRegSSERegNorenameVirtualRegclassOfVirtualReggetHiVirtualRegFromLogetHiVRegFromLoregNosOfRealReg realRegsAlias regSingleregPair isRealReg takeRealReg isVirtualRegtakeVirtualRegliftPatchFnToRegReg$fOutputableVirtualReg$fUniquableVirtualReg$fOrdVirtualReg$fOutputableRealReg$fUniquableRealReg$fOutputableReg$fEqVirtualReg$fShowVirtualReg $fEqRealReg $fShowRealReg $fOrdRealReg$fOrdReg trivColorableFactBaseLabelMapLabelSetLabel uniqueToLbl lookupFact$fOutputableLabel$fUniquableLabel $fShowLabel$fOutputableLabelSet$fIsSetLabelSet$fOutputableLabelMap$fIsMapLabelMap $fEqLabel $fOrdLabel $fEqLabelSet $fOrdLabelSet$fShowLabelSet $fEqLabelMap $fOrdLabelMap$fShowLabelMap$fFunctorLabelMap$fFoldableLabelMap$fTraversableLabelMapGraph'GNilGUnitGManyNonLocal entryLabel successorsBody emptyBodybodyListaddBlockmapGraphmapGraphBlocks labelsDefinedpostorder_dfs_from$fNonLocalBlock $fLabelsPtr[]$fLabelsPtrLabelSet$fLabelsPtrLabel $fLabelsPtrn dumpGraphdotGraph lookupNodegetNodeaddNodedelNodemodNodesizeunion addConflict delConflict addConflicts addExclusion addExclusions addCoalesce delCoalesce addPreference coalesceGraph coalesceNodes freezeNodefreezeOneInGraphfreezeAllInGraph scanGraph validateGraphslurpNodeConflictCountsetColor colorGraph mkBlockId SymbolTable DictionaryUserData ud_get_name ud_get_fsud_put_nonbinding_nameud_put_binding_name ud_put_fsput_Bin BinHandle getUserData setUserData withBinBuffercastBinputAtgetAt openBinMemtellBinseekBinseekByisEOFBin writeBinMem readBinMemputBytegetBytelazyPutlazyGet newReadState newWriteState putDictionary getDictionaryputFS$fBinarySourceText$fBinarySerialized$fBinarySrcSpan$fBinaryGenLocated$fBinaryStringLiteral$fBinaryWarningTxt$fBinaryFixity$fBinaryFixityDirection$fBinaryOverlapFlag$fBinaryOverlapMode$fBinaryRecFlag$fBinaryInlineSpec$fBinaryRuleMatchInfo$fBinaryInlinePragma$fBinaryActivation$fBinaryTupleSort$fBinaryFunctionOrData$fBinaryFingerprint$fBinaryLeftOrRight$fBinaryFastString$fBinaryByteString$fBinarySomeTypeRep$fBinaryTypeRep$fBinaryTypeLitSort$fBinaryKindRep$fBinaryRuntimeRep$fBinaryVecElem$fBinaryVecCount $fBinaryTyCon $fBinaryBin $fBinaryRatio$fBinaryInteger$fBinaryDiffTime $fBinaryDay$fBinaryUTCTime$fBinaryEither $fBinaryMaybe$fBinary(,,,,,,)$fBinary(,,,,,)$fBinary(,,,,) $fBinary(,,,) $fBinary(,,) $fBinary(,) $fBinary[] $fBinaryInt $fBinaryChar $fBinaryBool $fBinary() $fBinaryInt64 $fBinaryInt32 $fBinaryInt16 $fBinaryInt8$fBinaryWord64$fBinaryWord32$fBinaryWord16 $fBinaryWord8$fEqBin$fOrdBin $fShowBin $fBoundedBinDModuleNameEnv ModuleNameEnv ModuleSet ModuleEnv ShHoleSubstInstalledModuleEnv DefUnitId unDefUnitIdInstalledModuleinstalledModuleUnitIdinstalledModuleNameinstalledUnitIdFS IndefModuleindefModuleUnitIdindefModuleName IndefUnitId indefUnitIdFSindefUnitIdKeyindefUnitIdComponentIdindefUnitIdInstsindefUnitIdFreeHolesIndefiniteUnitIdDefiniteUnitId HasModule getModuleContainsModule extractModule ModLocation ml_hs_file ml_hi_file ml_obj_file addBootSuffixaddBootSuffix_maybeaddBootSuffixLocnstableModuleNameCmp pprModuleName moduleNameFSmoduleNameStringmoduleStableString mkModuleNamemkModuleNameFSmoduleNameSlashesmoduleNameColonsmoduleFreeHolesmoduleIsDefinite mkHoleModulestableModuleCmpmkModule pprModuleunitIdFS unitIdKeynewIndefUnitIdindefUnitIdToUnitIdindefModuleToModuletoInstalledUnitIdinstalledUnitIdStringfsToInstalledUnitIdcomponentIdToInstalledUnitIdstringToInstalledUnitIdinstalledModuleEqinstalledUnitIdEqemptyInstalledModuleEnvlookupInstalledModuleEnvextendInstalledModuleEnvfilterInstalledModuleEnvdelInstalledModuleEnvunitIdFreeHolesunitIdIsDefinite hashUnitId newUnitIdstableUnitIdCmpnewSimpleUnitId fsToUnitIdstringToUnitIdrenameHoleModulerenameHoleUnitIdrenameHoleModule'renameHoleUnitId'splitModuleInstssplitUnitIdInstsgeneralizeIndefUnitIdgeneralizeIndefModuleparseModuleName parseUnitIdparseComponentId parseModuleId parseModSubst primUnitId integerUnitId baseUnitId rtsUnitIdthUnitId dphSeqUnitId dphParUnitId thisGhcUnitIdinteractiveUnitId mainUnitIdisInteractiveModule isHoleModulewiredInUnitIdsfilterModuleEnv elemModuleEnvextendModuleEnvextendModuleEnvWithextendModuleEnvListextendModuleEnvList_CplusModuleEnv_CdelModuleEnvList delModuleEnv plusModuleEnvlookupModuleEnvlookupWithDefaultModuleEnv mapModuleEnv mkModuleEnvemptyModuleEnv moduleEnvKeys moduleEnvEltsmoduleEnvToList unitModuleEnvisEmptyModuleEnv mkModuleSetextendModuleSetextendModuleSetListemptyModuleSet moduleSetElts elemModuleSetintersectModuleSetminusModuleSet delModuleSetunionModuleSet unitModuleSet$fOutputableModLocation$fNFDataModuleName$fDataModuleName$fBinaryStringRepModuleName$fBinaryModuleName$fOutputableModuleName$fOrdModuleName$fEqModuleName$fUniquableModuleName$fBinaryComponentId$fOutputableComponentId$fUniquableComponentId$fBinaryStringRepComponentId$fOutputableInstalledUnitId$fUniquableInstalledUnitId$fOrdInstalledUnitId$fEqInstalledUnitId $fBinaryStringRepInstalledUnitId$fBinaryInstalledUnitId$fOutputableInstalledModule$fBinaryDefUnitId$fOutputableDefUnitId$fBinaryUnitId$fOutputableUnitId$fNFDataUnitId $fDataUnitId $fOrdUnitId$fUniquableUnitId $fEqUnitId $fShowUnitId$fOutputableIndefUnitId$fBinaryIndefUnitId$fOrdIndefUnitId$fEqIndefUnitIdC$fDbUnitIdModuleRepInstalledUnitIdComponentIdUnitIdModuleNameModule$fNFDataModule $fDataModule$fBinaryModule$fOutputableModule$fUniquableModule$fOutputableIndefModule $fOrdNDModule$fShowModLocation$fEqComponentId$fOrdComponentId$fEqInstalledModule$fOrdInstalledModule $fEqDefUnitId$fOrdDefUnitId $fEqModule $fOrdModule$fEqIndefModule$fOrdIndefModule $fEqNDModuleunicodeStarKindTyConKeystarKindTyConKeymAIN PackageNameSourcePackageIddefaultPackageConfigsourcePackageIdStringpackageNameStringpprPackageConfiginstalledPackageConfigIdpackageConfigIdexpandedPackageConfigIddefinitePackageConfigId$fOutputableSourcePackageId$fUniquableSourcePackageId $fBinaryStringRepSourcePackageId$fOutputablePackageName$fUniquablePackageName$fBinaryStringRepPackageName$fEqSourcePackageId$fOrdSourcePackageId$fEqPackageName$fOrdPackageName pluginErrorCTypeHeader CLabelString CCallConvCApiConv StdCallConv PrimCallConvJavaScriptCallConv CCallTarget StaticTarget DynamicTarget CCallSpec CExportSpec CExportStaticSafetyPlaySafePlayInterruptible PlayRiskyCCallisSafeForeignCallplaySafeplayInterruptibleisDynamicTargetdefaultCCallConvccallConvToIntccallConvAttributepprCLabelStringisCLabelString$fBinarySafety$fOutputableSafety$fBinaryCCallConv$fOutputableCCallConv$fBinaryCCallTarget$fBinaryCCallSpec$fOutputableCCallSpec$fBinaryForeignCall$fOutputableForeignCall$fBinaryCExportSpec$fOutputableCExportSpec$fBinaryHeader$fOutputableHeader $fBinaryCType$fOutputableCType $fEqSafety $fShowSafety $fDataSafety $fEqCCallConv$fDataCCallConv$fEqCCallTarget$fDataCCallTarget $fEqCCallSpec$fEqForeignCall$fDataCExportSpec $fEqHeader $fDataHeader $fEqCType $fDataCTypeAndOrParensLBooleanFormulamkVarmkFalsemkTruemkAndmkOrisFalseisTrueevalsimplify isUnsatisfied impliesAtomimpliespprBooleanFormulapprBooleanFormulaNice$fBinaryBooleanFormula$fOutputableBooleanFormula$fEqBooleanFormula$fDataBooleanFormula$fFunctorBooleanFormula$fFoldableBooleanFormula$fTraversableBooleanFormulaUnlitCppHsPpHscCcxxCcCobjcCobjcxxHCcSplitterSplitAsAsLlvmOptLlvmLlc LlvmMangleCmmCpp MergeForeignStopLn HscSource HsSrcFile HsBootFileHsigFilehscSourceString isHsBootOrSiganyHscisStopLneqPhase happensBefore startPhase phaseInputExtisHaskellishSuffixisBackpackishSuffixisHaskellSigSuffixisHaskellSrcSuffix isCishSuffixisHaskellUserSrcSuffixisObjectSuffixisDynLibSuffixisSourceSuffixisHaskellishTargetisHaskellishFilenameisHaskellSrcFilenameisCishFilenameisHaskellUserSrcFilenameisSourceFilenameisHaskellSigFilenameisObjectFilenameisDynLibFilename$fBinaryHscSource$fOutputablePhase $fEqHscSource$fOrdHscSource$fShowHscSource $fEqPhase $fShowPhase DigraphNode node_payloadnode_keynode_dependenciesgraphFromEdgedVerticesOrdgraphFromEdgedVerticesUniq findCyclestronglyConnCompG$stronglyConnCompFromEdgedVerticesOrd%stronglyConnCompFromEdgedVerticesUniq%stronglyConnCompFromEdgedVerticesOrdR&stronglyConnCompFromEdgedVerticesUniqRtopologicalSortG dfsTopSortG reachableG reachablesG hasVertexG verticesGedgesG transposeG outdegreeG indegreeG vertexGroupsGemptyG componentsG$fOutputableEdge$fOutputableNode$fOutputableGraphemptyBagunitBag lengthBagelemBag unionManyBags unionBagsconsBagsnocBag isEmptyBagisSingletonBag filterBag filterBagMallBaganyBaganyBagM concatBag catBagMaybes partitionBagpartitionBagWithfoldBagfoldrBagfoldlBag foldrBagM foldlBagMmapBag concatMapBag mapMaybeBagmapBagMmapBagM_ flatMapBagMflatMapBagPairMmapAndUnzipBagM mapAccumBagL mapAccumBagLM listToBag bagToList $fFoldableBag $fFunctorBag $fDataBag$fOutputableBagCmdLineP runCmdLineEwMWarn warnReasonwarnMsgErrerrMsg WarnReasonNoReasonReasonDeprecatedFlagReasonUnrecognisedFlagOptKindNoArgHasArgSepArg OptPrefix OptIntSuffix IntSuffix FloatSuffixPassFlag AnySuffix PrefixPred AnySuffixPred GhcFlagModeOnlyGhcOnlyGhciAllModes HiddenFlagFlagflagName flagOptKind flagGhcModedefFlag defGhcFlag defGhciFlag defHiddenFlagrunEwMaddErraddWarn addFlagWarn deprecategetArg getCurLocliftEwMgetCmdLineStateputCmdLineState processArgserrorsToGhcException$fToJsonWarnReason$fOutputableWarnReason $fMonadEwM$fApplicativeEwM $fFunctorEwM$fMonadCmdLineP$fApplicativeCmdLineP$fFunctorCmdLineP$fEqWarnReason$fShowWarnReason FilesToClean ftcGhcSessionftcCurrentModule CompilerInfoGCCClang AppleClang AppleClang51 UnknownCC LinkerInfoGnuLDGnuGoldLlvmLLDDarwinLD SolarisLDAixLD UnknownLD PkgConfRef GlobalPkgConf UserPkgConf PkgConfFileFlagSpec flagSpecName flagSpecFlagflagSpecActionflagSpecGhcModeOption FileOptionFlushErrFlushOut LogFinaliser LogAction FatalMessagerWay WayCustom WayThreadedWayDebugWayProf WayEventLogWayDynRtsOptsEnabled RtsOptsNone RtsOptsIgnoreRtsOptsIgnoreAllRtsOptsSafeOnly RtsOptsAll DynLibLoader DeployableSystemDependent PackageDBFlag PackageDBNoUserPackageDBNoGlobalPackageDBClearPackageDBs PackageFlag ExposePackage HidePackage TrustFlag TrustPackageDistrustPackageIgnorePackageFlag IgnorePackage ModRenamingmodRenamingWithImplicit modRenamings PackageArg UnitIdArgGhcLinkNoLink LinkBinary LinkInMemory LinkDynLib LinkStaticLibGhcMode CompManagerOneShotMkDepend HscTargetHscCHscAsmHscLlvmHscInterpreted HscNothingSettingssTargetPlatform sGhcUsagePathsGhciUsagePathsTopDirsTmpDir sProgramNamesProjectVersion sRawSettingssExtraGccViaCFlagssSystemPackageConfigsLdSupportsCompactUnwindsLdSupportsBuildIdsLdSupportsFilelist sLdIsGnuLdsGccSupportsNoPiesPgm_LsPgm_PsPgm_FsPgm_csPgm_ssPgm_asPgm_lsPgm_dllsPgm_T sPgm_windres sPgm_libtoolsPgm_ar sPgm_ranlibsPgm_losPgm_lcsPgm_lccsPgm_isOpt_LsOpt_PsOpt_FsOpt_csOpt_asOpt_l sOpt_windressOpt_losOpt_lcsOpt_lccsOpt_isPlatformConstants LlvmTargets LlvmTarget lDataLayoutlCPU lAttributesProfAuto NoProfAuto ProfAutoAll ProfAutoTopProfAutoExports ProfAutoCallsContainsDynFlagsextractDynFlags HasDynFlags getDynFlagsghcModeghcLink hscTargetsettings llvmTargets verbosityoptLevel debugLevel simplPhasesmaxSimplIterationsmaxPmCheckIterations ruleCheckstrictnessBefore parMakeCountenableTimeStats ghcHeapSizemaxRelevantBindsmaxValidSubstitutionsmaxUncoveredPatternssimplTickFactorspecConstrThresholdspecConstrCountspecConstrRecursiveliberateCaseThreshold floatLamArgs historySize importPaths mainModIs mainFunIsreductionDepthsolverIterationsthisInstalledUnitIdthisComponentId_thisUnitIdInsts_waysbuildTag splitInfo objectDirdylibInstallNamehiDirstubDirdumpDir objectSufhcSufhiSufcanGenerateDynamicToo dynObjectSufdynHiSuf outputFile dynOutputFileoutputHi dynLibLoader dumpPrefixdumpPrefixForceldInputs includePaths libraryPathsframeworkPathscmdlineFrameworksrtsOptsrtsOptsEnabledrtsOptsSuggestionshpcDirpluginModNamespluginModNameOptsfrontendPluginOptshooks depMakefiledepIncludePkgDepsdepExcludeMods depSuffixespackageDBFlagsignorePackageFlags packageFlagspluginPackageFlags trustFlags packageEnv pkgDatabasepkgState filesToClean dirsToCleannextTempSuffixgeneratedDumps dumpFlags generalFlags warningFlagsfatalWarningFlagslanguage safeHaskell safeInfer safeInferredthOnLoc newDerivOnLocoverlapInstLocincoherentOnLoc pkgTrustOnLoc warnSafeOnLocwarnUnsafeOnLoctrustworthyOnLoc extensionsextensionFlagsufCreationThresholdufUseThresholdufFunAppDiscountufDictDiscountufKeenessFactorufDearOpufVeryAggressive maxWorkerArgs ghciHistSize initLogAction log_action log_finaliserflushOutflushErrghcVersionFilehaddockOptions ghciScriptsuseColor canUseColor colSchemeprofAutointeractivePrintnextWrapperNum sseVersion bmiVersionavxavx2avx512cdavx512eravx512favx512pfrtldInfortccInfomaxInlineAllocSizemaxInlineMemcpyInsnsmaxInlineMemsetInsns reverseErrors maxErrors initialUniqueuniqueIncrementSafeHaskellModeSf_None Sf_UnsafeSf_TrustworthySf_SafeLanguage Haskell98 Haskell2010 WarningFlagOpt_WarnDuplicateExportsOpt_WarnDuplicateConstraintsOpt_WarnRedundantConstraintsOpt_WarnHiShadowsOpt_WarnImplicitPreludeOpt_WarnIncompletePatternsOpt_WarnIncompleteUniPatterns Opt_WarnIncompletePatternsRecUpdOpt_WarnOverflowedLiteralsOpt_WarnEmptyEnumerationsOpt_WarnMissingFieldsOpt_WarnMissingImportListOpt_WarnMissingMethodsOpt_WarnMissingSignaturesOpt_WarnMissingLocalSignaturesOpt_WarnNameShadowingOpt_WarnOverlappingPatternsOpt_WarnTypeDefaultsOpt_WarnMonomorphismOpt_WarnUnusedTopBindsOpt_WarnUnusedLocalBindsOpt_WarnUnusedPatternBindsOpt_WarnUnusedImportsOpt_WarnUnusedMatchesOpt_WarnUnusedTypePatternsOpt_WarnUnusedForallsOpt_WarnWarningsDeprecationsOpt_WarnDeprecatedFlags Opt_WarnAMP!Opt_WarnMissingMonadFailInstancesOpt_WarnSemigroupOpt_WarnDodgyExportsOpt_WarnDodgyImportsOpt_WarnOrphansOpt_WarnAutoOrphansOpt_WarnIdentities Opt_WarnTabsOpt_WarnUnrecognisedPragmasOpt_WarnDodgyForeignImportsOpt_WarnUnusedDoBindOpt_WarnWrongDoBind)Opt_WarnAlternativeLayoutRuleTransitionalOpt_WarnUnsafe Opt_WarnSafeOpt_WarnTrustworthySafeOpt_WarnMissedSpecsOpt_WarnAllMissedSpecs%Opt_WarnUnsupportedCallingConventionsOpt_WarnUnsupportedLlvmVersionOpt_WarnInlineRuleShadowingOpt_WarnTypedHolesOpt_WarnPartialTypeSignatures!Opt_WarnMissingExportedSignatures$Opt_WarnUntickedPromotedConstructorsOpt_WarnDerivingTypeableOpt_WarnDeferredTypeErrors#Opt_WarnDeferredOutOfScopeVariables"Opt_WarnNonCanonicalMonadInstances&Opt_WarnNonCanonicalMonadFailInstances#Opt_WarnNonCanonicalMonoidInstances'Opt_WarnMissingPatternSynonymSignatures Opt_WarnUnrecognisedWarningFlags$Opt_WarnSimplifiableClassConstraintsOpt_WarnCPPUndefOpt_WarnUnbangedStrictPatternsOpt_WarnMissingHomeModulesOpt_WarnPartialFieldsOpt_WarnMissingExportListReason ErrReason GeneralFlagOpt_DumpToFileOpt_D_faststring_statsOpt_D_dump_minimal_importsOpt_DoCoreLintingOpt_DoStgLintingOpt_DoCmmLintingOpt_DoAsmLintingOpt_DoAnnotationLintingOpt_NoLlvmMangler Opt_FastLlvmOpt_WarnIsErrorOpt_ShowWarnGroupsOpt_HideSourcePathsOpt_PrintExplicitForallsOpt_PrintExplicitKindsOpt_PrintExplicitCoercionsOpt_PrintExplicitRuntimeRepsOpt_PrintEqualityRelationsOpt_PrintUnicodeSyntaxOpt_PrintExpandedSynonymsOpt_PrintPotentialInstancesOpt_PrintTypecheckerElaboration Opt_CallArityOpt_ExitificationOpt_StrictnessOpt_LateDmdAnalOpt_KillAbsenceOpt_KillOneShotOpt_FullLaziness Opt_FloatInOpt_SpecialiseOpt_SpecialiseAggressivelyOpt_CrossModuleSpecialise Opt_StaticArgumentTransformationOpt_CSE Opt_StgCSEOpt_LiberateCaseOpt_SpecConstrOpt_SpecConstrKeenOpt_DoLambdaEtaExpansionOpt_IgnoreAssertsOpt_DoEtaReduction Opt_CaseMergeOpt_CaseFoldingOpt_UnboxStrictFieldsOpt_UnboxSmallStrictFieldsOpt_DictsCheapOpt_EnableRewriteRules Opt_VectoriseOpt_VectorisationAvoidance Opt_RegsGraphOpt_RegsIterativeOpt_PedanticBottoms Opt_LlvmTBAAOpt_LlvmPassVectorsInRegistersOpt_LlvmFillUndefWithGarbageOpt_IrrefutableTuples Opt_CmmSinkOpt_CmmElimCommonBlocksOpt_OmitYieldsOpt_FunToThunkOpt_DictsStrictOpt_DmdTxDictSelOpt_Loopification Opt_CprAnalOpt_WorkerWrapperOpt_SolveConstantDictsOpt_AlignmentSanitisationOpt_CatchBottomsOpt_SimplPreInliningOpt_IgnoreInterfacePragmasOpt_OmitInterfacePragmasOpt_ExposeAllUnfoldingsOpt_WriteInterfaceOpt_AutoSccsOnIndividualCafsOpt_ProfCountEntriesOpt_PpOpt_ForceRecompOpt_IgnoreOptimChangesOpt_IgnoreHpcChangesOpt_ExcessPrecisionOpt_EagerBlackHoling Opt_NoHsMain Opt_SplitObjsOpt_SplitSections Opt_StgStatsOpt_HideAllPackagesOpt_HideAllPluginPackagesOpt_PrintBindResult Opt_HaddockOpt_HaddockOptionsOpt_BreakOnExceptionOpt_BreakOnErrorOpt_PrintEvldWithShowOpt_PrintBindContentsOpt_GenManifestOpt_EmbedManifestOpt_SharedImplibOpt_BuildingCabalPackageOpt_IgnoreDotGhciOpt_GhciSandboxOpt_GhciHistoryOpt_LocalGhciHistoryOpt_HelpfulErrorsOpt_DeferTypeErrorsOpt_DeferTypedHolesOpt_DeferOutOfScopeVariablesOpt_PICOpt_PIEOpt_PICExecutableOpt_SccProfilingOn Opt_TickyOpt_Ticky_Allocd Opt_Ticky_LNEOpt_Ticky_Dyn_Thunk Opt_RPathOpt_RelativeDynlibPathsOpt_Hpc Opt_FlatCacheOpt_ExternalInterpreterOpt_OptimalApplicativeDoOpt_VersionMacrosOpt_WholeArchiveHsLibsOpt_ErrorSpansOpt_DiagnosticsShowCaretOpt_PprCaseAsLetOpt_PprShowTicksOpt_ShowHoleConstraintsOpt_ShowLoadedModulesOpt_SuppressCoercionsOpt_SuppressVarKindsOpt_SuppressModulePrefixesOpt_SuppressTypeApplicationsOpt_SuppressIdInfoOpt_SuppressUnfoldingsOpt_SuppressTypeSignaturesOpt_SuppressUniquesOpt_SuppressStgFreeVarsOpt_SuppressTicksOpt_AutoLinkPackagesOpt_ImplicitImportQualifiedOpt_KeepHiDiffsOpt_KeepHcFilesOpt_KeepSFilesOpt_KeepTmpFilesOpt_KeepRawTokenStreamOpt_KeepLlvmFilesOpt_KeepHiFilesOpt_KeepOFilesOpt_BuildDynamicTooOpt_DistrustAllPackagesOpt_PackageTrustOpt_G_NoStateHackOpt_G_NoOptCoercionOpt_D_dump_cmmOpt_D_dump_cmm_from_stgOpt_D_dump_cmm_rawOpt_D_dump_cmm_verboseOpt_D_dump_cmm_cfgOpt_D_dump_cmm_cbeOpt_D_dump_cmm_switchOpt_D_dump_cmm_procOpt_D_dump_cmm_spOpt_D_dump_cmm_sinkOpt_D_dump_cmm_cafOpt_D_dump_cmm_procmapOpt_D_dump_cmm_splitOpt_D_dump_cmm_infoOpt_D_dump_cmm_cpsOpt_D_dump_asmOpt_D_dump_asm_nativeOpt_D_dump_asm_livenessOpt_D_dump_asm_regallocOpt_D_dump_asm_regalloc_stagesOpt_D_dump_asm_conflictsOpt_D_dump_asm_statsOpt_D_dump_asm_expandedOpt_D_dump_llvmOpt_D_dump_core_statsOpt_D_dump_deriv Opt_D_dump_dsOpt_D_dump_foreignOpt_D_dump_inliningsOpt_D_dump_rule_firingsOpt_D_dump_rule_rewritesOpt_D_dump_simpl_traceOpt_D_dump_occur_analOpt_D_dump_parsedOpt_D_dump_parsed_ast Opt_D_dump_rnOpt_D_dump_rn_astOpt_D_dump_shapeOpt_D_dump_simplOpt_D_dump_simpl_iterationsOpt_D_dump_specOpt_D_dump_prepOpt_D_dump_stgOpt_D_dump_call_arityOpt_D_dump_exitifyOpt_D_dump_stranalOpt_D_dump_str_signatures Opt_D_dump_tcOpt_D_dump_tc_astOpt_D_dump_typesOpt_D_dump_rulesOpt_D_dump_cseOpt_D_dump_worker_wrapperOpt_D_dump_rn_traceOpt_D_dump_rn_statsOpt_D_dump_opt_cmmOpt_D_dump_simpl_statsOpt_D_dump_cs_traceOpt_D_dump_tc_traceOpt_D_dump_ec_traceOpt_D_dump_if_traceOpt_D_dump_vt_traceOpt_D_dump_splicesOpt_D_th_dec_fileOpt_D_dump_BCOsOpt_D_dump_vectOpt_D_dump_tickedOpt_D_dump_rttiOpt_D_source_statsOpt_D_verbose_stg2stg Opt_D_dump_hiOpt_D_dump_hi_diffsOpt_D_dump_mod_cyclesOpt_D_dump_mod_mapOpt_D_dump_timings!Opt_D_dump_view_pattern_commoningOpt_D_verbose_core2coreOpt_D_dump_debugOpt_D_dump_jsonOpt_D_ppr_debugOpt_D_no_debug_outputoptimisationFlags programNameprojectVersion ghcUsagePath ghciUsagePathtopDirtmpDir rawSettingsextraGccViaCFlagssystemPackageConfigpgm_Lpgm_Ppgm_Fpgm_cpgm_spgm_apgm_lpgm_dllpgm_T pgm_windres pgm_libtoolpgm_lccpgm_ar pgm_ranlibpgm_lopgm_lcpgm_iopt_Lopt_Popt_Fopt_copt_aopt_l opt_windresopt_lccopt_loopt_lcopt_iversionedAppDirisObjectTargettargetRetainsAllBindings isOneShotisNoLinkpackageFlagsChangeddefaultObjectTargettablesNextToCodemkTablesNextToCodepositionIndependent mkBuildTag wayRTSOnlywayGeneralFlagswayUnsetGeneralFlagswhenGeneratingDynamicTooifGeneratingDynamicToowhenCannotGenerateDynamicToodynamicTooMkDynamicDynFlags initDynFlagsdefaultDynFlags defaultWays interpWaysinterpreterProfiledinterpreterDynamicdefaultFatalMessagerdefaultLogActiondefaultLogActionHPrintDocdefaultLogActionHPutStrDocdefaultFlushOutdefaultFlushErrlanguageExtensionshasNoStateHackhasNoOptCoerciondoptdopt_set dopt_unsetgoptgopt_set gopt_unsetwoptwopt_set wopt_unset wopt_fatalxoptxopt_set xopt_unsetlang_setdynFlagDependenciespackageTrustOn safeHaskellOnsafeLanguageOn safeInferOn safeImportsOnsafeDirectImpsReqsafeImplicitImpsReq unsafeFlagsunsafeFlagsForInfergetOpts getVerbFlagsthisComponentIdthisUnitIdInsts thisPackageaddPluginModuleNameshowOpt updOptLevelparseDynamicFlagsCmdLineparseDynamicFilePragmaparseDynamicFlagsFull putLogMsg updateWaysallNonDeprecatedFlagsflagsAll flagsDynamic flagsPackageflagsForCompletion wWarningFlagsfFlags fLangFlagssupportedLanguagesAndExtensionsxFlags warningGroupswarningHierarchiesglasgowExtsFlags rtsIsProfiled dynamicGhcaddWay'setGeneralFlag'unSetGeneralFlag' setUnitIdcanonicalizeHomeModuleinterpretPackageEnv setTmpDir picCCOptspicPOpts compilerInfocONTROL_GROUP_CONST_291 sTD_HDR_SIZE pROF_HDR_SIZE bLOCK_SIZEbLOCKS_PER_MBLOCKtICKY_BIN_COUNToFFSET_StgRegTable_rR1oFFSET_StgRegTable_rR2oFFSET_StgRegTable_rR3oFFSET_StgRegTable_rR4oFFSET_StgRegTable_rR5oFFSET_StgRegTable_rR6oFFSET_StgRegTable_rR7oFFSET_StgRegTable_rR8oFFSET_StgRegTable_rR9oFFSET_StgRegTable_rR10oFFSET_StgRegTable_rF1oFFSET_StgRegTable_rF2oFFSET_StgRegTable_rF3oFFSET_StgRegTable_rF4oFFSET_StgRegTable_rF5oFFSET_StgRegTable_rF6oFFSET_StgRegTable_rD1oFFSET_StgRegTable_rD2oFFSET_StgRegTable_rD3oFFSET_StgRegTable_rD4oFFSET_StgRegTable_rD5oFFSET_StgRegTable_rD6oFFSET_StgRegTable_rXMM1oFFSET_StgRegTable_rXMM2oFFSET_StgRegTable_rXMM3oFFSET_StgRegTable_rXMM4oFFSET_StgRegTable_rXMM5oFFSET_StgRegTable_rXMM6oFFSET_StgRegTable_rYMM1oFFSET_StgRegTable_rYMM2oFFSET_StgRegTable_rYMM3oFFSET_StgRegTable_rYMM4oFFSET_StgRegTable_rYMM5oFFSET_StgRegTable_rYMM6oFFSET_StgRegTable_rZMM1oFFSET_StgRegTable_rZMM2oFFSET_StgRegTable_rZMM3oFFSET_StgRegTable_rZMM4oFFSET_StgRegTable_rZMM5oFFSET_StgRegTable_rZMM6oFFSET_StgRegTable_rL1oFFSET_StgRegTable_rSpoFFSET_StgRegTable_rSpLimoFFSET_StgRegTable_rHpoFFSET_StgRegTable_rHpLimoFFSET_StgRegTable_rCCCSoFFSET_StgRegTable_rCurrentTSO"oFFSET_StgRegTable_rCurrentNurseryoFFSET_StgRegTable_rHpAllocoFFSET_stgEagerBlackholeInfooFFSET_stgGCEnter1oFFSET_stgGCFunoFFSET_Capability_roFFSET_bdescr_startoFFSET_bdescr_freeoFFSET_bdescr_blocksoFFSET_bdescr_flagssIZEOF_CostCentreStack oFFSET_CostCentreStack_mem_alloc oFFSET_CostCentreStack_scc_countoFFSET_StgHeader_ccsoFFSET_StgHeader_ldvwsIZEOF_StgSMPThunkHeaderoFFSET_StgEntCounter_allocsoFFSET_StgEntCounter_allocd oFFSET_StgEntCounter_registeredpoFFSET_StgEntCounter_link oFFSET_StgEntCounter_entry_countsIZEOF_StgUpdateFrame_NoHdrsIZEOF_StgMutArrPtrs_NoHdroFFSET_StgMutArrPtrs_ptrsoFFSET_StgMutArrPtrs_sizesIZEOF_StgSmallMutArrPtrs_NoHdroFFSET_StgSmallMutArrPtrs_ptrssIZEOF_StgArrBytes_NoHdroFFSET_StgArrBytes_bytesoFFSET_StgTSO_alloc_limitoFFSET_StgTSO_cccsoFFSET_StgTSO_stackobjoFFSET_StgStack_spoFFSET_StgStack_stackoFFSET_StgUpdateFrame_updateeoFFSET_StgFunInfoExtraFwd_aritysIZEOF_StgFunInfoExtraRevoFFSET_StgFunInfoExtraRev_aritymAX_SPEC_SELECTEE_SIZEmAX_SPEC_AP_SIZEmIN_PAYLOAD_SIZE mIN_INTLIKE mAX_INTLIKE mIN_CHARLIKE mAX_CHARLIKEmUT_ARR_PTRS_CARD_BITSmAX_Vanilla_REG mAX_Float_REGmAX_Double_REG mAX_Long_REG mAX_XMM_REGmAX_Real_Vanilla_REGmAX_Real_Float_REGmAX_Real_Double_REGmAX_Real_XMM_REGmAX_Real_Long_REGrESERVED_C_STACK_BYTESrESERVED_STACK_WORDSaP_STACK_SPLIM wORD_SIZE dOUBLE_SIZE cINT_SIZE cLONG_SIZEcLONG_LONG_SIZEbITMAP_BITS_SHIFTtAG_BITSwORDS_BIGENDIANdYNAMIC_BY_DEFAULT lDV_SHIFTiLDV_CREATE_MASKiLDV_STATE_CREATEiLDV_STATE_USE bLOCK_SIZE_WwORD_SIZE_IN_BITStAG_MASK mAX_PTR_TAGtARGET_MIN_INTtARGET_MAX_INTtARGET_MAX_WORDmakeDynFlagsConsistentsetUnsafeGlobalDynFlags isSseEnabled isSse2EnabledisSse4_2Enabled isAvxEnabled isAvx2EnabledisAvx512cdEnabledisAvx512erEnabledisAvx512fEnabledisAvx512pfEnabled isBmiEnabled isBmi2EnabledemptyFilesToClean$fOutputableLanguage$fOutputableSafeHaskellMode$fShowSafeHaskellMode$fOutputableGhcMode$fOutputablePackageArg$fOutputableModRenaming$fOutputablePackageFlag$fOutputableOnOff$fHasDynFlagsExceptT$fHasDynFlagsMaybeT$fHasDynFlagsReaderT$fHasDynFlagsWriterT $fEqDumpFlag$fShowDumpFlag$fEnumDumpFlag$fEqGeneralFlag$fShowGeneralFlag$fEnumGeneralFlag$fEqWarningFlag$fShowWarningFlag$fEnumWarningFlag $fEqLanguage$fEnumLanguage$fShowLanguage$fEqSafeHaskellMode $fEqProfAuto$fEnumProfAuto $fEqHscTarget$fShowHscTarget $fEqGhcMode $fEqGhcLink $fShowGhcLink$fEqPackageArg$fShowPackageArg$fEqModRenaming$fEqIgnorePackageFlag $fEqTrustFlag$fEqPackageFlag$fEqDynLibLoader$fShowRtsOptsEnabled$fEqWay$fOrdWay $fShowWay $fEqOnOff $fShowOnOff $fEqOption$fEqDeprecation$fOrdDeprecation$fEqPkgConfRef$fEqPackageDBFlag$fEqSseVersion$fOrdSseVersion$fEqBmiVersion$fOrdBmiVersion$fEqLinkerInfo$fEqCompilerInfo wordLengthwordLengthInBitsspillAreaLength spillSlotSizeextraStackArgsHere fits13Bitsis32BitIntegerlargeOffsetErrorArgDescrArgSpecArgGenLivenessConstrDescriptionClosureTypeInfoConstrFunThunk ThunkSelector BlackHole IndStaticIsStaticHeapRep ArrayPtrsRepSmallArrayPtrsRep ArrayWordsRepStackRepRTSRep StgHalfWordStgWordByteOffWordOffroundUpToWords roundUpTo wordsToBytesbytesToWordsRoundUp fromStgWord toStgWordfromStgHalfWord toStgHalfWordhALF_WORD_SIZEhALF_WORD_SIZE_IN_BITS mkHeapRepmkRTSRep mkStackRep blackHoleRep indStaticRep arrPtrsRepsmallArrPtrsRep arrWordsRep isStaticRep isStackRepisConRep isThunkRepisFunRepisStaticNoCafCon fixedHdrSize fixedHdrSizeW profHdrSizearrWordsHdrSizearrWordsHdrSizeWarrPtrsHdrSizearrPtrsHdrSizeWsmallArrPtrsHdrSizesmallArrPtrsHdrSizeW thunkHdrSizehdrSizehdrSizeW nonHdrSize nonHdrSizeWheapClosureSizeWcard cardRoundUpcardTableSizeBcardTableSizeWrtsClosureType rET_SMALLrET_BIGaRG_GEN aRG_GEN_BIGstringToWord8spprWord8String$fOutputableStgWord$fOutputableStgHalfWord$fOutputableArgDescr$fOutputableClosureTypeInfo$fOutputableSMRep $fEqStgWord $fBitsStgWord$fEqStgHalfWordStackMapstackMapNextFreeSlotstackMapAssignment StackSlot emptyStackMapgetStackSlotFor getStackUse TidyOccEnvOccSetOccEnv HasOccNameoccName occNameSpace occNameFS NameSpacetcNameclsName tcClsNamedataName srcDataNametvNamevarNameisDataConNameSpaceisTcClsNameSpace isTvNameSpaceisVarNameSpaceisValNameSpace pprNameSpacepprNonVarNameSpacepprNameSpaceBrief pprOccName mkOccName mkOccNameFSmkVarOcc mkVarOccFS mkDataOcc mkDataOccFS mkTyVarOcc mkTyVarOccFSmkTcOcc mkTcOccFSmkClsOcc mkClsOccFS demoteOccNamenameSpacesRelated emptyOccEnv unitOccEnv extendOccEnvextendOccEnvList lookupOccEnvmkOccEnv elemOccEnv foldOccEnv occEnvElts plusOccEnv plusOccEnv_CextendOccEnv_CextendOccEnv_Acc mapOccEnv mkOccEnv_C delFromOccEnvdelListFromOccEnv filterOccEnv alterOccEnv pprOccEnv emptyOccSet unitOccSetmkOccSet extendOccSetextendOccSetList unionOccSetsunionManyOccSets minusOccSet elemOccSet isEmptyOccSetintersectOccSetintersectsOccSet filterOccSet occNameStringsetOccNameSpaceisVarOccisTvOccisTcOccisValOcc isDataOcc isDataSymOccisSymOcc parenSymOccstartsWithUnderscoreisDerivedOccNameisDefaultMethodOccisTypeableBindOccmkDataConWrapperOcc mkWorkerOcc mkMatcherOcc mkBuilderOccmkDefaultMethodOccmkClassOpAuxOcc mkDictOccmkIPOcc mkSpecOccmkForeignExportOcc mkRepEqOccmkClassDataConOcc mkNewTyCoOcc mkInstTyCoOcc mkEqPredCoOcc mkCon2TagOcc mkTag2ConOcc mkMaxTagOcc mkTyConRepOccmkGenRmkGen1R mkVectOcc mkPADFunOccmkPReprTyConOccmkPDataTyConOccmkPDatasTyConOccmkPDataDataConOccmkPDatasDataConOccmkRecFldSelOccmkDataConWorkerOccmkSuperDictAuxOccmkSuperDictSelOcc mkLocalOcc mkInstTyTcOcc mkDFunOcc mkDataTOcc mkDataCOcc mkMethodOccemptyTidyOccEnvinitTidyOccEnvavoidClashesOccEnv tidyOccName$fBinaryNameSpace$fBinaryOccName$fUniquableOccName$fOutputableBndrOccName$fOutputableOccName$fNFDataOccName $fDataOccName $fOrdOccName $fEqOccName$fHasOccNameOccName$fOutputableOccEnv $fEqNameSpace$fOrdNameSpace $fDataOccEnv NamedThing getOccNamegetName BuiltInSyntax UserSyntax nameUnique nameOccName nameSrcLoc nameSrcSpan isWiredInNamewiredInNameTyThing_maybeisBuiltInSyntaxisExternalNameisInternalName isHoleName nameModulenameModule_maybenameIsLocalOrFromnameIsHomePackagenameIsHomePackageImportnameIsFromExternalPackage isTyVarName isTyConName isDataConName isValName isVarName isSystemNamemkInternalNamemkClonedInternalNamemkDerivedInternalNamemkExternalName mkWiredInName mkSystemNamemkSystemNameAtmkSystemVarName mkSysTvName mkFCallName setNameUnique setNameLoc tidyNameOcc localiseNamemkLocalisedOccName stableNameCmppprModulePrefix pprDefinedAtpprNameDefnLocnameStableString getSrcLoc getSrcSpan getOccStringgetOccFS pprInfixName pprPrefixName$fNFDataNameSort$fOutputableNameSort$fOutputableBndrName$fOutputableName $fBinaryName $fDataName$fUniquableName $fOrdName$fEqName$fHasOccNameName $fNFDataName$fNamedThingGenLocated$fNamedThingNameDefUsesDefUseUsesDefsFreeVarsisEmptyNameSet emptyNameSet unitNameSet mkNameSetextendNameSetList extendNameSet unionNameSet unionNameSets minusNameSet elemNameSetdelFromNameSet filterNameSetintersectNameSetdelListFromNameSetintersectsNameSet nameSetAny nameSetAllnameSetElemsStable isEmptyFVsemptyFVsplusFVsplusFVmkFVsaddOneFVunitFVdelFVdelFVs intersectFVsemptyDUsusesOnlymkDUsplusDUduDefsallUsesduUsesfindUsesDNameEnvdepAnal nameEnvElts emptyNameEnvisEmptyNameEnv unitNameEnv extendNameEnvextendNameEnvList lookupNameEnv alterNameEnv mkNameEnv elemNameEnv plusNameEnv plusNameEnv_CextendNameEnv_C mapNameEnvextendNameEnv_AccextendNameEnvList_CdelFromNameEnvdelListFromNameEnv filterNameEnv anyNameEnvdisjointNameEnvlookupNameEnv_NF emptyDNameEnvlookupDNameEnv mapDNameEnv alterDNameEnvmkTupleDataConUniquemkTupleTyConUniquemkCTupleDataConUniquemkCTupleTyConUniquemkSumDataConUniquemkSumTyConUniqueknownUniqueNameFieldLblflLabelflIsOverloaded flSelector FieldLabelEnvFieldLabelStringmkFieldLabelOccs$fBinaryFieldLbl$fOutputableFieldLbl $fEqFieldLbl$fFunctorFieldLbl$fFoldableFieldLbl$fTraversableFieldLbl$fDataFieldLblfingerprintBinMemcomputeFingerprintputNameLiterallyAnnEnv CoreAnnTarget AnnTarget NamedTarget ModuleTarget AnnPayload Annotation ann_target ann_valuegetAnnTargetName_maybe emptyAnnEnvmkAnnEnvextendAnnEnvList plusAnnEnvfindAnnsfindAnnsByTypeRepdeserializeAnns$fBinaryAnnTarget$fOutputableAnnTarget$fUniquableAnnTarget$fFunctorAnnTarget$fOutputableAnnotation IOEnvFailurefailM failWithMrunIOEnvfixMtryMtryAllMtryMostMunsafeInterleaveMuninterruptibleMaskM_ newMutVar writeMutVar readMutVar updMutVaratomicUpdMutVaratomicUpdMutVar'getEnvsetEnvupdEnv$fMonadIOIOEnv$fMonadPlusIOEnv$fAlternativeIOEnv$fHasModuleIOEnv$fHasDynFlagsIOEnv$fExceptionMonadIOEnv$fFunctorIOEnv$fApplicativeIOEnv$fMonadFailIOEnv $fMonadIOEnv$fExceptionIOEnvFailure$fShowIOEnvFailureWarnMsgErrDocerrDocImportant errDocContexterrDocSupplementaryErrMsg errMsgSpan errMsgContext errMsgDocerrMsgSeverity errMsgReason ErrorMessagesWarningMessagesMessagesValidityIsValidNotValidisValidandValidallValid getInvalidsorValid unionMessageserrDoc pprMessageBagmakeIntoWarningmkErrDoc mkLongErrMsgmkErrMsg mkPlainErrMsg mkLongWarnMsg mkWarnMsgmkPlainWarnMsg emptyMessagesisEmptyMessages errorsFoundprintBagOfErrors formatErrDocpprErrMsgBagWithLoc pprLocErrMsgghcExitdoIfSet doIfSet_dyn dumpIfSet dumpIfSet_dyndumpIfSet_dyn_printer mkDumpDocerrorMsg warningMsg fatalErrorMsgfatalErrorMsg''compilationProgressMsgshowPass withTiming debugTraceMsgputMsgprintInfoForUserprintOutputForUserlogInfo logOutputprettyPrintGhcErrorsisWarnMsgFataltraceCmd$fToJsonSeverity $fShowErrMsg$fShowSeverityModuleSuggestionSuggestVisible SuggestHidden LookupResult LookupFoundLookupMultiple LookupHiddenLookupNotFoundpreloadPackagesexplicitPackagesrequirementContext ModuleOrigin ModHidden ModOriginfromOrigPackagefromExposedReexportfromHiddenReexportfromPackageFlag lookupPackagelookupPackage'lookupPackageNamesearchPackageIdgetPackageDetailslookupInstalledPackagegetInstalledPackageDetailslistPackageConfigMap initPackagesreadPackageConfigsgetPackageConfRefsresolvePackageConfigreadPackageConfigpprFlag unwireUnitIdgetPackageIncludePathcollectIncludeDirsgetPackageLibraryPathcollectLibraryPathsgetPackageLinkOptscollectLinkOptscollectArchives packageHsLibsgetPackageExtraCcOptsgetPackageFrameworkPathgetPackageFrameworkslookupModuleInAllPackageslookupModuleWithSuggestions!lookupPluginModuleWithSuggestionslistVisibleModuleNamesgetPreloadPackagesAnd isDllName pprPackagespprPackagesSimple pprModuleMap$fMonoidModuleOrigin$fSemigroupModuleOrigin$fOutputableModuleOrigin$fMonoidUnitVisibility$fSemigroupUnitVisibility$fOutputableUnitVisibility!$fOutputableUnusablePackageReason llvmFixupAsmTempFileLifetimeTFL_CurrentModuleTFL_GhcSession cleanTempDirscleanTempFilesaddFilesToCleanchangeTempFilesLifetime newTempNamenewTempLibNamewithSystemTempDirectorywithTempDirectory$fShowTempFileLifetime BuildMessageBuildMsg BuildErrorEOFreadCreateProcessWithExitCode' replaceVarreadProcessEnvWithExitCode c_locale_env getGccEnv runSomethingrunSomethingResponseFilerunSomethingFilteredrunSomethingWith handleProcbuilderMainLoop readerProc parseError breakColon breakIntColon linesPlatformneededLinkArgs getLinkerInfogetLinkerInfo'getCompilerInfogetCompilerInfo'readElfSectionByNamereadElfNoteAsString makeElfNote ForeignHintNoHintAddrHint SignedHintLengthWidthW8W16W32W64W80W128W256W512 cmmEqTypecmmEqType_ignoring_ptrhood typeWidthcmmBitscmmFloatb8b16b32b64b128b256b512f32f64bWord bHalfWordgcWordcInt isFloatType isGcPtrTypeisWord64isWord32 isFloat32 isFloat64 wordWidth halfWordWidth halfWordMask cIntWidth widthInBits widthInByteswidthFromBytes widthInLognarrowUnarrowSvecvec2vec4vec8vec16vec2f64vec2b64vec4f32vec4b32vec8b16vec16b8cmmVec vecLength vecElemType isVecTyperEP_CostCentreStack_mem_allocrEP_CostCentreStack_scc_countrEP_StgEntCounter_allocsrEP_StgEntCounter_allocd$fOutputableWidth$fOutputableCmmCat$fOutputableCmmType $fEqWidth $fOrdWidth $fShowWidth $fEqCmmCat$fEqForeignHint SwitchPlanUnconditionallyIfEqualIfLT JumpTable SwitchTargetsmkSwitchTargetsmapSwitchTargetsswitchTargetsCasesswitchTargetsDefaultswitchTargetsRangeswitchTargetsSignedswitchTargetsToTableswitchTargetsToListswitchTargetsFallThrougheqSwitchTargetWithtargetSupportsSwitchcreateSwitchPlan$fShowSwitchTargets$fEqSwitchTargets$fShowSwitchPlan AtomicMachOpAMO_AddAMO_SubAMO_AndAMO_NandAMO_OrAMO_Xor CallishMachOp MO_F64_Pwr MO_F64_Sin MO_F64_Cos MO_F64_Tan MO_F64_Sinh MO_F64_Cosh MO_F64_Tanh MO_F64_Asin MO_F64_Acos MO_F64_Atan MO_F64_Log MO_F64_Exp MO_F64_Fabs MO_F64_Sqrt MO_F32_Pwr MO_F32_Sin MO_F32_Cos MO_F32_Tan MO_F32_Sinh MO_F32_Cosh MO_F32_Tanh MO_F32_Asin MO_F32_Acos MO_F32_Atan MO_F32_Log MO_F32_Exp MO_F32_Fabs MO_F32_Sqrt MO_UF_Conv MO_S_QuotRem MO_U_QuotRem MO_U_QuotRem2MO_Add2 MO_SubWordC MO_AddIntC MO_SubIntC MO_U_Mul2MO_WriteBarrierMO_TouchMO_Prefetch_Data MO_Memcpy MO_Memset MO_Memmove MO_Memcmp MO_PopCntMO_PdepMO_PextMO_ClzMO_CtzMO_BSwap MO_AtomicRMW MO_AtomicReadMO_AtomicWrite MO_CmpxchgMachOpMO_AddMO_SubMO_EqMO_NeMO_MulMO_S_MulMayOflo MO_S_QuotMO_S_RemMO_S_NegMO_U_MulMayOflo MO_U_QuotMO_U_RemMO_S_GeMO_S_LeMO_S_GtMO_S_LtMO_U_GeMO_U_LeMO_U_GtMO_U_LtMO_F_AddMO_F_SubMO_F_NegMO_F_Mul MO_F_QuotMO_F_EqMO_F_NeMO_F_GeMO_F_LeMO_F_GtMO_F_LtMO_AndMO_OrMO_XorMO_NotMO_ShlMO_U_ShrMO_S_Shr MO_SF_Conv MO_FS_Conv MO_SS_Conv MO_UU_Conv MO_FF_Conv MO_V_Insert MO_V_ExtractMO_V_AddMO_V_SubMO_V_Mul MO_VS_Quot MO_VS_Rem MO_VS_Neg MO_VU_Quot MO_VU_Rem MO_VF_Insert MO_VF_Extract MO_VF_Add MO_VF_Sub MO_VF_Neg MO_VF_Mul MO_VF_QuotMO_AlignmentCheck pprMachOp mo_wordAdd mo_wordSub mo_wordEq mo_wordNe mo_wordMul mo_wordSQuot mo_wordSRem mo_wordSNeg mo_wordUQuot mo_wordURem mo_wordSGe mo_wordSLe mo_wordSGt mo_wordSLt mo_wordUGe mo_wordULe mo_wordUGt mo_wordULt mo_wordAnd mo_wordOr mo_wordXor mo_wordNot mo_wordShl mo_wordSShr mo_wordUShr mo_u_8To32 mo_s_8To32 mo_u_16To32 mo_s_16To32 mo_u_8ToWord mo_s_8ToWord mo_u_16ToWord mo_s_16ToWord mo_s_32ToWord mo_u_32ToWord mo_WordTo8 mo_WordTo16 mo_WordTo32 mo_WordTo64mo_32To8 mo_32To16isCommutableMachOpisAssociativeMachOpisComparisonMachOpmaybeIntComparisonmaybeInvertComparisonmachOpResultType machOpArgRepspprCallishMachOpcallishMachOpHintsmachOpMemcpyishAlign $fEqMachOp $fShowMachOp$fEqAtomicMachOp$fShowAtomicMachOp$fEqCallishMachOp$fShowCallishMachOp popCntLabel pdepLabel pextLabel bSwapLabelclzLabelctzLabelword2FloatLabelatomicRMWLabel cmpxchgLabelatomicReadLabelatomicWriteLabelmkBitmap intsToBitmapintsToReverseBitmapmAX_SMALL_BITMAP_SIZE seqBitmapAvails AvailInfoAvailTCstableAvailCmpavailavailsToNameSetavailsToNameSetWithSelectorsavailsToNameEnv availName availNamesavailNamesWithSelectorsavailNonFldNames availFlds plusAvail trimAvail filterAvails filterAvail nubAvails$fBinaryAvailInfo$fOutputableAvailInfo $fEqAvailInfo$fDataAvailInfo ImpItemSpecImpAllImpSome is_explicitis_iloc ImpDeclSpecis_modis_asis_qualis_dloc ImportSpecImpSpecis_declis_itemParentNoParentParentIs FldParentpar_ispar_lbl GlobalRdrEltGREgre_namegre_pargre_lclgre_imp GlobalRdrEnv LocalRdrEnvUnqualQualOrigExact rdrNameOcc rdrNameSpace demoteRdrName mkRdrUnqual mkRdrQualmkOrigmkUnqual mkVarUnqualmkQual getRdrName nameRdrName isRdrDataCon isRdrTyVarisRdrTc isSrcRdrNameisUnqualisQual isQual_maybeisOrig isOrig_maybeisExact isExact_maybeisStar isUniStaremptyLocalRdrEnvextendLocalRdrEnvextendLocalRdrEnvListlookupLocalRdrEnvlookupLocalRdrOccelemLocalRdrEnvlocalRdrEnvEltsinLocalRdrEnvScopedelLocalRdrEnvListgresFromAvailslocalGREsFromAvail gresFromAvailgreQualModNamegreUsedRdrName greRdrNames greSrcSpangresToAvailInfo availFromGREemptyGlobalRdrEnvglobalRdrEnvEltspprGlobalRdrEnvlookupGlobalRdrEnv greOccNamelookupGRE_RdrNamelookupGRE_NamelookupGRE_FieldLabelgetGRE_NameQualifier_maybes isLocalGRE isRecFldGREgreLabelunQualOKpickGREspickGREsModExpplusGlobalRdrEnvmkGlobalRdrEnv transformGREsextendGlobalRdrEnv shadowNames bestImport unQualSpecOK qualSpecOK importSpecLocimportSpecModuleisExplicitItempprNameProvenance $fOrdRdrName $fEqRdrName$fOutputableBndrRdrName$fOutputableRdrName$fHasOccNameRdrName$fOutputableLocalRdrEnv$fOutputableParent$fOrdImpDeclSpec$fEqImpDeclSpec$fOrdImpItemSpec$fEqImpItemSpec$fOutputableImportSpec$fOutputableGlobalRdrElt $fDataRdrName $fEqParent $fDataParent$fDataImpDeclSpec$fDataImpItemSpec$fEqImportSpec$fOrdImportSpec$fDataImportSpec$fDataGlobalRdrElt$fEqGlobalRdrEltallNameStringsitName mkUnboundName isUnboundNamebasicKnownKeyNamesgenericTyConNamespRELUDEgHC_PRIM gHC_TYPES gHC_MAGIC gHC_CSTRING gHC_CLASSESgHC_BASEgHC_ENUMgHC_GHCIgHC_SHOWgHC_READgHC_NUMgHC_INTEGER_TYPE gHC_NATURALgHC_LIST gHC_TUPLE dATA_TUPLE dATA_EITHER dATA_STRING dATA_FOLDABLEdATA_TRAVERSABLEgHC_CONCgHC_IOgHC_IO_ExceptiongHC_STgHC_ARR gHC_STABLEgHC_PTRgHC_ERRgHC_REAL gHC_FLOATgHC_TOP_HANDLER sYSTEM_IOdYNAMICtYPEABLEtYPEABLE_INTERNALgENERICS rEAD_PREClEXgHC_INTgHC_WORDmONAD mONAD_FIX mONAD_ZIP mONAD_FAILaRROWcONTROL_APPLICATIVE gHC_DESUGARrANDOMgHC_EXTScONTROL_EXCEPTION_BASE gHC_GENERICS gHC_TYPELITS gHC_TYPENATSdATA_TYPE_EQUALITY dATA_COERCE dEBUG_TRACE gHC_PARR' gHC_SRCLOC gHC_STACKgHC_STACK_TYPES gHC_STATICPTRgHC_STATICPTR_INTERNALgHC_FINGERPRINT_TYPEgHC_OVER_LABELS gHC_RECORDS rOOT_MAINmkInteractiveModule pRELUDE_NAME mAIN_NAMEdATA_ARRAY_PARALLEL_NAMEdATA_ARRAY_PARALLEL_PRIM_NAME mkPrimModulemkIntegerModule mkBaseModule mkBaseModule_mkThisGhcModulemkThisGhcModule_ mkMainModule mkMainModule_main_RDR_Unqual forall_tv_RDR dot_tv_RDReq_RDRge_RDRle_RDRlt_RDRgt_RDR compare_RDR ltTag_RDR eqTag_RDR gtTag_RDR eqClass_RDR numClass_RDR ordClass_RDR enumClass_RDRmonadClass_RDRmap_RDR append_RDR foldr_RDR build_RDR returnM_RDR bindM_RDRfailM_RDR_preMFP failM_RDRleft_RDR right_RDR fromEnum_RDR toEnum_RDR enumFrom_RDRenumFromTo_RDRenumFromThen_RDRenumFromThenTo_RDRratioDataCon_RDRplusInteger_RDRtimesInteger_RDR ioDataCon_RDR eqString_RDRunpackCString_RDRunpackCStringFoldr_RDRunpackCStringUtf8_RDRnewStablePtr_RDR bindIO_RDR returnIO_RDRfromInteger_RDRfromRational_RDR minus_RDR times_RDRplus_RDR toInteger_RDRtoRational_RDRfromIntegral_RDR stringTy_RDRfromString_RDR fromList_RDR fromListN_RDR toList_RDR compose_RDRand_RDRnot_RDR getTag_RDRsucc_RDRpred_RDR minBound_RDR maxBound_RDR range_RDR inRange_RDR index_RDRunsafeIndex_RDRunsafeRangeSize_RDR readList_RDRreadListDefault_RDRreadListPrec_RDRreadListPrecDefault_RDR readPrec_RDR parens_RDR choose_RDRlexP_RDR expectP_RDR readField_RDRreadSymField_RDRpunc_RDR ident_RDR symbol_RDRstep_RDRalt_RDR reset_RDRprec_RDR pfail_RDR showsPrec_RDR shows_RDRshowString_RDR showSpace_RDRshowCommaSpace_RDR showParen_RDR undefined_RDR error_RDR u1DataCon_RDRpar1DataCon_RDRrec1DataCon_RDR k1DataCon_RDR m1DataCon_RDR l1DataCon_RDR r1DataCon_RDRprodDataCon_RDRcomp1DataCon_RDR unPar1_RDR unRec1_RDRunK1_RDR unComp1_RDRfrom_RDR from1_RDRto_RDRto1_RDRdatatypeName_RDRmoduleName_RDRpackageName_RDRisNewtypeName_RDR selName_RDR conName_RDR conFixity_RDRconIsRecord_RDRprefixDataCon_RDRinfixDataCon_RDRleftAssocDataCon_RDRrightAssocDataCon_RDRnotAssocDataCon_RDRuAddrDataCon_RDRuCharDataCon_RDRuDoubleDataCon_RDRuFloatDataCon_RDRuIntDataCon_RDRuWordDataCon_RDR uAddrHash_RDR uCharHash_RDRuDoubleHash_RDRuFloatHash_RDR uIntHash_RDR uWordHash_RDRfmap_RDR replace_RDRpure_RDRap_RDR liftA2_RDRfoldable_foldr_RDR foldMap_RDRnull_RDRall_RDR traverse_RDR mempty_RDR mappend_RDR eqTyCon_RDR varQual_RDR tcQual_RDR clsQual_RDR dataQual_RDR wildCardName runMainIONameorderingTyConName ltDataConName eqDataConName gtDataConName specTyConNameeitherTyConNameleftDataConNamerightDataConName v1TyConName u1TyConName par1TyConName rec1TyConName k1TyConName m1TyConName sumTyConName prodTyConName compTyConName rTyConName dTyConName cTyConName sTyConName rec0TyConName d1TyConName c1TyConName s1TyConNamenoSelTyConName repTyConName rep1TyConName uRecTyConNameuAddrTyConNameuCharTyConNameuDoubleTyConNameuFloatTyConName uIntTyConNameuWordTyConNameprefixIDataConNameinfixIDataConNameleftAssociativeDataConNamerightAssociativeDataConNamenotAssociativeDataConNamesourceUnpackDataConNamesourceNoUnpackDataConNamenoSourceUnpackednessDataConNamesourceLazyDataConNamesourceStrictDataConNamenoSourceStrictnessDataConNamedecidedLazyDataConNamedecidedStrictDataConNamedecidedUnpackDataConNamemetaDataDataConNamemetaConsDataConNamemetaSelDataConName divIntName modIntNameunpackCStringNameunpackCStringFoldrNameunpackCStringUtf8Name eqStringName inlineIdName eqClassNameeqName ordClassNamegeNamefunctorClassNamefmapNamemonadClassName thenMName bindMName returnMNamefailMName_preMFPmonadFailClassName failMNameapplicativeClassNameapAName pureAName thenANamefoldableClassNametraversableClassNamesemigroupClassName sappendNamemonoidClassName memptyName mappendName mconcatName joinMNamealternativeClassName joinMIdKey apAClassOpKeypureAClassOpKeythenAClassOpKeyalternativeClassKey groupWithNamefromStringNameotherwiseIdName foldrName buildName augmentNamemapName appendName assertNamebreakpointNamebreakpointCondNamebreakpointAutoNameopaqueTyConNamebreakpointJumpNamebreakpointCondJumpNamebreakpointAutoJumpNamefstNamesndName numClassNamefromIntegerName minusName negateNameintegerTyConNameintegerSDataConName mkIntegerNameintegerToWord64NameintegerToInt64Nameword64ToIntegerNameint64ToIntegerNameplusIntegerNametimesIntegerNamesmallIntegerNamewordToIntegerNameintegerToWordNameintegerToIntNameminusIntegerNamenegateIntegerNameeqIntegerPrimNameneqIntegerPrimNameabsIntegerNamesignumIntegerNameleIntegerPrimNamegtIntegerPrimNameltIntegerPrimNamegeIntegerPrimNamecompareIntegerNamequotRemIntegerNamedivModIntegerNamequotIntegerNameremIntegerNamedivIntegerNamemodIntegerNamefloatFromIntegerNamedoubleFromIntegerNameencodeFloatIntegerNameencodeDoubleIntegerNamedecodeDoubleIntegerNamegcdIntegerNamelcmIntegerNameandIntegerName orIntegerNamexorIntegerNamecomplementIntegerNameshiftLIntegerNameshiftRIntegerNamebitIntegerNamenaturalTyConNamenaturalFromIntegerNamerationalTyConNameratioTyConNameratioDataConName realClassNameintegralClassNamerealFracClassNamefractionalClassNamefromRationalName toIntegerNametoRationalNamefromIntegralNamerealToFracNamefloatingClassNamerealFloatClassNamerationalToFloatNamerationalToDoubleName ixClassNametrModuleTyConNametrModuleDataConNametrNameTyConNametrNameSDataConNametrNameDDataConNametrTyConTyConNametrTyConDataConNamekindRepTyConNamekindRepTyConAppDataConNamekindRepVarDataConNamekindRepAppDataConNamekindRepFunDataConNamekindRepTYPEDataConNamekindRepTypeLitSDataConNamekindRepTypeLitDDataConNametypeLitSortTyConNametypeLitSymbolDataConNametypeLitNatDataConNametypeableClassNametypeRepTyConNamesomeTypeRepTyConNamesomeTypeRepDataConName typeRepIdName mkTrTypeName mkTrConName mkTrAppName mkTrFunNametypeNatTypeRepNametypeSymbolTypeRepNametrGhcPrimModuleNamestarKindRepNamestarArrStarKindRepNamestarArrStarArrStarKindRepNameerrorMessageTypeErrorFamNametypeErrorTextDataConNametypeErrorAppendDataConNametypeErrorVAppendDataConNametypeErrorShowTypeDataConName toDynName dataClassNameassertErrorName traceName enumClassName enumFromNameenumFromToNameenumFromThenNameenumFromThenToNameboundedClassName concatName filterNamezipNameisListClassName fromListName fromListNName toListName showClassName readClassName genClassName gen1ClassNamedatatypeClassNameconstructorClassNameselectorClassNamegenericClassNamesghciIoClassNameghciStepIoMName ioTyConName ioDataConName thenIOName bindIOName returnIOName failIOName printName int8TyConNameint16TyConNameint32TyConNameint64TyConNameword16TyConNameword32TyConNameword64TyConName ptrTyConNamefunPtrTyConNamestablePtrTyConNamenewStablePtrNamemonadFixClassNamemfixNamearrAName composeAName firstANameappAName choiceAName loopAName guardMName liftMNamemzipNametoAnnotationWrapperNamemonadPlusClassNamerandomClassNamerandomGenClassNameisStringClassNameknownNatClassNameknownSymbolClassNameisLabelClassName ipClassNamehasFieldClassNamecallStackTyConNameemptyCallStackNamepushCallStackNamesrcLocDataConNamepLUGINSpluginTyConNamefrontendPluginTyConNamemakeStaticNamestaticPtrInfoTyConNamestaticPtrInfoDataConNamestaticPtrTyConNamestaticPtrDataConNamefromStaticPtrNamefingerprintDataConName eqTyConNamevarQualtcQualclsQualdcQualmk_known_key_nameboundedClassKey enumClassKey eqClassKeyfloatingClassKeyfractionalClassKeyintegralClassKey monadClassKey dataClassKeyfunctorClassKey numClassKey ordClassKey readClassKey realClassKeyrealFloatClassKeyrealFracClassKey showClassKey ixClassKeytypeableClassKeytypeable1ClassKeytypeable2ClassKeytypeable3ClassKeytypeable4ClassKeytypeable5ClassKeytypeable6ClassKeytypeable7ClassKeymonadFixClassKeymonadFailClassKeymonadPlusClassKeyrandomClassKeyrandomGenClassKeyisStringClassKeyapplicativeClassKeyfoldableClassKeytraversableClassKey genClassKey gen1ClassKeydatatypeClassKeyconstructorClassKeyselectorClassKeyknownNatClassNameKeyknownSymbolClassNameKeyghciIoClassKeyisLabelClassNameKeysemigroupClassKeymonoidClassKey ipClassKeyhasFieldClassNameKeyaddrPrimTyConKeyarrayPrimTyConKey boolTyConKeybyteArrayPrimTyConKeycharPrimTyConKey charTyConKeydoublePrimTyConKeydoubleTyConKeyfloatPrimTyConKey floatTyConKey funTyConKeyintPrimTyConKey intTyConKey int8TyConKey int16TyConKeyint32PrimTyConKey int32TyConKeyint64PrimTyConKey int64TyConKeyintegerTyConKeynaturalTyConKey listTyConKeyforeignObjPrimTyConKey maybeTyConKeyweakPrimTyConKeymutableArrayPrimTyConKeymutableByteArrayPrimTyConKeyorderingTyConKeymVarPrimTyConKey ratioTyConKeyrationalTyConKeyrealWorldTyConKeystablePtrPrimTyConKeystablePtrTyConKey eqTyConKey heqTyConKeyarrayArrayPrimTyConKeymutableArrayArrayPrimTyConKeystatePrimTyConKeystableNamePrimTyConKeystableNameTyConKeyeqPrimTyConKeyeqReprPrimTyConKeyeqPhantPrimTyConKeymutVarPrimTyConKey ioTyConKeyvoidPrimTyConKeywordPrimTyConKey wordTyConKey word8TyConKeyword16TyConKeyword32PrimTyConKeyword32TyConKeyword64PrimTyConKeyword64TyConKey liftedConKeyunliftedConKey anyBoxConKey kindConKey boxityConKey typeConKeythreadIdPrimTyConKeybcoPrimTyConKey ptrTyConKeyfunPtrTyConKeytVarPrimTyConKeycompactPrimTyConKey parrTyConKeyobjectTyConKeyeitherTyConKeyliftedTypeKindTyConKey tYPETyConKeyconstraintKindTyConKeyruntimeRepTyConKeyvecCountTyConKeyvecElemTyConKeypluginTyConKeyfrontendPluginTyConKeyunknownTyConKeyunknown1TyConKeyunknown2TyConKeyunknown3TyConKeyopaqueTyConKey v1TyConKey u1TyConKey par1TyConKey rec1TyConKey k1TyConKey m1TyConKey sumTyConKey prodTyConKey compTyConKey rTyConKey dTyConKey cTyConKey sTyConKey rec0TyConKey d1TyConKey c1TyConKey s1TyConKey noSelTyConKey repTyConKey rep1TyConKey uRecTyConKey uAddrTyConKey uCharTyConKeyuDoubleTyConKeyuFloatTyConKey uIntTyConKey uWordTyConKeytypeNatKindConNameKeytypeSymbolKindConNameKeytypeNatAddTyFamNameKeytypeNatMulTyFamNameKeytypeNatExpTyFamNameKeytypeNatLeqTyFamNameKeytypeNatSubTyFamNameKeytypeSymbolCmpTyFamNameKeytypeNatCmpTyFamNameKeytypeNatDivTyFamNameKeytypeNatModTyFamNameKeytypeNatLogTyFamNameKeyerrorMessageTypeErrorFamKey ntTyConKeycoercibleTyConKeyproxyPrimTyConKey specTyConKey anyTyConKeysmallArrayPrimTyConKeysmallMutableArrayPrimTyConKeystaticPtrTyConKeystaticPtrInfoTyConKeycallStackTyConKeytypeRepTyConKeysomeTypeRepTyConKeysomeTypeRepDataConKeytypeSymbolAppendFamNameKeyint8X16PrimTyConKeyint16X8PrimTyConKeyint32X4PrimTyConKeyint64X2PrimTyConKeyint8X32PrimTyConKeyint16X16PrimTyConKeyint32X8PrimTyConKeyint64X4PrimTyConKeyint8X64PrimTyConKeyint16X32PrimTyConKeyint32X16PrimTyConKeyint64X8PrimTyConKeyword8X16PrimTyConKeyword16X8PrimTyConKeyword32X4PrimTyConKeyword64X2PrimTyConKeyword8X32PrimTyConKeyword16X16PrimTyConKeyword32X8PrimTyConKeyword64X4PrimTyConKeyword8X64PrimTyConKeyword16X32PrimTyConKeyword32X16PrimTyConKeyword64X8PrimTyConKeyfloatX4PrimTyConKeydoubleX2PrimTyConKeyfloatX8PrimTyConKeydoubleX4PrimTyConKeyfloatX16PrimTyConKeydoubleX8PrimTyConKeycharDataConKeyconsDataConKeydoubleDataConKeyfalseDataConKeyfloatDataConKey intDataConKeyintegerSDataConKeynothingDataConKeyjustDataConKey nilDataConKeyratioDataConKeyword8DataConKeystableNameDataConKeytrueDataConKeywordDataConKey ioDataConKeyintegerDataConKey heqDataConKeycrossDataConKey inlDataConKey inrDataConKeygenUnitDataConKeyparrDataConKeyleftDataConKeyrightDataConKey ltDataConKey eqDataConKey gtDataConKeycoercibleDataConKeystaticPtrDataConKeystaticPtrInfoDataConKeyfingerprintDataConKeysrcLocDataConKeytrTyConTyConKeytrTyConDataConKeytrModuleTyConKeytrModuleDataConKeytrNameTyConKeytrNameSDataConKeytrNameDDataConKeytrGhcPrimModuleKeykindRepTyConKeytypeLitSortTyConKeytypeErrorTextDataConKeytypeErrorAppendDataConKeytypeErrorVAppendDataConKeytypeErrorShowTypeDataConKeyprefixIDataConKeyinfixIDataConKeyleftAssociativeDataConKeyrightAssociativeDataConKeynotAssociativeDataConKeysourceUnpackDataConKeysourceNoUnpackDataConKeynoSourceUnpackednessDataConKeysourceLazyDataConKeysourceStrictDataConKeynoSourceStrictnessDataConKeydecidedLazyDataConKeydecidedStrictDataConKeydecidedUnpackDataConKeymetaDataDataConKeymetaConsDataConKeymetaSelDataConKeyvecRepDataConKeytupleRepDataConKeysumRepDataConKeyruntimeRepSimpleDataConKeysliftedRepDataConKeyvecCountDataConKeysvecElemDataConKeyskindRepTyConAppDataConKeykindRepVarDataConKeykindRepAppDataConKeykindRepFunDataConKeykindRepTYPEDataConKeykindRepTypeLitSDataConKeykindRepTypeLitDDataConKeytypeLitSymbolDataConKeytypeLitNatDataConKey wildCardKeyabsentErrorIdKey augmentIdKey appendIdKey buildIdKey errorIdKey foldrIdKeyrecSelErrorIdKeyseqIdKeyirrefutPatErrorIdKey eqStringIdKeynoMethodBindingErrorIdKeynonExhaustiveGuardsErrorIdKeyruntimeErrorIdKey patErrorIdKeyrealWorldPrimIdKeyrecConErrorIdKeyunpackCStringUtf8IdKeyunpackCStringAppendIdKeyunpackCStringFoldrIdKeyunpackCStringIdKey voidPrimIdKeytypeErrorIdKey divIntIdKey modIntIdKeyunsafeCoerceIdKey concatIdKey filterIdKeyzipIdKey bindIOIdKey returnIOIdKeynewStablePtrIdKey printIdKey failIOIdKey nullAddrIdKey voidArgIdKeyfstIdKeysndIdKeyotherwiseIdKey assertIdKeymkIntegerIdKeysmallIntegerIdKeyintegerToWordIdKeyintegerToIntIdKeyintegerToWord64IdKeyintegerToInt64IdKeyplusIntegerIdKeytimesIntegerIdKeyminusIntegerIdKeynegateIntegerIdKeyeqIntegerPrimIdKeyneqIntegerPrimIdKeyabsIntegerIdKeysignumIntegerIdKeyleIntegerPrimIdKeygtIntegerPrimIdKeyltIntegerPrimIdKeygeIntegerPrimIdKeycompareIntegerIdKeyquotIntegerIdKeyremIntegerIdKeydivIntegerIdKeymodIntegerIdKeydivModIntegerIdKeyquotRemIntegerIdKeyfloatFromIntegerIdKeydoubleFromIntegerIdKeyencodeFloatIntegerIdKeyencodeDoubleIntegerIdKeygcdIntegerIdKeylcmIntegerIdKeyandIntegerIdKeyorIntegerIdKeyxorIntegerIdKeycomplementIntegerIdKeyshiftLIntegerIdKeyshiftRIntegerIdKeywordToIntegerIdKeyword64ToIntegerIdKeyint64ToIntegerIdKeydecodeDoubleIntegerIdKey rootMainKey runMainKey thenIOIdKey lazyIdKeyassertErrorIdKey oneShotKeyrunRWKeytraceKeybreakpointIdKeybreakpointCondIdKeybreakpointAutoIdKeybreakpointJumpIdKeybreakpointCondJumpIdKeybreakpointAutoJumpIdKey inlineIdKeymapIdKeygroupWithIdKey dollarIdKeycoercionTokenIdKey noinlineIdKeyrationalToFloatIdKeyrationalToDoubleIdKeyunmarshalObjectIdKeymarshalObjectIdKeymarshalStringIdKeyunmarshalStringIdKeycheckDotnetResNameIdKey undefinedKey magicDictKey coerceKey unboundKeyfromIntegerClassOpKeyminusClassOpKeyfromRationalClassOpKeyenumFromClassOpKeyenumFromThenClassOpKeyenumFromToClassOpKeyenumFromThenToClassOpKey eqClassOpKey geClassOpKeynegateClassOpKeyfailMClassOpKey_preMFPbindMClassOpKeythenMClassOpKeyfmapClassOpKeyreturnMClassOpKey mfixIdKeyfailMClassOpKey arrAIdKey composeAIdKey firstAIdKey appAIdKey choiceAIdKey loopAIdKeyfromStringClassOpKeytoAnnotationWrapperIdKeyfromIntegralIdKeyrealToFracIdKeytoIntegerClassOpKeytoRationalClassOpKey guardMIdKey liftMIdKey mzipIdKeyghciStepIoMClassOpKeyisListClassKeyfromListClassOpKeyfromListNClassOpKeytoListClassOpKey proxyHashKey mkTyConKey mkTrTypeKey mkTrConKey mkTrAppKeytypeNatTypeRepKeytypeSymbolTypeRepKey typeRepIdKey mkTrFunKey trTYPEKeytrTYPE'PtrRepLiftedKeytrRuntimeRepKeytr'PtrRepLiftedKeystarKindRepKeystarArrStarKindRepKeystarArrStarArrStarKindRepKey toDynIdKeybitIntegerIdKey heqSCSelIdKeycoercibleSCSelIdKeysappendClassOpKeymemptyClassOpKeymappendClassOpKeymconcatClassOpKeyemptyCallStackKeypushCallStackKeyfromStaticPtrClassOpKey makeStaticKeynaturalFromIntegerIdKeynumericClassKeysfractionalClassKeysstandardClassKeysderivableClassKeysinteractiveClassNamesinteractiveClassKeyspretendNameIsInScopetemplateHaskellNamesthSynthLibqqLib mkTHModulelibFunlibTcthFunthTcthClsthConqqFun liftClassName qTyConName nameTyConNamefieldExpTyConName patTyConNamefieldPatTyConName expTyConName decTyConName typeTyConNamematchTyConNameclauseTyConNamefunDepTyConName predTyConName tExpTyConNameinjAnnTyConNameoverlapTyConNamederivStrategyTyConName returnQName bindQName sequenceQName newNameNameliftNameliftStringName mkNameName mkNameG_vName mkNameG_dNamemkNameG_tcName mkNameLName mkNameSName unTypeName unTypeQNameunsafeTExpCoerceName charLName stringLName integerLName intPrimLName wordPrimLNamefloatPrimLNamedoublePrimLName rationalLNamestringPrimLName charPrimLNamelitPNamevarPNametupPNameunboxedTupPNameunboxedSumPNameconPName infixPName tildePName bangPNameasPName wildPNamerecPName listPNamesigPName viewPName fieldPatName matchName clauseNamevarENameconENamelitENameappEName appTypeEName infixEName infixAppName sectionLName sectionRNamelamEName lamCaseENametupENameunboxedTupENameunboxedSumEName condEName multiIfENameletEName caseENamedoEName compEName fromEName fromThenEName fromToENamefromThenToEName listENamesigEName recConEName recUpdEName staticENameunboundVarEName labelEName fieldExpName guardedBName normalBName normalGEName patGEName bindSNameletSName noBindSNameparSNamefunDNamevalDName dataDName newtypeDName tySynDName classDNameinstanceWithOverlapDName standaloneDerivWithStrategyDNamesigDNamedefaultSigDName forImpDName pragInlDName pragSpecDNamepragSpecInlDNamepragSpecInstDName pragRuleDNamepragCompleteDName pragAnnDName dataInstDNamenewtypeInstDNametySynInstDNameopenTypeFamilyDNameclosedTypeFamilyDNamedataFamilyDName infixLDName infixRDName infixNDNameroleAnnotDName patSynDNamepatSynSigDNamecxtNamenoSourceUnpackednessNamesourceNoUnpackNamesourceUnpackNamenoSourceStrictnessNamesourceLazyNamesourceStrictName normalCNamerecCName infixCName forallCName gadtCName recGadtCNamebangName bangTypeNamevarBangTypeNameunidirPatSynNameimplBidirPatSynNameexplBidirPatSynNameprefixPatSynNameinfixPatSynNamerecordPatSynName forallTNamevarTNameconTName tupleTNameunboxedTupleTNameunboxedSumTName arrowTName listTNameappTNamesigTName equalityTNamelitTName promotedTNamepromotedTupleTNamepromotedNilTNamepromotedConsTName wildCardTName numTyLitName strTyLitName plainTVName kindedTVName nominalRNamerepresentationalRName phantomRName inferRNamevarKNameconKName tupleKName arrowKName listKNameappKName starKNameconstraintKName noSigName kindSigName tyVarSigNameinjectivityAnnName cCallName stdCallName cApiCallName primCallNamejavaScriptCallName unsafeNamesafeNameinterruptibleNametExpDataConName ruleVarNametypedRuleVarName funDepName tySynEqnNamevalueAnnotationNametypeAnnotationNamemoduleAnnotationNamederivClauseNamematchQTyConNameclauseQTyConName expQTyConNamestmtQTyConName decQTyConNamedecsQTyConName conQTyConNamebangTypeQTyConNamevarBangTypeQTyConNametypeQTyConNamefieldExpQTyConName patQTyConNamefieldPatQTyConNamepredQTyConNameruleBndrQTyConNametySynEqnQTyConName roleTyConNamederivClauseQTyConNamekindQTyConNametyVarBndrQTyConName quoteExpName quotePatName quoteDecName quoteTypeNamenoInlineDataConNameinlineDataConNameinlinableDataConNameconLikeDataConNamefunLikeDataConNameallPhasesDataConNamefromPhaseDataConNamebeforePhaseDataConNameoverlappableDataConNameoverlappingDataConNameoverlapsDataConNameincoherentDataConNamestockStrategyDataConNameanyclassStrategyDataConNamenewtypeStrategyDataConName liftClassKey expTyConKey matchTyConKeyclauseTyConKey qTyConKey expQTyConKey decQTyConKey patTyConKeymatchQTyConKeyclauseQTyConKey stmtQTyConKey conQTyConKey typeQTyConKey typeTyConKey decTyConKeybangTypeQTyConKeyvarBangTypeQTyConKeyfieldExpTyConKeyfieldPatTyConKey nameTyConKey patQTyConKeyfieldPatQTyConKeyfieldExpQTyConKeyfunDepTyConKey predTyConKey predQTyConKeytyVarBndrQTyConKey decsQTyConKeyruleBndrQTyConKeytySynEqnQTyConKey roleTyConKey tExpTyConKeyinjAnnTyConKey kindQTyConKeyoverlapTyConKeyderivClauseQTyConKeyderivStrategyTyConKeynoInlineDataConKeyinlineDataConKeyinlinableDataConKeyconLikeDataConKeyfunLikeDataConKeyallPhasesDataConKeyfromPhaseDataConKeybeforePhaseDataConKeytExpDataConKeyoverlappableDataConKeyoverlappingDataConKeyoverlapsDataConKeyincoherentDataConKeystockDataConKeyanyclassDataConKeynewtypeDataConKey returnQIdKey bindQIdKeysequenceQIdKey liftIdKey newNameIdKey mkNameIdKeymkNameG_vIdKeymkNameG_dIdKeymkNameG_tcIdKey mkNameLIdKey mkNameSIdKey unTypeIdKey unTypeQIdKeyunsafeTExpCoerceIdKey charLIdKey stringLIdKey integerLIdKey intPrimLIdKeywordPrimLIdKeyfloatPrimLIdKeydoublePrimLIdKeyrationalLIdKeystringPrimLIdKeycharPrimLIdKeyliftStringIdKey litPIdKey varPIdKey tupPIdKeyunboxedTupPIdKeyunboxedSumPIdKey conPIdKey infixPIdKey tildePIdKey bangPIdKeyasPIdKey wildPIdKey recPIdKey listPIdKey sigPIdKey viewPIdKey fieldPatIdKey matchIdKey clauseIdKey varEIdKey conEIdKey litEIdKey appEIdKey appTypeEIdKey infixEIdKey infixAppIdKey sectionLIdKey sectionRIdKey lamEIdKey lamCaseEIdKey tupEIdKeyunboxedTupEIdKeyunboxedSumEIdKey condEIdKey multiIfEIdKey letEIdKey caseEIdKeydoEIdKey compEIdKey fromEIdKeyfromThenEIdKey fromToEIdKeyfromThenToEIdKey listEIdKey sigEIdKey recConEIdKey recUpdEIdKey staticEIdKeyunboundVarEIdKey labelEIdKey fieldExpIdKey guardedBIdKey normalBIdKey normalGEIdKey patGEIdKey bindSIdKey letSIdKey noBindSIdKey parSIdKey funDIdKey valDIdKey dataDIdKey newtypeDIdKey tySynDIdKey classDIdKeyinstanceWithOverlapDIdKeyinstanceDIdKey sigDIdKey forImpDIdKey pragInlDIdKeypragSpecDIdKeypragSpecInlDIdKeypragSpecInstDIdKeypragRuleDIdKey pragAnnDIdKeydataFamilyDIdKeyopenTypeFamilyDIdKeydataInstDIdKeynewtypeInstDIdKeytySynInstDIdKeyclosedTypeFamilyDIdKey infixLDIdKey infixRDIdKey infixNDIdKeyroleAnnotDIdKey!standaloneDerivWithStrategyDIdKeydefaultSigDIdKey patSynDIdKeypatSynSigDIdKeypragCompleteDIdKeycxtIdKeynoSourceUnpackednessKeysourceNoUnpackKeysourceUnpackKeynoSourceStrictnessKey sourceLazyKeysourceStrictKey normalCIdKey recCIdKey infixCIdKey forallCIdKey gadtCIdKey recGadtCIdKey bangIdKeybangTKey varBangTKeyunidirPatSynIdKeyimplBidirPatSynIdKeyexplBidirPatSynIdKeyprefixPatSynIdKeyinfixPatSynIdKeyrecordPatSynIdKey forallTIdKey varTIdKey conTIdKey tupleTIdKeyunboxedTupleTIdKeyunboxedSumTIdKey arrowTIdKey listTIdKey appTIdKey sigTIdKeyequalityTIdKey litTIdKeypromotedTIdKeypromotedTupleTIdKeypromotedNilTIdKeypromotedConsTIdKeywildCardTIdKey numTyLitIdKey strTyLitIdKey plainTVIdKey kindedTVIdKey nominalRIdKeyrepresentationalRIdKey phantomRIdKey inferRIdKey varKIdKey conKIdKey tupleKIdKey arrowKIdKey listKIdKey appKIdKey starKIdKeyconstraintKIdKey noSigIdKey kindSigIdKey tyVarSigIdKeyinjectivityAnnIdKey cCallIdKey stdCallIdKey cApiCallIdKey primCallIdKeyjavaScriptCallIdKey unsafeIdKey safeIdKeyinterruptibleIdKey funDepIdKey tySynEqnIdKey quoteExpKey quotePatKey quoteDecKey quoteTypeKey ruleVarIdKeytypedRuleVarIdKeyvalueAnnotationIdKeytypeAnnotationIdKeymoduleAnnotationIdKeyderivClauseIdKeylift_RDR mkNameG_dRDR mkNameG_vRDRconE_RDRlitE_RDRappE_RDR infixApp_RDR stringL_RDR intPrimL_RDR wordPrimL_RDRfloatPrimL_RDRdoublePrimL_RDRstringPrimL_RDR charPrimL_RDRHasENoEIsUnicodeSyntax UnicodeSyntax NormalSyntaxLRdrNameAnnotationCommentAnnDocCommentNextAnnDocCommentPrevAnnDocCommentNamed AnnDocSection AnnDocOptionsAnnLineCommentAnnBlockComment AnnAnyclass AnnCloseBU AnnCloseC AnnCloseQU AnnCloseS AnnCommaTuple AnnDarrowU AnnDcolonU AnnForallU AnnLarrowUAnnMdoAnnName AnnOpenBUAnnOpenC AnnOpenEQU AnnOpenPE AnnOpenPTEAnnOpenS AnnRarrowU AnnSignature AnnThIdSpliceAnnThIdTySplice AnnThTyQuoteAnnlarrowtailUAnnrarrowtailUAnnLarrowtailUAnnRarrowtailU AnnEofPos ApiAnnKeyApiAnns getAnnotationgetAndRemoveAnnotationgetAnnotationCommentsgetAndRemoveAnnotationComments unicodeAnn$fOutputableAnnKeywordId$fOutputableAnnotationComment$fEqAnnKeywordId$fOrdAnnKeywordId$fDataAnnKeywordId$fShowAnnKeywordId$fEqAnnotationComment$fOrdAnnotationComment$fDataAnnotationComment$fShowAnnotationComment$fEqIsUnicodeSyntax$fOrdIsUnicodeSyntax$fDataIsUnicodeSyntax$fShowIsUnicodeSyntax$fEqHasE $fOrdHasE $fDataHasE $fShowHasEAddAnnPunPPStatebufferoptionsmessages tab_first tab_countlast_tklast_loclast_lenloccontext lex_statesrcfilesalr_pending_implicit_tokensalr_next_token alr_last_loc alr_contextalr_expecting_ocurlyalr_justClosedExplicitLetBlock use_pos_prags annotations comment_qannotations_comments ParserFlags pWarningFlagspExtensionFlags pThisPackage pExtsBitmap ParseResultPOkPFailedTokenITasITcaseITclassITdata ITdefault ITderivingITdoITelseIThiding ITforeignITifITimportITinITinfixITinfixlITinfixr ITinstanceITletITmodule ITnewtypeITof ITqualifiedITthenITtypeITwhereITforallITexportITlabel ITdynamicITsafeITinterruptibleITunsafe ITstdcallconv ITccallconv ITcapiconvITprimcallconvITjavascriptcallconvITmdoITfamilyITroleITgroupITbyITusing ITpatternITstaticITstock ITanyclassITunit ITsignature ITdependency ITrequires ITinline_prag ITspec_pragITspec_inline_prag ITsource_prag ITrules_pragITwarning_pragITdeprecated_prag ITline_prag ITcolumn_prag ITscc_pragITgenerated_prag ITcore_prag ITunpack_pragITnounpack_prag ITann_pragITcomplete_prag ITclose_pragIToptions_pragITinclude_pragITlanguage_prag ITvect_pragITvect_scalar_prag ITnovect_pragITminimal_pragIToverlappable_pragIToverlapping_pragIToverlaps_pragITincoherent_pragITctypeITdotdotITcolonITdcolonITequalITlamITlcaseITvbarITlarrowITrarrowITatITtilde ITtildehshITdarrowITminusITbangITdotITbiglamITocurlyITccurly ITvocurly ITvccurlyITobrack ITopabrack ITcpabrackITcbrackIToparenITcparen IToubxparen ITcubxparenITsemiITcomma ITunderscore ITbackquote ITsimpleQuoteITvaridITconidITvarsymITconsymITqvaridITqconid ITqvarsym ITqconsym ITdupipvarid ITlabelvaridITcharITstring ITinteger ITrational ITprimchar ITprimstring ITprimint ITprimword ITprimfloat ITprimdoubleITopenExpQuoteITopenPatQuoteITopenDecQuoteITopenTypQuote ITcloseQuoteITopenTExpQuoteITcloseTExpQuote ITidEscape ITparenEscape ITidTyEscapeITparenTyEscape ITtyQuote ITquasiQuote ITqQuasiQuoteITprocITrec IToparenbar ITcparenbar ITlarrowtail ITrarrowtail ITLarrowtail ITRarrowtail ITtypeApp ITunknownITeofITdocCommentNextITdocCommentPrevITdocCommentNamed ITdocSection ITdocOptions ITlineCommentITblockCommentextopt failLocMsgP failSpanMsgP getPStatewithThisPackage extension setSrcLoc setLastToken nextIsEOF pushLexState popLexState getLexState activeContextexplicitForallEnabledbangPatEnableddatatypeContextsEnabled inRulePrag hpcEnabledsccProfilingOntraditionalRecordSyntaxEnabledexplicitNamespacesEnabledpatternSynonymsEnabled pragState mkParserFlagsmkPState mkPStatePure addWarning getMessages popContextpushModuleContext srcParseFaillexerlexTokenStream addAnnotation addAnnsAtmkParensApiAnnmoveAnnotationscommentToAnnotation$fOutputableToken $fMonadFailP$fMonadP$fApplicativeP $fFunctorP $fShowToken$fShowLayoutContext $fEnumExtBitsPDunPDliftP$fHasDynFlagsPD $fMonadFailPD $fMonadPD$fApplicativePD $fFunctorPD TyVarBinder TyVarBndrTvBndrArgFlagRequired SpecifiedInferredvarTypeOutIdOutCoVarOutTyVarOutVarInIdInCoVarInTyVarInVarTyCoVarJoinIdEqVarIpIdDictIdDFunIdEvVarEvIdKindVarTypeVarTKVarTyVarNcIdCoVar nonDetCmpVar varUnique setVarUnique setVarName setVarType updateVarTypeupdateVarTypeMisVisibleArgFlagisInvisibleArgFlagsameVis binderVar binderVars binderArgFlag binderKind mkTyVarBindermkTyVarBinders tyVarName tyVarKindsetTyVarUnique setTyVarName setTyVarKindupdateTyVarKindupdateTyVarKindMmkTyVar mkTcTyVartcTyVarDetailssetTcTyVarDetailsidInfo idDetails mkGlobalVar mkLocalVarmkCoVarmkExportedLocalVar lazySetIdInfo setIdDetails globaliseId setIdExportedsetIdNotExportedisTyVar isTcTyVar isTyCoVarisIdisCoVar isNonCoVarId isLocalId isLocalVar isGlobalIdmustHaveLocalBinding isExportedId$fHasOccNameVar $fDataVar$fOrdVar$fEqVar$fUniquableVar$fNamedThingVar$fOutputableVar$fBinaryArgFlag$fOutputableArgFlag$fBinaryTyVarBndr$fOutputableTyVarBndr $fEqArgFlag $fDataArgFlag$fDataTyVarBndrmkPromotedListTyunboxedTupleKind anyTypeOfKindint8ElemRepDataConTyint16ElemRepDataConTyint32ElemRepDataConTyint64ElemRepDataConTyword8ElemRepDataConTyword16ElemRepDataConTyword32ElemRepDataConTyword64ElemRepDataConTyfloatElemRepDataConTydoubleElemRepDataConTy vec2DataConTy vec4DataConTy vec8DataConTyvec16DataConTyvec32DataConTyvec64DataConTyliftedRepDataConTyunliftedRepDataConTyintRepDataConTywordRepDataConTyint64RepDataConTyword64RepDataConTyaddrRepDataConTyfloatRepDataConTydoubleRepDataConTyliftedRepDataConTyConvecRepDataConTyContupleRepDataConTyCon runtimeRepTyruntimeRepTyCon vecCountTyCon vecElemTyConconstraintKindliftedTypeKindmkBoxedTupleTy typeNatKindtypeSymbolKind listTyCon mkForAllKind mkFunKind patSynNamepatSynExTyVarspatSynInstArgTys patSynArityIfaceForAllBndr IfaceTvBndr IfaceCoercion IfaceTyLit IfaceTyCon IfaceKind IfLclName IfaceTcArgsEqSpec DataConRepdataConFullSigdataConStupidThetadataConInstOrigArgTysdataConFieldLabelsdataConSourceAritydataConUserTyVarBindersdataConUserTyVarsdataConExTyVars dataConTyCon dataConName RealDataCon PatSynCon conLikeName CollectedCCsCostCentreStackIsCafCCNotCafCCCafCCCcNameNormalCC AllCafsCCcc_keycc_namecc_modcc_loc cc_is_caf cmpCostCentreisCafCC isSccCountCC sccAbleCCccFromThisModulemkUserCCmkAutoCC mkAllCafsCCemptyCollectedCCs collectCC currentCCS dontCareCCS isCurrentCCSisCafCCSmaybeSingletonCCSmkSingletonCCSpprCostCentreCorecostCentreUserNamecostCentreUserNameFScostCentreSrcSpan$fBinaryIsCafCC$fBinaryCostCentre$fOutputableCostCentre$fOrdCostCentre$fEqCostCentre$fOutputableCostCentreStack $fEqIsCafCC $fOrdIsCafCC $fDataIsCafCC$fDataCostCentre$fEqCostCentreStack$fOrdCostCentreStackBuiltInSynFamily sfMatchFam sfInteractTopsfInteractInert CoAxiomRule coaxrNamecoaxrAsmpRoles coaxrRole coaxrProvesTypeEqnRoleNominalRepresentationalPhantom CoAxBranchcab_loccab_tvscab_cvs cab_rolescab_lhscab_rhs cab_incomps co_ax_unique co_ax_name co_ax_roleco_ax_tcco_ax_branchesco_ax_implicitBranches UnbranchedBranched BranchFlag BranchIndex manyBranches unbranched fromBranches numBranchesmapAccumBranchestoBranchedAxiomtoUnbranchedAxiomcoAxiomNumPatscoAxiomNthBranch coAxiomArity coAxiomName coAxiomRolecoAxiomBranchescoAxiomSingleBranch_maybecoAxiomSingleBranch coAxiomTyConcoAxBranchTyVarscoAxBranchCoVars coAxBranchLHS coAxBranchRHScoAxBranchRolescoAxBranchSpanisImplicitCoAxiomcoAxBranchIncompsplaceHolderIncomps fsFromRoletrivialBuiltInFamily $fBinaryRole$fOutputableRole$fOutputableCoAxBranch $fDataCoAxiom$fNamedThingCoAxiom$fOutputableCoAxiom$fUniquableCoAxiom $fEqCoAxiom$fOutputableCoAxiomRule$fOrdCoAxiomRule$fEqCoAxiomRule$fUniquableCoAxiomRule$fDataCoAxiomRule$fEqRole $fOrdRole $fDataRole$fDataCoAxBranchLiftingContext coercionType coercionKindseqCo liftCoSubstmkCoercionType coVarRolecoVarKindsTypesRole isReflexiveCoisReflComkFunCosmkProofIrrelComkSubComkKindCo mkCoherenceComkInstComkLRComkNthCo mkTransComkSymComkUnivCo mkUnsafeCo mkPhantomCo mkAxiomInstCo mkCoVarComkFunCo mkForAllComkAppCo mkTyConAppComkReflCoClassMinimalDef ClassATItemATI DefMethInfo ClassOpItemFunDep classTyCon classNameclassKey classTyVarsclassMinimalDefmkClassmkAbstractClass classArityclassAllSelIds classSCSelId classMethods classOpItemsclassATs classATItems classSCTheta classTvsFds classHasFds classBigSigclassExtraBigSigisAbstractClasspprDefMethInfo pprFundeps pprFunDep $fDataClass$fOutputableClass$fNamedThingClass$fUniquableClass $fEqClass RecTcChecker TyConFlavour ClassFlavour TupleFlavour SumFlavourDataTypeFlavourNewtypeFlavourAbstractTypeFlavourDataFamilyFlavourOpenTypeFamilyFlavourClosedTypeFamilyFlavourTypeSynonymFlavourBuiltInTypeFlavourPromotedDataConFlavour PrimElemRep Int8ElemRep Int16ElemRep Int32ElemRep Int64ElemRep Word8ElemRep Word16ElemRep Word32ElemRep Word64ElemRep FloatElemRep DoubleElemRepPrimRepVoidRep LiftedRep UnliftedRepIntRepWordRepInt64Rep Word64RepAddrRepFloatRep DoubleRepVecRep TyConRepName FamTyConFlavDataFamilyTyConOpenSynFamilyTyConClosedSynFamilyTyConAbstractClosedSynFamilyTyConBuiltInSynFamTyCon Injectivity NotInjective Injective AlgTyConFlavVanillaAlgTyConUnboxedAlgTyCon ClassTyConDataFamInstTyConRuntimeRepInfoNoRRI RuntimeRepVecCountVecElem AlgTyConRhs AbstractTyCon DataTyCon TupleTyConSumTyConNewTyCon data_consis_enumdata_contup_sortnt_rhs nt_etad_rhsnt_co tyConUnique tyConName tyConBinders tyConResKind tyConKind tyConArity tyConTyVars tyConCType algTcFields famTcResVartcTyConScopedTyVars TyConBndrVisNamedTCBAnonTCB TyConBindermkAnonTyConBindermkAnonTyConBindersmkNamedTyConBindermkNamedTyConBinderstyConBinderArgFlagisNamedTyConBinderisVisibleTyConBinderisInvisibleTyConBinder mkTyConKindtyConTyVarBinderstyConVisibleTyVarsvisibleDataCons isNoParenttyConRepName_maybemkPrelTyConRepNametyConRepModOcc isVoidRep isGcPtrRep primRepSizeBprimElemRepSizeBprimRepIsFloattyConFieldLabelslookupTyConFieldLabel mkFunTyCon mkAlgTyCon mkClassTyCon mkTupleTyCon mkSumTyCon mkTcTyCon mkPrimTyCon mkKindTyConmkLiftedPrimTyConmkSynonymTyCon mkFamilyTyConmkPromotedDataConisAbstractTyConmakeRecoveryTyCon isPrimTyConisUnliftedTyCon isAlgTyConisVanillaAlgTyCon isDataTyConisInjectiveTyConisGenerativeTyConisGenInjAlgRhs isNewTyConunwrapNewTyCon_maybeunwrapNewTyConEtad_maybeisProductTyConisDataProductTyCon_maybeisDataSumTyCon_maybeisTypeSynonymTyCon isTauTyConisFamFreeTyConmightBeUnsaturatedTyConisGadtSyntaxTyConisEnumerationTyCon isFamilyTyConisOpenFamilyTyConisTypeFamilyTyConisDataFamilyTyConisOpenTypeFamilyTyCon%isClosedSynFamilyTyConWithAxiom_maybetyConInjectivityInfoisBuiltInSynFamTyCon_maybe isTyConAssoctyConAssoc_maybetyConTuple_maybeisBoxedTupleTyConisUnboxedSumTyConisPromotedTupleTyConisPromotedDataConisPromotedDataCon_maybe isKindTyConisLiftedTypeKindTyConNameisImplicitTyContyConCType_maybe isTcTyCon isTcLevPolyexpandSynTyCon_maybeisTyConWithSrcDataCons tyConDataConstyConDataCons_maybetyConSingleDataCon_maybetyConSingleDataContyConSingleAlgDataCon_maybetyConFamilySizetyConFamilySizeAtMost algTyConRhstyConFamilyResVar_maybe tyConRoles newTyConRhsnewTyConEtadAritynewTyConEtadRhsnewTyConCo_maybe newTyConConewTyConDataCon_maybetyConStupidThetasynTyConDefn_maybesynTyConRhs_maybefamTyConFlav_maybe isClassTyContyConClass_maybetyConATsisFamInstTyContyConFamInstSig_maybetyConFamInst_maybetyConFamilyCoercion_maybetyConRuntimeRepInfo tyConFlavourtcFlavourCanBeUnsaturatedtcFlavourIsOpenpprPromotionQuote initRecTc checkRecTc tyConSkolem$fBinaryTyConBndrVis$fBinaryInjectivity$fOutputableFamTyConFlav$fOutputablePrimElemRep$fOutputablePrimRep$fOutputableTyConFlavour $fDataTyCon$fNamedThingTyCon$fOutputableTyCon$fUniquableTyCon $fEqTyCon$fOutputableAlgTyConFlav$fEqInjectivity$fEqPrimElemRep$fShowPrimElemRep $fEqPrimRep $fShowPrimRep$fEqTyConFlavoursplitTyConApp_maybetoposortTyVarstyCoVarsOfTypeWellScopedtyCoVarsOfTypesWellScopedtcViewcoreVieweqType piResultTymkCastTymkAppTy isCoercionTyisPredTy typeNatTyConsShowForAllFlagShowForAllMustShowForAllWhenIfaceUnivCoProvIfaceUnsafeCoerceProvIfacePhantomProvIfaceProofIrrelProvIfacePluginProv IfaceReflCo IfaceFunCoIfaceTyConAppCo IfaceAppCo IfaceForAllCo IfaceCoVarCoIfaceAxiomInstCo IfaceUnivCo IfaceSymCo IfaceTransCo IfaceNthCo IfaceLRCo IfaceInstCoIfaceCoherenceCo IfaceKindCo IfaceSubCoIfaceAxiomRuleCoIfaceFreeCoVar IfaceHoleCoIfaceTyConInfoifaceTyConIsPromotedifaceTyConSortIfaceTyConSortIfaceNormalTyConIfaceTupleTyCon IfaceSumTyConIfaceEqualityTyCon IsPromoted IsNotPromotedifaceTyConNameifaceTyConInfoITC_NilITC_Vis ITC_InvisIfaceTyConBinder IfaceNumTyLit IfaceStrTyLit IfaceContext IfacePredTypeIfaceFreeTyVar IfaceTyVar IfaceLitTy IfaceAppTy IfaceFunTy IfaceDFunTy IfaceForAllTy IfaceTyConApp IfaceCastTyIfaceCoercionTy IfaceTupleTy IfaceOneShotIfaceNoOneShot IfaceLamBndr IfaceIdBndr IfaceBndr IfExtNameisIfaceLiftedTypeKindsplitIfaceSigmaTysuppressIfaceInvisiblesstripIfaceInvisVarsifForAllBndrTyVarifForAllBndrNameifTyConBinderTyVarifTyConBinderNamemkIfaceTySubstinDomIfaceTySubstsubstIfaceTcArgssubstIfaceTyVarstripInvisArgstcArgsIfaceTypespprIfacePrefixApp pprIfaceBndrspprIfaceLamBndrpprIfaceIdBndrpprIfaceTvBndrpprIfaceTyConBinders pprIfaceTypepprParendIfaceTypepprPrecIfaceTypepprIfaceTcArgspprParendIfaceTcArgspprIfaceForAllPartpprIfaceForAllPartMustpprIfaceForAllpprIfaceSigmaTypepprUserIfaceForAllpprIfaceTypeApp pprTyTcApppprIfaceCoTcApp pprIfaceTyLitpprIfaceCoercionpprParendIfaceCoercionpprIfaceContextArrpprIfaceContext$fBinaryIfaceOneShot$fBinaryIfaceTyLit$fOutputableIfaceTyLit$fBinaryIsPromoted$fBinaryIfaceTyConSort$fBinaryIfaceTyConInfo$fBinaryIfaceTyCon$fOutputableIfaceTyCon$fBinaryDefMethSpec$fBinaryIfaceUnivCoProv$fBinaryIfaceCoercion$fBinaryIfaceType$fBinaryIfaceTcArgs$fOutputableIfaceCoercion$fOutputableIfaceTcArgs$fOutputableIfaceType$fMonoidIfaceTcArgs$fSemigroupIfaceTcArgs$fBinaryIfaceBndr$fOutputableIfaceBndr$fEqIfaceTyLit$fEqIsPromoted$fEqIfaceTyConSort$fEqIfaceTyConInfo$fEqIfaceTyCon DataConBoxer magicDictId mkPrimOpId mkDictSelIdmkDataConWorkId DTyCoVarSet DTyVarSetDIdSetDVarSet TyCoVarSetCoVarSetTyVarSetIdSet emptyVarSet unitVarSet extendVarSetextendVarSetListintersectVarSet unionVarSet unionVarSets elemVarSet minusVarSet delVarSet delVarSetList isEmptyVarSetmkVarSetlookupVarSet_Directly lookupVarSetlookupVarSetByName sizeVarSet filterVarSetdelVarSetByKeyelemVarSetByKeypartitionVarSetmapUnionVarSetintersectsVarSetdisjointVarSet subVarSet anyVarSet allVarSet mapVarSet fixVarSettransCloVarSet seqVarSet pluralVarSet pprVarSet emptyDVarSet unitDVarSet mkDVarSet extendDVarSet elemDVarSet dVarSetElems subDVarSet unionDVarSet unionDVarSetsmapUnionDVarSetintersectDVarSetdVarSetIntersectVarSetdisjointDVarSetintersectsDVarSetisEmptyDVarSet delDVarSet minusDVarSetdVarSetMinusVarSet foldDVarSet anyDVarSet allDVarSet filterDVarSet sizeDVarSetpartitionDVarSetdelDVarSetList seqDVarSetextendDVarSetListdVarSetToVarSettransCloDVarSet DTyVarEnvDIdEnvDVarEnvCoVarEnv TyCoVarEnvTyVarEnvIdEnvTidyEnvRnEnv2 InScopeSetemptyInScopeSetgetInScopeVars mkInScopeSetextendInScopeSetextendInScopeSetListextendInScopeSetSet delInScopeSetelemInScopeSet lookupInScopelookupInScope_Directly unionInScope varSetInScopeuniqAwaymkRnEnv2addRnInScopeSet rnInScope rnInScopeSetrnEnvLrnEnvRrnBndrs2rnBndr2 rnBndr2_varrnBndrLrnBndrRrnEtaLrnEtaRdelBndrLdelBndrR delBndrsL delBndrsRrnOccLrnOccR rnOccL_maybe rnOccR_maybeinRnEnvLinRnEnvRlookupRnInScope nukeRnEnvL nukeRnEnvRrnSwap emptyTidyEnv elemVarEnvelemVarEnvByKeydisjointVarEnv alterVarEnv extendVarEnvextendVarEnv_CextendVarEnv_AccextendVarEnv_DirectlyextendVarEnvList plusVarEnv_C plusVarEnv_CDplusMaybeVarEnv_C delVarEnvList delVarEnv minusVarEnvintersectsVarEnv plusVarEnvplusVarEnvList lookupVarEnv filterVarEnvlookupWithDefaultVarEnv mapVarEnvmkVarEnvmkVarEnv_Directly emptyVarEnv unitVarEnv isEmptyVarEnvlookupVarEnv_DirectlyfilterVarEnv_DirectlydelVarEnv_DirectlypartitionVarEnvrestrictVarEnv zipVarEnvlookupVarEnv_NF modifyVarEnvmodifyVarEnv_Directly emptyDVarEnv dVarEnvElts mkDVarEnv extendDVarEnv minusDVarEnv lookupDVarEnv foldDVarEnv mapDVarEnv filterDVarEnv alterDVarEnv plusDVarEnv plusDVarEnv_C unitDVarEnv delDVarEnvdelDVarEnvListisEmptyDVarEnv elemDVarEnvextendDVarEnv_C modifyDVarEnvpartitionDVarEnvextendDVarEnvList anyDVarEnv$fOutputableInScopeSettoIfaceCoercionX toIfaceTcArgs toIfaceTyContoIfaceForAllBndr toIfaceTyLit toIfaceTypeXInterestingVarFunfvVarListVarSet fvVarList fvDVarSetfvVarSetemptyFVunionFVfilterFV mapUnionFVunionsFV CvSubstEnv TvSubstEnv CoercionHole CoercionP CoercionR CoercionN KindOrTypeAnIdAConLikeATyConACoAxiompprShortTyThingpprTyThingCategorytyThingCategoryisInvisibleBinderisVisibleBinder mkTyVarTy mkTyVarTysmkFunTymkFunTys mkForAllTy mkForAllTysmkPiTymkPiTysisCoercionType mkTyConTyisLiftedTypeKindisUnliftedTypeKindisRuntimeRepTyisRuntimeRepVartyCoVarsOfTypetyCoVarsOfTypeDSettyCoVarsOfTypeList tyCoFVsOfType tyCoFVsBndrtyCoVarsOfTypestyCoVarsOfTypesDSettyCoVarsOfTypesListtyCoFVsOfTypes tyCoVarsOfCotyCoVarsOfCoDSet tyCoFVsOfCo tyCoVarsOfCos tyCoFVsOfCos coVarsOfType coVarsOfTypes coVarsOfCocloseOverKindscloseOverKindsListcloseOverKindsDSetnoFreeVarsOfTypeemptyTvSubstEnvemptyCvSubstEnvcomposeTCvSubstEnvcomposeTCvSubst emptyTCvSubstmkEmptyTCvSubstisEmptyTCvSubst mkTCvSubst mkTvSubst getTvSubstEnv getCvSubstEnv getTCvInScopegetTCvSubstRangeFVs isInScopenotElemTCvSubst setTvSubstEnv zapTCvSubstextendTCvInScopeextendTCvInScopeListextendTCvInScopeSetextendTCvSubst extendTvSubstextendTvSubstBinderAndInScopeextendTvSubstWithClone extendCvSubstextendTvSubstAndInScopeextendTvSubstList unionTCvSubst zipTvSubst mkTvSubstPrszipTyEnvzipCoEnv substTyWithsubstTyWithUnchecked substCoWithsubstCoWithUncheckedsubstTyWithCoVars substTysWithsubstTyAddInScopesubstTysubstTyUncheckedsubstTyssubstTysUnchecked substThetasubstThetaUnchecked substTyVar substTyVars lookupTyVarsubstCosubstCoUncheckedsubstCos substCoVar substCoVars lookupCoVarsubstTyVarBndrsubstCoVarBndrcloneTyVarBndrcloneTyVarBndrs pprParendType pprPrecType pprParendKindpprCo pprParendCo pprClassPredpprThetapprParendThetapprThetaArrowTy pprSigmaType pprForAll pprUserForAll pprTvBndrs pprTvBndr pprTyVarspprTyVar pprTypeAppppSuggestExplicitKindstidyTyCoVarBndrstidyTyCoVarBndrtidyTyVarBindertidyTyVarBinderstidyFreeTyCoVarstidyOpenTyCoVarstidyOpenTyCoVar tidyTyVarOcc tidyTypestidyType tidyOpenTypes tidyOpenType tidyTopType tidyOpenKindtidyKindtidyCotidyCostypeSize coercionSize primTyConscharPrimTyConNameintPrimTyConNamewordPrimTyConNameaddrPrimTyConNamefloatPrimTyConNamedoublePrimTyConNamemkTemplateKindVarsmkTemplateTyVarsFrommkTemplateTyVarsmkTemplateTyConBindersmkTemplateKiTyVarsmkTemplateKindTyConBindersmkTemplateAnonTyConBinders alphaTyVars alphaTyVar betaTyVar gammaTyVar deltaTyVaralphaTysalphaTybetaTygammaTydeltaTyruntimeRep1TyVarruntimeRep2TyVar runtimeRep1Ty runtimeRep2TyopenAlphaTyVar openBetaTyVar openAlphaTy openBetaTy funTyConName tYPETyCon tYPETyConNamemkPrimTyConNametYPEprimRepToRuntimeRep charPrimTy charPrimTyCon intPrimTy intPrimTyCon int32PrimTyint32PrimTyCon int64PrimTyint64PrimTyCon wordPrimTy wordPrimTyCon word32PrimTyword32PrimTyCon word64PrimTyword64PrimTyCon addrPrimTy addrPrimTyCon floatPrimTyfloatPrimTyCon doublePrimTydoublePrimTyCon mkStatePrimTystatePrimTyConrealWorldTyCon realWorldTyrealWorldStatePrimTy voidPrimTy voidPrimTyCon mkProxyPrimTyproxyPrimTyCon eqPrimTyConeqReprPrimTyConeqPhantPrimTyConarrayPrimTyConmutableArrayPrimTyConmutableByteArrayPrimTyConbyteArrayPrimTyConarrayArrayPrimTyConmutableArrayArrayPrimTyConsmallArrayPrimTyConsmallMutableArrayPrimTyCon mkArrayPrimTybyteArrayPrimTymkArrayArrayPrimTymkSmallArrayPrimTymkMutableArrayPrimTymkMutableByteArrayPrimTymkMutableArrayArrayPrimTymkSmallMutableArrayPrimTymutVarPrimTyConmkMutVarPrimTy mVarPrimTyCon mkMVarPrimTy tVarPrimTyCon mkTVarPrimTystablePtrPrimTyConmkStablePtrPrimTystableNamePrimTyConmkStableNamePrimTycompactPrimTyCon compactPrimTy bcoPrimTy bcoPrimTyCon weakPrimTyCon mkWeakPrimTythreadIdPrimTythreadIdPrimTyCon int8X16PrimTyint8X16PrimTyCon int16X8PrimTyint16X8PrimTyCon int32X4PrimTyint32X4PrimTyCon int64X2PrimTyint64X2PrimTyCon int8X32PrimTyint8X32PrimTyConint16X16PrimTyint16X16PrimTyCon int32X8PrimTyint32X8PrimTyCon int64X4PrimTyint64X4PrimTyCon int8X64PrimTyint8X64PrimTyConint16X32PrimTyint16X32PrimTyConint32X16PrimTyint32X16PrimTyCon int64X8PrimTyint64X8PrimTyConword8X16PrimTyword8X16PrimTyConword16X8PrimTyword16X8PrimTyConword32X4PrimTyword32X4PrimTyConword64X2PrimTyword64X2PrimTyConword8X32PrimTyword8X32PrimTyConword16X16PrimTyword16X16PrimTyConword32X8PrimTyword32X8PrimTyConword64X4PrimTyword64X4PrimTyConword8X64PrimTyword8X64PrimTyConword16X32PrimTyword16X32PrimTyConword32X16PrimTyword32X16PrimTyConword64X8PrimTyword64X8PrimTyCon floatX4PrimTyfloatX4PrimTyCondoubleX2PrimTydoubleX2PrimTyCon floatX8PrimTyfloatX8PrimTyCondoubleX4PrimTydoubleX4PrimTyConfloatX16PrimTyfloatX16PrimTyCondoubleX8PrimTydoubleX8PrimTyConisConstraintKindConisConstraintKind isTYPEApp returnsTyConreturnsConstraintKind isKindLevPolyclassifiesTypeWithValues tcIsStarKind isStarKindisStarKindSynonymTyConPredTree ClassPredEqPred IrredPredEqRelNomEqReprEq TyCoMapper tcm_smart tcm_tyvar tcm_covartcm_hole tcm_tybinderexpandTypeSynonymsmapType mapCoerciongetTyVar isTyVarTygetTyVar_maybegetCastedTyVar_mayberepGetTyVar_maybemkAppTyssplitAppTy_mayberepSplitAppTy_maybetcRepSplitAppTy_maybetcSplitTyConApp_maybetcRepSplitTyConApp_maybe splitAppTy splitAppTysrepSplitAppTys mkNumLitTy isNumLitTy mkStrLitTy isStrLitTyuserTypeError_maybepprUserTypeErrorTyisFunTy splitFunTysplitFunTy_maybe splitFunTys funResultTyfunArgTy piResultTys applyTysX mkTyConApptyConAppTyConPicky_maybetyConAppTyCon_maybe tyConAppTyContyConAppArgs_maybe tyConAppArgs tyConAppArgN splitTyConApprepSplitTyConApp_maybesplitListTyConApp_maybenextRolenewTyConInstRhssplitCastTy_maybetyConBindersTyBinders mkCoercionTyisCoercionTy_maybestripCoercionTy mkInvForAllTymkInvForAllTysmkSpecForAllTysmkVisForAllTys mkLamType mkLamTypesmkTyConBindersPreferAnonsplitForAllTyssplitForAllTyVarBndrs isForAllTyisPiTy splitForAllTy dropForAllssplitForAllTy_maybesplitPiTy_maybe splitPiTy splitPiTyssplitPiTysInvisiblefilterOutInvisibleTypespartitionInvisiblesisTauTy mkAnonBinderisAnonTyBinderisNamedTyBinder tyBinderTypebinderRelevantType_maybe caseBindermkTyBinderTyConBinder isClassPredisEqPred isNomEqPredisIPPred isIPTyCon isIPClass isCTupleClassisIPPred_maybemkPrimEqPredRole mkPrimEqPredmkHeteroPrimEqPredmkHeteroReprPrimEqPredsplitCoercionType_maybemkReprPrimEqPred equalityTyCon mkClassPredisDictTy isDictLikeTy eqRelRoleclassifyPredTypegetClassPredTysgetClassPredTys_maybe getEqPredTysgetEqPredTys_maybe getEqPredRole predTypeEqReldVarSetElemsWellScopedmkFamilyTyConApp coAxNthLHSpprSourceTyCon isFamFreeTyisLiftedType_maybeisUnliftedTypeisRuntimeRepKindedTydropRuntimeRepArgsgetRuntimeRep_maybe getRuntimeRepgetRuntimeRepFromKindgetRuntimeRepFromKind_maybeisUnboxedTupleTypeisUnboxedSumType isAlgTypeisDataFamilyAppType isStrictTypeisPrimitiveTypeisValidJoinPointTypeseqTypeseqTypeseqTypeXeqTypes eqVarBndrs nonDetCmpTypenonDetCmpTypesnonDetCmpTypeXnonDetCmpTypesX nonDetCmpTctypeKind isTypeLevPolyresultIsLevPoly tyConsOfTypesynTyConResKindsplitVisVarsOfTypesplitVisVarsOfTypesmodifyJoinResTy setJoinResTy$fOutputableEqRel $fEqEqRel $fOrdEqRel$fEqTypeOrdering$fOrdTypeOrdering$fEnumTypeOrdering$fBoundedTypeOrdering NameOrRdrNameplaceHolderKindplaceHolderFixityplaceHolderTypeplaceHolderTypeTcplaceHolderNamesplaceHolderNamesTcplaceHolderHsWrapper$fDataPlaceHoldermkPatSyn patSynIsInfix patSynArgspatSynFieldLabelspatSynFieldTypepatSynUnivTyVarBinderspatSynExTyVarBinders patSynSig patSynMatcher patSynBuilder tidyPatSynIdspatSynInstResTy pprPatSynType $fDataPatSyn$fOutputableBndrPatSyn$fOutputablePatSyn$fNamedThingPatSyn$fUniquablePatSyn $fEqPatSynMachCharMachStr MachNullAddrMachInt MachInt64MachWord MachWord64 MachFloat MachDouble MachLabel LitInteger mkMachInt mkMachIntWrap mkMachWordmkMachWordWrap mkMachInt64mkMachInt64Wrap mkMachWord64mkMachWord64Wrap mkMachFloat mkMachDouble mkMachChar mkMachString mkLitInteger inIntRange inWordRange inCharRange isZeroLitlitValueisLitValue_maybe mapLitValue isLitValue word2IntLit int2WordLit narrow8IntLitnarrow16IntLitnarrow32IntLitnarrow8WordLitnarrow16WordLitnarrow32WordLit char2IntLit int2CharLit float2IntLit int2FloatLit double2IntLit int2DoubleLitfloat2DoubleLitdouble2FloatLit nullAddrLit litIsTrivial litIsDupable litFitsInChar litIsLifted literalTypeabsentLiteralOf pprLiteral $fOrdLiteral $fEqLiteral$fOutputableLiteral$fBinaryLiteral $fDataLiteral LiftCoEnvLCNormaliseStepResultNS_DoneNS_AbortNS_StepNormaliseStepper coVarNamesetCoVarUnique setCoVarName pprCoAxiom pprCoAxBranchpprCoAxBranchHdr decomposeCodecomposeFunCogetCoVar_maybesplitTyConAppCo_maybesplitAppCo_maybesplitFunCo_maybesplitForAllCo_maybe coVarTypes coVarKindmkHeteroCoercionTypeisReflCoVar_maybeisReflCo_maybeisReflexiveCo_maybe mkRepReflCo mkNomReflComkAppCos mkTransAppCo mkForAllCosmkHomoForAllCosmkHomoForAllCos_NoRefl mkCoVarCos isCoVar_maybe mkAxInstComkUnbranchedAxInstCo mkAxInstRHSmkUnbranchedAxInstRHS mkAxInstLHSmkUnbranchedAxInstLHSmkHoleCo mkNthCoRolemkCoherenceRightComkCoherenceLeftCo downgradeRole maybeSubCo mkAxiomRuleCosetNominalRole_maybemkHomoPhantomCo toPhantomCo tyConRolesXtyConRolesRepresentationalnthRoleltRolepromoteCoercioncastCoercionKindmkPiCosmkPiComkCoCastinstNewTyCon_maybe mapStepResultcomposeSteppersunwrapNewTypeSteppertopNormaliseTypeXtopNormaliseNewType_maybe eqCoercion eqCoercionXliftCoSubstWithExliftCoSubstWithemptyLiftingContextmkSubstLiftingContextextendLiftingContextzapLiftingContextsubstForAllCoBndrCallbackLCliftCoSubstTyVarliftCoSubstVarBndrCallback isMappedByLC substLeftCo substRightCo swapLiftCoEnv lcSubstLeft lcSubstRightliftEnvSubstLeftliftEnvSubstRight lcTCvSubst lcInScopeSet coercionKindscoercionKindRole coercionRole$fOutputableLiftingContextBindFlagBindMeSkolem UnifyResultM Unifiable MaybeApart SurelyApart UnifyResult tcMatchTy tcMatchTyKi tcMatchTyX tcMatchTys tcMatchTyKis tcMatchTysX tcMatchTyKisXruleMatchTyKiX roughMatchTcsinstanceCantMatchtypesCantMatch tcUnifyTy tcUnifyTyKitcUnifyTyWithTFs tcUnifyTys tcUnifyTyKis tcUnifyTysFG liftCoMatch$fOutputableUnifyResultM$fMonadPlusUnifyResultM$fAlternativeUnifyResultM$fMonadUnifyResultM$fApplicativeUnifyResultM $fMonadFailUM $fMonadPlusUM$fAlternativeUM $fMonadUM$fApplicativeUM $fFunctorUM$fFunctorUnifyResultM $fEqBindFlagStrictnessMark MarkedStrictNotMarkedStrictSrcUnpackedness SrcUnpack SrcNoUnpack NoSrcUnpack SrcStrictnessSrcLazy SrcStrict NoSrcStrict HsImplBangHsLazyHsStrictHsUnpack HsSrcBang NoDataConRepDCR dcr_wrap_id dcr_boxer dcr_arg_tys dcr_stricts dcr_bangsmkEqSpec eqSpecTyVar eqSpecType eqSpecPair eqSpecPreds substEqSpec filterEqSpeceqHsBangisBanged isSrcStrict isSrcUnpackedisMarkedStrict mkDataCon dataConTag dataConTagZdataConOrigTyCondataConRepTypedataConIsInfixdataConUnivTyVarsdataConUnivAndExTyVars dataConEqSpec dataConTheta dataConWorkIddataConWrapId_maybe dataConWrapIddataConImplicitTyThingsdataConFieldTypedataConFieldType_maybedataConSrcBangsdataConRepArityisNullarySrcDataConisNullaryRepDataCondataConRepStrictnessdataConImplBangs dataConBoxer dataConSigdataConInstSigdataConOrigResTydataConUserTypedataConInstArgTysdataConOrigArgTysdataConRepArgTysdataConIdentityisTupleDataConisUnboxedTupleConisUnboxedSumConisVanillaDataConspecialPromotedDcisLegacyPromotableDataConisLegacyPromotableTyCon classDataCondataConCannotMatchdataConUserTyVarsArePermutedpromoteDataConsplitDataProductType_maybe buildAlgTyCon buildSynTyCon$fOutputableHsImplBang$fBinarySrcStrictness$fOutputableSrcStrictness$fBinarySrcUnpackedness$fOutputableSrcUnpackedness$fOutputableHsSrcBang$fOutputableStrictnessMark$fOutputableEqSpec $fDataDataCon$fOutputableBndrDataCon$fOutputableDataCon$fNamedThingDataCon$fUniquableDataCon $fEqDataCon$fDataHsImplBang$fEqSrcStrictness$fDataSrcStrictness$fEqSrcUnpackedness$fDataSrcUnpackedness$fDataHsSrcBangSlotTyPtrSlotWordSlot Word64Slot FloatSlot DoubleSlot UnaryType NvUnaryType isNvUnaryTypetypePrimRepArgs unwrapTypecountFunRepArgscountConRepArgsisVoidTy ubxSumRepType layoutUbxSum typeSlotTy primRepSlot slotPrimRep typePrimRep typePrimRep1 tyConPrimRep tyConPrimRep1runtimeRepPrimRep primRepToType$fOutputableSlotTy $fEqSlotTy $fOrdSlotTy StrictSig BothDmdArgDmdTypeDmdEnv CPRResult DmdResult TypeShapeTsFunTsProdTsUnk CleanDemandCountUseDmdUCallUProdUHeadUsedStrDmd getStrDmd getUseDmd peelUseCalladdCaseBndrDmduseCount bothCleanDmd mkHeadStrict mkOnceUsedDmd mkManyUsedDmdevalDmd mkProdDmd mkCallDmdmkWorkerDemand cleanEvalDmdcleanEvalProdDmdlubDmdbothDmdstrictApply1Dmd catchArgDmd lazyApply1Dmd lazyApply2DmdabsDmdtopDmdbotDmdseqDmd oneifyDmdisTopDmdisAbsDmdisSeqDmd isUsedOnce seqDemand seqDemandList isStrictDmdcleanUseDmd_maybesplitFVs trimToTypesplitProdDmd_maybetopResexnResbotRes cprSumRes cprProdResvanillaCprProdResisTopResisBotRes trimCPRInforeturnsCPR_maybe lubDmdType mkBothDmdArg toBothDmdArg bothDmdType emptyDmdEnv nopDmdType botDmdType mkDmdType dmdTypeDepthremoveDmdTyArgs seqDmdType splitDmdTy deferAfterIO strictenDmd toCleanDmdpostProcessDmdTypereuseEnvpostProcessUnsat peelCallDmdpeelFV addDemand findIdDemandpprIfaceStrictSig mkStrictSigmkClosedStrictSigsplitStrictSigincreaseStrictSigArityisTopSighasDemandEnvSigstrictSigDmdEnvisBottomingSignopSigbotSigexnSig cprProdSig seqStrictSigdmdTransformSigdmdTransformDataConSigdmdTransformDictSelSig argsOneShotssaturatedByOneShots argOneShots appIsBottomzapUsageEnvSigzapUsageDemandzapUsedOnceDemandzapUsedOnceSigkillUsageDemand killUsageSigstrictifyDictDmd$fBinaryJointDmd$fOutputableJointDmd$fBinaryExnStr $fBinaryStr$fBinaryStrDmd$fOutputableStr$fOutputableStrDmd $fBinaryCount$fOutputableCount$fBinaryUseDmd $fBinaryUse$fOutputableUseDmd$fOutputableUse$fOutputableTypeShape$fOutputableTermination$fBinaryCPRResult$fOutputableCPRResult$fBinaryTermination$fBinaryDmdType$fOutputableDmdType $fEqDmdType$fBinaryStrictSig$fOutputableStrictSig $fEqJointDmd$fShowJointDmd $fEqExnStr $fShowExnStr$fEqStr $fShowStr $fEqStrDmd $fShowStrDmd $fEqCount $fShowCount$fEqUse $fShowUse $fEqUseDmd $fShowUseDmd$fEqTermination$fShowTermination $fEqCPRResult$fShowCPRResult $fEqStrictSig conLikeArityconLikeFieldLabelsconLikeInstOrigArgTysconLikeExTyVarsconLikeStupidThetaconLikeWrapId_maybeconLikeImplBangs conLikeResTyconLikeFullSigconLikeFieldTypeconLikesWithFieldsconLikeIsInfix $fDataConLike$fOutputableBndrConLike$fOutputableConLike$fNamedThingConLike$fUniquableConLike $fEqConLikeAnnBind AnnNonRecAnnAltAnnExpr'AnnVarAnnLitAnnAppAnnCastAnnTick AnnCoercionAnnExpr TaggedAlt TaggedArg TaggedExpr TaggedBind TaggedBndrTBCoreAltCoreBindCoreArgCoreExprCoreBndr CoreProgramUnfoldingGuidanceUnfWhen UnfIfGoodArgsUnfNeverug_arity ug_unsat_ok ug_boring_okug_argsug_sizeug_resUnfoldingSource InlineRhs InlineStableInlineCompulsory Unfolding NoUnfolding BootUnfoldingOtherCon DFunUnfolding CoreUnfoldingdf_bndrsdf_condf_argsuf_tmpluf_src uf_is_top uf_is_value uf_is_conlikeuf_is_work_free uf_expandable uf_guidanceCoreVectVectNoVectVectType VectClassVectInstIdUnfoldingFun InScopeEnvRuleFunCoreRuleRule BuiltinRuleru_nameru_actru_fnru_roughru_bndrsru_argsru_rhsru_auto ru_origin ru_orphanru_localru_nargsru_tryRuleEnvre_basere_visible_orphsRuleBaseIsOrphan NotOrphanTickishPlacement PlaceRuntime PlaceNonLamPlaceCostCentreTickishScopingNoScope SoftScopeCostCentreScopeTickishProfNoteHpcTick Breakpoint SourceNote profNoteCC profNoteCount profNoteScope tickModuletickId breakpointId breakpointFVs sourceSpan sourceNameOutArgOutAltOutExprOutBind OutCoercionOutKindOutTypeOutBndr InCoercionInArgInAltInExprInBindInKindInTypeInBndrBindNonRecRecAltConDataAltLitAltDEFAULTAltArgExprLitAppLamLetCaseCastTick tickishCounts tickishScopedtickishScopesLiketickishFloatabletickishCanSplit mkNoCount mkNoScope tickishIsCode tickishPlacetickishContainsisOrphan notOrphanchooseOrphanAnchor mkRuleEnv emptyRuleEnv isBuiltinRule isAutoRule ruleArityruleName ruleModuleruleActivation ruleIdName isLocalRule setRuleIdName needSaturated unSaturatedOk boringCxtOkboringCxtNotOk noUnfoldingevaldUnfolding bootUnfolding mkOtherConisStableSourceunfoldingTemplatemaybeUnfoldingTemplate otherConsisValueUnfoldingisEvaldUnfoldingisConLikeUnfoldingisCheapUnfoldingisExpandableUnfoldingexpandUnfolding_maybeisCompulsoryUnfoldingisStableUnfoldinghasSomeUnfoldingisBootUnfoldingneverUnfoldGuidanceisFragileUnfolding canUnfoldcmpAltltAlt cmpAltCon deTagExprmkAppsmkCoApps mkVarAppsmkConAppmkTyApps mkConApp2mkTyArgmkIntLit mkIntLitInt mkWordLit mkWordLitWordmkWord64LitWord64mkInt64LitInt64 mkCharLit mkStringLit mkFloatLitmkFloatLitFloat mkDoubleLitmkDoubleLitDoublemkLamsmkLetsmkLet mkLetNonRecmkLetRecmkTyBindmkCoBind varToCoreExprvarsToCoreExprsapplyTypeToArg exprToTypeexprToCoercion_maybe bindersOfbindersOfBinds rhssOfBind rhssOfAlts flattenBindscollectBinderscollectTyBinderscollectTyAndValBinderscollectNBinders collectArgscollectArgsTicks isRuntimeVar isRuntimeArgisValArg isTyCoArg isTypeArg valBndrCount valArgCountcollectAnnArgscollectAnnArgsTicks deAnnotate deAnnotate'deAnnAlt deAnnBindcollectAnnBndrscollectNAnnBndrs$fOutputableAltCon $fOrdAltCon$fBinaryIsOrphan$fOutputableTaggedBndr $fEqAltCon $fDataAltCon $fEqTickish $fOrdTickish $fDataTickish $fDataExpr $fDataBind$fEqTickishScoping$fEqTickishPlacement$fDataIsOrphan$fEqUnfoldingGuidanceCmEnv LooseTypeMapTypeMapCoreMap LiteralMapListMapMaybeMapKeyemptyTMlookupTMalterTMmapTMfoldTMinsertTMdeleteTM>.>|>|>>lkDNamedxtDNamed lookupCoreMap extendCoreMap foldCoreMap emptyCoreMap foldTypeMap emptyTypeMap lookupTypeMap extendTypeMaplookupTypeMapWithScopeextendTypeMapWithScopemkDeBruijnContext lookupCME lkDFreeVar xtDFreeVar$fTrieMapUniqDFM $fTrieMapMap$fTrieMapIntMap$fTrieMapMaybeMap$fOutputableListMap$fTrieMapListMap$fTrieMapGenMap$fOutputableGenMap$fTrieMapTyLitMap $fEqDeBruijn $fEqDeBruijn0 $fEqDeBruijn1 $fEqDeBruijn2 $fEqDeBruijn3$fTrieMapVarMap$fOutputableGenMap0$fTrieMapTypeMapX$fTrieMapLooseTypeMap$fTrieMapTypeMap$fTrieMapCoercionMapX$fTrieMapCoercionMap$fTrieMapAltMap$fTrieMapCoreMapX$fOutputableCoreMap$fTrieMapCoreMap FamInstMatch fim_instancefim_tysfim_cosInjectivityCheckResultInjectivityAcceptedInjectivityUnified FamInstEnvs FamFlavor SynFamilyInstDataFamilyInstfi_axiom fi_flavorfi_famfi_tcsfi_tvsfi_cvsfi_tysfi_rhs famInstAxiom famInstRHS famInstTyConfamInstsRepTyConsfamInstRepTyCon_maybedataFamInstRepTyCon pprFamInst pprFamInstsmkImportedFamInstemptyFamInstEnvsemptyFamInstEnvfamInstEnvEltsfamInstEnvSizefamilyInstancesextendFamInstEnvListextendFamInstEnvinjectiveBranches mkCoAxBranchmkBranchedCoAxiommkUnbranchedCoAxiommkSingleCoAxiommkNewTypeCoAxiomlookupFamInstEnvByTyConlookupFamInstEnvlookupFamInstEnvConflicts$lookupFamInstEnvInjectivityConflicts isDominatedByreduceTyFamApp_maybeapartnessChecktopNormaliseTypetopNormaliseType_maybenormaliseTcAppnormaliseTcArgs normaliseType flattenTys$fOutputableFamInst$fNamedThingFamInst$fOutputableFamilyInstEnv$fOutputableFamInstMatch$fApplicativeNormM$fFunctorNormM $fMonadNormM LevityInfo TickBoxOpTickBox TickBoxIdCafInfoMayHaveCafRefs NoCafRefsRuleInfoInlinePragInfo ArityInfo arityInforuleInfo unfoldingInfocafInfo oneShotInfoinlinePragInfooccInfostrictnessInfo demandInfo callArityInfo levityInfo RecSelParent RecSelData RecSelPatSyn VanillaIdRecSelId DataConWorkId DataConWrapId ClassOpIdPrimOpIdFCallId TickBoxOpIdCoVarId sel_tycon sel_naughtyisJoinIdDetails_maybe setRuleInfosetInlinePragInfo setOccInfosetUnfoldingInfo setArityInfosetCallArityInfo setCafInfosetOneShotInfo setDemandInfosetStrictnessInfo noCafIdInfo unknownArity ppArityInfo pprStrictness emptyRuleInfoisEmptyRuleInforuleInfoFreeVars ruleInfoRulessetRuleInfoHeadmayHaveCafRefs ppCafInfo zapLamInfo zapDemandInfo zapUsageInfozapUsageEnvInfozapUsedOnceInfozapFragileInfozapTailCallInfozapCallArityInfosetNeverLevPolysetLevityInfoWithTypeisNeverLevPolyIdInfo$fOutputableRecSelParent$fOutputableCafInfo$fOutputableTickBoxOp$fOutputableIdDetails$fOutputableLevityInfo$fEqRecSelParent $fEqCafInfo $fOrdCafInfo$fEqLevityInfoidNameidUniqueidType setIdName setIdUnique setIdType localiseId setIdInfo modifyIdInfomaybeModifyIdInfo mkGlobalIdmkVanillaGlobalmkVanillaGlobalWithInfo mkLocalId mkLocalCoVarmkLocalIdOrCoVarmkLocalIdOrCoVarWithInfomkLocalIdWithInfomkExportedLocalIdmkExportedVanillaId mkSysLocalmkSysLocalOrCoVar mkSysLocalMmkSysLocalOrCoVarM mkUserLocalmkUserLocalOrCoVar mkWorkerIdmkTemplateLocalmkTemplateLocalsmkTemplateLocalsNumrecordSelectorTyConisRecordSelectorisDataConRecordSelectorisPatSynRecordSelectorisNaughtyRecordSelectorisClassOpId_maybe isPrimOpIdisDFunIdisPrimOpId_maybe isFCallIdisFCallId_maybeisDataConWorkIdisDataConWorkId_maybeisDataConId_maybeisJoinIdisJoinId_maybe isExitJoinId idDataCon hasNoBinding isImplicitIdidIsFrom isDeadBinderisEvVarisDictId idJoinArityasJoinId zapJoinIdasJoinId_maybeidArity setIdArity idCallAritysetIdCallArity idFunRepArity isBottomingId idStrictnesssetIdStrictnesszapIdStrictness isStrictId idUnfoldingrealIdUnfoldingsetIdUnfolding idDemandInfosetIdDemandInfosetCaseBndrEvaldidSpecialisation idCoreRules idHasRulessetIdSpecialisation idCafInfo setIdCafInfo idOccInfo setIdOccInfo zapIdOccInfoidInlinePragmasetInlinePragmamodifyInlinePragmaidInlineActivationsetInlineActivationidRuleMatchInfo isConLikeId idOneShotInfoidStateHackOneShotInfo isOneShotBndrstateHackOneShot typeOneShotisStateHackTypeisProbablyOneShotLambdasetOneShotLambdaclearOneShotLambdasetIdOneShotInfoupdOneShotInfo zapLamIdInfozapFragileIdInfozapIdDemandInfozapIdUsageInfozapIdUsageEnvInfozapIdUsedOnceInfozapIdTailCallInfozapStableUnfoldingtransferPolyIdInfoisNeverLevPolyIdUnVarSet emptyUnVarSet elemUnVarSetisEmptyUnVarSet delUnVarSet mkUnVarSet varEnvDom unionUnVarSetunionUnVarSetsemptyUnVarGraphunionUnVarGraphunionUnVarGraphscompleteBipartiteGraph completeGraph neighbors$fOutputableUnVarSet$fOutputableGen$fOutputableUnVarGraph $fEqUnVarSet wiredInTyConsmkWiredInTyConNamemkWiredInIdNamecoercibleTyConName charTyConName intTyConName boolTyConName listTyConNamenilDataConNameconsDataConNamemaybeTyConNamenothingDataConNamejustDataConName wordTyConNameword8TyConNamefloatTyConNamedoubleTyConNameanyTyConanyTystarKindTyConNameunicodeStarKindTyConName parrTyConName boolTyCon_RDR false_RDRtrue_RDR intTyCon_RDR charTyCon_RDRintDataCon_RDR listTyCon_RDRconsDataCon_RDR parrTyCon_RDRtypeNatKindContypeSymbolKindConconstraintKindTyConisBuiltInOcc_maybecTupleTyConNamecTupleTyConNamesisCTupleTyConNamecTupleDataConNamecTupleDataConNames tupleTyContupleTyConNamepromotedTupleDataCon tupleDataCon unitTyCon unitTyConKey unitDataCon unitDataConId pairTyConunboxedUnitTyConunboxedUnitDataConsumTyCon sumDataConunboxedSumKindheqTyConheqClass heqDataConcoercibleTyConcoercibleClasscoercibleDataConliftedTypeKindTyCon starKindTyConunicodeStarKindTyConsumRepDataConTyConliftedRepDataCon liftedRepTyboxingDataCon_maybecharTy charTyCon charDataConstringTyintTyintTyCon intDataConwordTy wordTyCon wordDataConword8Ty word8TyCon word8DataConfloatTy floatTyCon floatDataCondoubleTy doubleTyCon doubleDataConboolTy boolTyCon falseDataCon trueDataConfalseDataConId trueDataConId orderingTyCon ltDataCon eqDataCon gtDataCon ltDataConId eqDataConId gtDataConIdmkListTy nilDataCon consDataCon maybeTyConnothingDataCon justDataCon mkTupleTyunitTymkSumTymkPArrTy parrTyCon isPArrTyCon parrFakeCon isPArrFakeConpromotedTrueDataConpromotedFalseDataConpromotedNothingDataConpromotedJustDataConpromotedLTDataConpromotedEQDataConpromotedGTDataConpromotedConsDataConpromotedNilDataConPrimCallPrimOpResultInfo ReturnsPrim ReturnsAlg PrimOpVecCatIntVecWordVecFloatVecCharGtOpCharGeOpCharEqOpCharNeOpCharLtOpCharLeOpOrdOpIntAddOpIntSubOpIntMulOpIntMulMayOfloOp IntQuotOpIntRemOp IntQuotRemOpAndIOpOrIOpXorIOpNotIOpIntNegOp IntAddCOp IntSubCOpIntGtOpIntGeOpIntEqOpIntNeOpIntLtOpIntLeOpChrOp Int2WordOp Int2FloatOp Int2DoubleOp Word2FloatOp Word2DoubleOpISllOpISraOpISrlOp WordAddOp WordSubCOp WordAdd2Op WordSubOp WordMulOp WordMul2Op WordQuotOp WordRemOp WordQuotRemOpWordQuotRem2OpAndOpOrOpXorOpNotOpSllOpSrlOp Word2IntOpWordGtOpWordGeOpWordEqOpWordNeOpWordLtOpWordLeOp PopCnt8Op PopCnt16Op PopCnt32Op PopCnt64OpPopCntOpPdep8OpPdep16OpPdep32OpPdep64OpPdepOpPext8OpPext16OpPext32OpPext64OpPextOpClz8OpClz16OpClz32OpClz64OpClzOpCtz8OpCtz16OpCtz32OpCtz64OpCtzOp BSwap16Op BSwap32Op BSwap64OpBSwapOp Narrow8IntOp Narrow16IntOp Narrow32IntOp Narrow8WordOpNarrow16WordOpNarrow32WordOp DoubleGtOp DoubleGeOp DoubleEqOp DoubleNeOp DoubleLtOp DoubleLeOp DoubleAddOp DoubleSubOp DoubleMulOp DoubleDivOp DoubleNegOp DoubleFabsOp Double2IntOpDouble2FloatOp DoubleExpOp DoubleLogOp DoubleSqrtOp DoubleSinOp DoubleCosOp DoubleTanOp DoubleAsinOp DoubleAcosOp DoubleAtanOp DoubleSinhOp DoubleCoshOp DoubleTanhOp DoublePowerOpDoubleDecode_2IntOpDoubleDecode_Int64Op FloatGtOp FloatGeOp FloatEqOp FloatNeOp FloatLtOp FloatLeOp FloatAddOp FloatSubOp FloatMulOp FloatDivOp FloatNegOp FloatFabsOp Float2IntOp FloatExpOp FloatLogOp FloatSqrtOp FloatSinOp FloatCosOp FloatTanOp FloatAsinOp FloatAcosOp FloatAtanOp FloatSinhOp FloatCoshOp FloatTanhOp FloatPowerOpFloat2DoubleOpFloatDecode_IntOp NewArrayOpSameMutableArrayOp ReadArrayOp WriteArrayOp SizeofArrayOpSizeofMutableArrayOp IndexArrayOpUnsafeFreezeArrayOpUnsafeThawArrayOp CopyArrayOpCopyMutableArrayOp CloneArrayOpCloneMutableArrayOp FreezeArrayOp ThawArrayOp CasArrayOpNewSmallArrayOpSameSmallMutableArrayOpReadSmallArrayOpWriteSmallArrayOpSizeofSmallArrayOpSizeofSmallMutableArrayOpIndexSmallArrayOpUnsafeFreezeSmallArrayOpUnsafeThawSmallArrayOpCopySmallArrayOpCopySmallMutableArrayOpCloneSmallArrayOpCloneSmallMutableArrayOpFreezeSmallArrayOpThawSmallArrayOpCasSmallArrayOpNewByteArrayOp_CharNewPinnedByteArrayOp_Char NewAlignedPinnedByteArrayOp_CharMutableByteArrayIsPinnedOpByteArrayIsPinnedOpByteArrayContents_CharSameMutableByteArrayOpShrinkMutableByteArrayOp_CharResizeMutableByteArrayOp_CharUnsafeFreezeByteArrayOpSizeofByteArrayOpSizeofMutableByteArrayOpGetSizeofMutableByteArrayOpIndexByteArrayOp_CharIndexByteArrayOp_WideCharIndexByteArrayOp_IntIndexByteArrayOp_WordIndexByteArrayOp_AddrIndexByteArrayOp_FloatIndexByteArrayOp_DoubleIndexByteArrayOp_StablePtrIndexByteArrayOp_Int8IndexByteArrayOp_Int16IndexByteArrayOp_Int32IndexByteArrayOp_Int64IndexByteArrayOp_Word8IndexByteArrayOp_Word16IndexByteArrayOp_Word32IndexByteArrayOp_Word64ReadByteArrayOp_CharReadByteArrayOp_WideCharReadByteArrayOp_IntReadByteArrayOp_WordReadByteArrayOp_AddrReadByteArrayOp_FloatReadByteArrayOp_DoubleReadByteArrayOp_StablePtrReadByteArrayOp_Int8ReadByteArrayOp_Int16ReadByteArrayOp_Int32ReadByteArrayOp_Int64ReadByteArrayOp_Word8ReadByteArrayOp_Word16ReadByteArrayOp_Word32ReadByteArrayOp_Word64WriteByteArrayOp_CharWriteByteArrayOp_WideCharWriteByteArrayOp_IntWriteByteArrayOp_WordWriteByteArrayOp_AddrWriteByteArrayOp_FloatWriteByteArrayOp_DoubleWriteByteArrayOp_StablePtrWriteByteArrayOp_Int8WriteByteArrayOp_Int16WriteByteArrayOp_Int32WriteByteArrayOp_Int64WriteByteArrayOp_Word8WriteByteArrayOp_Word16WriteByteArrayOp_Word32WriteByteArrayOp_Word64CompareByteArraysOpCopyByteArrayOpCopyMutableByteArrayOpCopyByteArrayToAddrOpCopyMutableByteArrayToAddrOpCopyAddrToByteArrayOpSetByteArrayOpAtomicReadByteArrayOp_IntAtomicWriteByteArrayOp_IntCasByteArrayOp_IntFetchAddByteArrayOp_IntFetchSubByteArrayOp_IntFetchAndByteArrayOp_IntFetchNandByteArrayOp_IntFetchOrByteArrayOp_IntFetchXorByteArrayOp_IntNewArrayArrayOpSameMutableArrayArrayOpUnsafeFreezeArrayArrayOpSizeofArrayArrayOpSizeofMutableArrayArrayOpIndexArrayArrayOp_ByteArrayIndexArrayArrayOp_ArrayArrayReadArrayArrayOp_ByteArray!ReadArrayArrayOp_MutableByteArrayReadArrayArrayOp_ArrayArray"ReadArrayArrayOp_MutableArrayArrayWriteArrayArrayOp_ByteArray"WriteArrayArrayOp_MutableByteArrayWriteArrayArrayOp_ArrayArray#WriteArrayArrayOp_MutableArrayArrayCopyArrayArrayOpCopyMutableArrayArrayOp AddrAddOp AddrSubOp AddrRemOp Addr2IntOp Int2AddrOpAddrGtOpAddrGeOpAddrEqOpAddrNeOpAddrLtOpAddrLeOpIndexOffAddrOp_CharIndexOffAddrOp_WideCharIndexOffAddrOp_IntIndexOffAddrOp_WordIndexOffAddrOp_AddrIndexOffAddrOp_FloatIndexOffAddrOp_DoubleIndexOffAddrOp_StablePtrIndexOffAddrOp_Int8IndexOffAddrOp_Int16IndexOffAddrOp_Int32IndexOffAddrOp_Int64IndexOffAddrOp_Word8IndexOffAddrOp_Word16IndexOffAddrOp_Word32IndexOffAddrOp_Word64ReadOffAddrOp_CharReadOffAddrOp_WideCharReadOffAddrOp_IntReadOffAddrOp_WordReadOffAddrOp_AddrReadOffAddrOp_FloatReadOffAddrOp_DoubleReadOffAddrOp_StablePtrReadOffAddrOp_Int8ReadOffAddrOp_Int16ReadOffAddrOp_Int32ReadOffAddrOp_Int64ReadOffAddrOp_Word8ReadOffAddrOp_Word16ReadOffAddrOp_Word32ReadOffAddrOp_Word64WriteOffAddrOp_CharWriteOffAddrOp_WideCharWriteOffAddrOp_IntWriteOffAddrOp_WordWriteOffAddrOp_AddrWriteOffAddrOp_FloatWriteOffAddrOp_DoubleWriteOffAddrOp_StablePtrWriteOffAddrOp_Int8WriteOffAddrOp_Int16WriteOffAddrOp_Int32WriteOffAddrOp_Int64WriteOffAddrOp_Word8WriteOffAddrOp_Word16WriteOffAddrOp_Word32WriteOffAddrOp_Word64 NewMutVarOp ReadMutVarOp WriteMutVarOp SameMutVarOpAtomicModifyMutVarOp CasMutVarOpCatchOpRaiseOp RaiseIOOpMaskAsyncExceptionsOpMaskUninterruptibleOpUnmaskAsyncExceptionsOp MaskStatus AtomicallyOpRetryOp CatchRetryOp CatchSTMOp NewTVarOp ReadTVarOp ReadTVarIOOp WriteTVarOp SameTVarOp NewMVarOp TakeMVarOp TryTakeMVarOp PutMVarOp TryPutMVarOp ReadMVarOp TryReadMVarOp SameMVarOp IsEmptyMVarOpDelayOp WaitReadOp WaitWriteOpForkOpForkOnOp KillThreadOpYieldOp MyThreadIdOp LabelThreadOpIsCurrentThreadBoundOp NoDuplicateOpThreadStatusOpMkWeakOpMkWeakNoFinalizerOpAddCFinalizerToWeakOp DeRefWeakOpFinalizeWeakOpTouchOpMakeStablePtrOpDeRefStablePtrOp EqStablePtrOpMakeStableNameOpEqStableNameOpStableNameToIntOp CompactNewOpCompactResizeOpCompactContainsOpCompactContainsAnyOpCompactGetFirstBlockOpCompactGetNextBlockOpCompactAllocateBlockOpCompactFixupPointersOp CompactAddCompactAddWithSharing CompactSizeReallyUnsafePtrEqualityOpParOpSparkOpSeqOp GetSparkOp NumSparks DataToTagOp TagToEnumOp AddrToAnyOp AnyToAddrOp MkApUpd0_OpNewBCOOpUnpackClosureOpGetApStackValOp GetCCSOfOpGetCurrentCCSOp ClearCCSOp TraceEventOp TraceMarkerOpVecBroadcastOp VecPackOp VecUnpackOp VecInsertOpVecAddOpVecSubOpVecMulOpVecDivOp VecQuotOpVecRemOpVecNegOpVecIndexByteArrayOpVecReadByteArrayOpVecWriteByteArrayOpVecIndexOffAddrOpVecReadOffAddrOpVecWriteOffAddrOpVecIndexScalarByteArrayOpVecReadScalarByteArrayOpVecWriteScalarByteArrayOpVecIndexScalarOffAddrOpVecReadScalarOffAddrOpVecWriteScalarOffAddrOpPrefetchByteArrayOp3PrefetchMutableByteArrayOp3PrefetchAddrOp3PrefetchValueOp3PrefetchByteArrayOp2PrefetchMutableByteArrayOp2PrefetchAddrOp2PrefetchValueOp2PrefetchByteArrayOp1PrefetchMutableByteArrayOp1PrefetchAddrOp1PrefetchValueOp1PrefetchByteArrayOp0PrefetchMutableByteArrayOp0PrefetchAddrOp0PrefetchValueOp0 maxPrimOpTag primOpTag allThePrimOps tagToEnumKey primOpFixityprimOpOutOfLineprimOpOkForSpeculationprimOpOkForSideEffects primOpIsCheapprimOpCodeSize primOpType primOpOccisComparisonPrimOp primOpSiggetPrimOpResultInfo$fOutputablePrimOp $fOrdPrimOp $fEqPrimOp$fOutputablePrimCallnsUniqsnsNames OrigNameCachelookupOrigNameCacheextendOrigNameCacheextendNameCache initNameCacheHistoryhistoryApStackhistoryBreakInfohistoryEnclosingDeclsResume resumeStmt resumeContextresumeBindingsresumeFinalIds resumeApStackresumeBreakInfo resumeSpan resumeDecl resumeCCS resumeHistoryresumeHistoryIx BreakInfobreakInfo_modulebreakInfo_number ExecResult ExecComplete ExecBreak execResultexecAllocation breakNames breakInfo SingleStepRunToCompletionRunAndLogSteps ExecOptionsexecSingleStepexecSourceFileexecLineNumberexecWrapisStep ModBreaksmodBreaks_flagsmodBreaks_locsmodBreaks_varsmodBreaks_decls modBreaks_ccsmodBreaks_breakInfo CCostCentre BreakIndex CgBreakInfocgb_vars cgb_restyBCONPtr BCONPtrWord BCONPtrLbl BCONPtrItbl BCONPtrStrBCOPtr BCOPtrName BCOPtrPrimOp BCOPtrBCOBCOPtrBreakArray UnlinkedBCOunlinkedBCONameunlinkedBCOArityunlinkedBCOInstrsunlinkedBCOBitmapunlinkedBCOLitsunlinkedBCOPtrsItblPtrItblEnvFFIInfoCompiledByteCodebc_bcosbc_itblsbc_ffisbc_strs bc_breaksseqCompiledByteCodeemptyModBreaks$fNFDataBCONPtr$fOutputableUnlinkedBCO$fNFDataBCOPtr$fNFDataUnlinkedBCO$fOutputableCgBreakInfo$fOutputableCompiledByteCode $fShowFFIInfo$fNFDataFFIInfo $fShowItblPtr$fNFDataItblPtrCScs_tmcs_tycs_cocs_vbcs_jbcoreBindsStats exprStats coreBindsSizeexprSize$fOutputableCoreStatspprCoreBindingspprCoreBindingpprCoreBindingsWithSizepprCoreBindingWithSize pprParendExpr pprCoreExprpprOptCo pprCoreAltpprRules$fOutputableCoreVect$fOutputableTickish$fOutputableCoreRule$fOutputableUnfolding$fOutputableUnfoldingSource$fOutputableUnfoldingGuidance$fOutputableBndrTaggedBndr$fOutputableBndrVar$fOutputableExpr$fOutputableBindStgOp StgPrimOp StgPrimCallOp StgFCallOp UpdateFlag ReEntrant Updatable SingleEntry OutStgAlt OutStgRhs OutStgExpr OutStgArg OutStgBindingOutStgTopBindingInStgAltInStgRhs InStgExprInStgArg InStgBindingInStgTopBindingStgAltStgRhsStgExprStgArg StgBinding StgTopBindingAltTypePolyAlt MultiValAltAlgAltPrimAlt GenStgAlt StgBinderInfo GenStgRhs StgRhsClosure StgRhsCon GenStgExprStgAppStgLit StgConAppStgOpAppStgLamStgCaseStgLetStgLetNoEscapeStgTick GenStgArg StgVarArg StgLitArg GenStgBinding StgNonRecStgRecGenStgTopBinding StgTopLiftedStgTopStringLit isDllConApp stgArgTypestripStgTicksTop stgRhsAritytopStgBindHasCafRefsstgArgHasCafRefs noBinderInfo stgUnsatOcc stgSatOcc satCallsOnlycombineStgBinderInfo isUpdatable pprStgBindingpprStgTopBindings$fOutputableGenStgArg$fOutputableAltType$fOutputableUpdateFlag$fOutputableGenStgRhs$fOutputableGenStgExpr$fOutputableGenStgBinding$fOutputableGenStgTopBinding showStgStats$fEqCounterType$fOrdCounterTypelintStgTopBindings $fMonadLintM$fApplicativeLintM$fFunctorLintMstgCse$fTrieMapStgArgMap$fTrieMapConAppMap ShowHowMuch ShowHeaderShowSome ShowIfaceAltPprShowSub ss_how_much ss_forall IfaceJoinInfoIfaceNotJoinPointIfaceJoinPoint IfaceLetBndr IfLetBndr IfaceBinding IfaceNonRecIfaceRec IfaceConAlt IfaceDefault IfaceDataAlt IfaceLitAltIfaceAlt IfaceTickish IfaceHpcTickIfaceSCC IfaceSource IfaceExprIfaceLclIfaceExtIfaceCo IfaceTupleIfaceLamIfaceApp IfaceCase IfaceECaseIfaceLet IfaceCastIfaceLit IfaceFCall IfaceTickIfaceIdDetails IfVanillaId IfRecSelIdIfDFunIdIfaceUnfolding IfCoreUnfold IfCompulsory IfInlineRule IfDFunUnfold IfaceInfoItemHsArity HsStrictnessHsInlineHsUnfold HsNoCafRefsHsLevity IfaceIdInfoNoInfoHasInfoIfaceCompleteMatchIfaceAnnTargetIfaceAnnotationifAnnotatedTargetifAnnotatedValue IfaceRule ifRuleName ifActivation ifRuleBndrs ifRuleHead ifRuleArgs ifRuleRhs ifRuleAuto ifRuleOrph IfaceFamInst ifFamInstFam ifFamInstTysifFamInstAxiom ifFamInstOrph IfaceClsInst ifInstCls ifInstTysifDFunifOFlag ifInstOrph IfaceSrcBang IfSrcBang IfaceBangIfNoBangIfStrictIfUnpack IfUnpackCo IfaceEqSpec IfaceConDeclIfCon ifConName ifConWrapper ifConInfix ifConExTvsifConUserTvBinders ifConEqSpec ifConCtxt ifConArgTys ifConFields ifConStrictsifConSrcStricts IfaceConDeclsIfAbstractTyCon IfDataTyCon IfNewTyCon IfaceAxBranch ifaxbTyVars ifaxbCoVarsifaxbLHS ifaxbRolesifaxbRHS ifaxbIncompsIfaceAT IfaceClassOpIfaceFamTyConFlavIfaceDataFamilyTyConIfaceOpenSynFamilyTyConIfaceClosedSynFamilyTyCon!IfaceAbstractClosedSynFamilyTyConIfaceBuiltInSynFamTyConIfaceTyConParent IfNoParentIfDataInstanceIfaceClassBodyIfAbstractClassIfConcreteClass ifClassCtxtifATsifSigsifMinDef IfaceDeclIfaceId IfaceData IfaceSynonym IfaceFamily IfaceClass IfaceAxiom IfacePatSynifNameifType ifIdDetailsifIdInfo ifBinders ifResKindifCTypeifRolesifCtxtifCons ifGadtSyntaxifParentifSynRhsifResVar ifFamFlavifFamInjifFDsifBodyifTyConifRole ifAxBranches ifPatIsInfix ifPatMatcher ifPatBuilderifPatUnivBndrs ifPatExBndrs ifPatProvCtxt ifPatReqCtxt ifPatArgsifPatTy ifFieldLabels IfaceTopBndrvisibleIfConDeclsifaceDeclImplicitBndrsifaceDeclFingerprints showToHeader showToIface pprIfaceDecl pprIfaceExprfreeNamesIfDeclfreeNamesIfRulefreeNamesIfFamInst$fBinaryIfaceTyConParent$fOutputableIfaceTyConParent$fBinaryIfaceClassOp$fOutputableIfaceClassOp$fHasOccNameIfaceClassOp$fNamedThingIfaceClassOp$fBinaryIfaceAxBranch$fBinaryIfaceFamTyConFlav$fBinaryIfaceBang$fBinaryIfaceSrcBang$fBinaryIfaceConDecl$fHasOccNameIfaceConDecl$fNamedThingIfaceConDecl$fBinaryIfaceConDecls$fBinaryIfaceClsInst$fOutputableIfaceClsInst$fBinaryIfaceFamInst$fOutputableIfaceFamInst$fBinaryIfaceAnnotation$fOutputableIfaceAnnotation$fBinaryIfaceCompleteMatch$fOutputableIfaceCompleteMatch$fBinaryIfaceTickish$fBinaryIfaceConAlt$fOutputableIfaceConAlt$fBinaryIfaceJoinInfo$fOutputableIfaceJoinInfo$fBinaryIfaceLetBndr$fBinaryIfaceBinding$fBinaryIfaceExpr$fBinaryIfaceUnfolding$fBinaryIfaceInfoItem$fBinaryIfaceIdInfo$fOutputableIfaceUnfolding$fOutputableIfaceInfoItem$fOutputableIfaceIdInfo$fOutputableIfaceExpr$fBinaryIfaceIdDetails$fBinaryIfaceAT$fBinaryIfaceDecl$fOutputableIfaceIdDetails$fOutputableIfaceAT$fOutputableIfaceDecl$fHasOccNameIfaceDecl$fNamedThingIfaceDecl$fBinaryIfaceRule$fOutputableIfaceRule$fOutputableShowHowMuchDynamicLinkerLabelInfoCodeStub SymbolPtr GotSymbolPtrGotSymbolOffsetForeignLabelSourceForeignLabelInPackageForeignLabelInExternalPackageForeignLabelInThisPackagepprDebugCLabel mkTopSRTLabelmkRednCountsLabelmkLocalClosureLabelmkLocalInfoTableLabelmkLocalClosureTableLabelmkClosureLabelmkInfoTableLabel mkEntryLabelmkClosureTableLabelmkConInfoTableLabel mkBytesLabelmkBlockInfoTableLabelmkDirty_MUT_VAR_LabelmkSplitMarkerLabelmkUpdInfoLabelmkBHUpdInfoLabelmkIndStaticInfoLabelmkMainCapabilityLabelmkMAP_FROZEN_infoLabelmkMAP_FROZEN0_infoLabelmkMAP_DIRTY_infoLabelmkTopTickyCtrLabelmkCAFBlackHoleInfoTableLabelmkArrWords_infoLabelmkSMAP_FROZEN_infoLabelmkSMAP_FROZEN0_infoLabelmkSMAP_DIRTY_infoLabelmkBadAlignmentLabelmkCmmInfoLabelmkCmmEntryLabelmkCmmRetInfoLabel mkCmmRetLabelmkCmmCodeLabelmkCmmDataLabelmkCmmClosureLabelmkLocalBlockLabelmkRtsPrimOpLabelmkSelectorInfoLabelmkSelectorEntryLabelmkApInfoTableLabelmkApEntryLabelmkPrimCallLabelmkForeignLabel addLabelSize isBytesLabelisForeignLabelisStaticClosureLabelisSomeRODataLabelforeignLabelStdcallInfomkLargeSRTLabel mkBitmapLabel mkCCLabel mkCCSLabelmkRtsApFastLabelmkRtsSlowFastTickyCtrLabelmkHpcTicksLabelmkDynamicLinkerLabeldynamicLinkerLabelInfomkPicBaseLabelmkDeadStripPreventermkStringLitLabelmkAsmTempLabelmkAsmTempDerivedLabelmkAsmTempEndLabelmkAsmTempDieLabel toClosureLbltoSlowEntryLbl toEntryLbl toInfoLblhasHaskellNamehasCAF needsCDeclmaybeLocalBlockLabel isMathFunexternallyVisibleCLabelisCFunctionLabel isGcPtrLabel labelDynamic pprCLabel$fOutputableForeignLabelSource$fOutputableCLabel $fOrdCLabel$fEqForeignLabelSource$fOrdForeignLabelSource$fEqIdLabelInfo$fOrdIdLabelInfo$fShowIdLabelInfo$fEqRtsLabelInfo$fOrdRtsLabelInfo$fEqCmmLabelInfo$fOrdCmmLabelInfo$fEqDynamicLinkerLabelInfo$fOrdDynamicLinkerLabelInfo $fEqCLabelprofilingInitCode newBlockIdblockLbl infoTblLbl GlobalReg VanillaRegFloatReg DoubleRegLongRegXmmRegYmmRegZmmRegSpSpLimHpHpLimCCCS CurrentTSOCurrentNurseryHpAllocEagerBlackholeInfoGCEnter1GCFunBaseRegMachSpUnwindReturnReg PicBaseRegVGcPtr VNonGcPtr DefinerOfRegs foldRegsDefd UserOfRegs foldRegsUsed GlobalRegSet LocalRegSetRegSetLocalRegCmmLitCmmIntCmmFloatCmmVecCmmLabel CmmLabelOffCmmLabelDiffOffCmmBlockCmmHighStackMarkAreaOldYoungCmmRegCmmLocal CmmGlobalCmmLoad CmmStackSlot CmmRegOff cmmExprType cmmLitType cmmExprWidthmaybeInvertCmmExpr cmmRegType localRegType emptyRegSet nullRegSet elemRegSet extendRegSetdeleteFromRegSetmkRegSet minusRegSet plusRegSet timesRegSet sizeRegSet regSetToListfoldLocalRegsUsedfoldLocalRegsDefdbaseRegspReghpRegspLimRegnodeRegnode globalRegTypeisArgReg$fUniquableLocalReg $fOrdLocalReg $fEqLocalReg$fUserOfRegsr[]$fUserOfRegsrr$fDefinerOfRegsr[]$fDefinerOfRegsrr$fOrdGlobalReg $fEqGlobalReg$fDefinerOfRegsGlobalRegCmmReg$fUserOfRegsGlobalRegCmmReg$fDefinerOfRegsLocalRegCmmReg$fUserOfRegsLocalRegCmmReg$fUserOfRegsrCmmExpr $fEqCmmExpr$fEqArea $fOrdArea $fEqCmmLit $fEqVGcPtr $fShowVGcPtr$fShowGlobalReg $fEqCmmReg $fOrdCmmRegpprExprpprLit$fOutputableGlobalReg$fOutputableArea$fOutputableLocalReg$fOutputableCmmLit$fOutputableCmmReg$fOutputableCmmExpr callerSaves activeStgRegs haveRegBaseglobalRegMaybefreeReg freeRegBase CmmTickScope GlobalScopeSubScope CombinedScope CmmTickish ForeignTarget PrimTarget CmmReturnInfo CmmMayReturnCmmNeverReturnsForeignConvention ConventionNativeDirectCallNativeNodeCall NativeReturnSlowGCUpdFrameOffset CmmFormal CmmActualCmmEntry CmmCommentCmmTick CmmUnwind CmmAssignCmmStoreCmmUnsafeForeignCall CmmBranch CmmCondBranchCmmCallCmmForeignCallcml_predcml_true cml_false cml_likely cml_targetcml_cont cml_args_regscml_args cml_ret_args cml_ret_offtgtresargssuccret_argsret_offintrblforeignTargetHints wrapRecExpmapExp mapExpDeep wrapRecExpMmapExpM mapExpDeepM wrapRecExpffoldExp foldExpDeep mapSuccessorsisTickSubScopecombineTickScopes$fUserOfRegsrForeignTarget$fOutputableCmmTickScope$fOrdCmmTickScope$fEqCmmTickScope$fDefinerOfRegsGlobalRegCmmNode$fDefinerOfRegsLocalRegCmmNode$fUserOfRegsGlobalRegCmmNode$fUserOfRegsLocalRegCmmNode$fNonLocalCmmNode$fEqConvention$fEqCmmReturnInfo$fEqForeignConvention$fEqForeignTarget $fEqCmmNodeCmmToken CmmT_SpecChar CmmT_DotDotCmmT_DoubleColonCmmT_ShrCmmT_ShlCmmT_GeCmmT_LeCmmT_EqCmmT_Ne CmmT_BoolAnd CmmT_BoolOr CmmT_CLOSURECmmT_INFO_TABLECmmT_INFO_TABLE_RETCmmT_INFO_TABLE_FUNCmmT_INFO_TABLE_CONSTRCmmT_INFO_TABLE_SELECTOR CmmT_else CmmT_export CmmT_section CmmT_gotoCmmT_if CmmT_call CmmT_jump CmmT_foreign CmmT_never CmmT_prim CmmT_reserve CmmT_return CmmT_returns CmmT_import CmmT_switch CmmT_case CmmT_default CmmT_push CmmT_unwind CmmT_bits8 CmmT_bits16 CmmT_bits32 CmmT_bits64 CmmT_bits128 CmmT_bits256 CmmT_bits512 CmmT_float32 CmmT_float64 CmmT_gcptrCmmT_GlobalReg CmmT_Name CmmT_StringCmmT_Int CmmT_FloatCmmT_EOFcmmlex$fShowCmmToken ListGraph GenBasicBlock BasicBlock CmmStaticsStatics CmmStatic CmmStaticLitCmmUninitialised CmmStringSection SectionTypeTextData ReadOnlyDataRelocatableReadOnlyDataUninitialisedDataReadOnlyData16CString OtherSectionC_SRTNoC_SRT ProfilingInfoNoProfilingInfo CmmInfoTablecit_lblcit_repcit_profcit_srt CmmStackInfo StackInfo arg_space updfr_space do_layout CmmTopInfoTopInfo info_tbls stack_info GenCmmGraphCmmGraphg_entryg_graph RawCmmDeclCmmDecl GenCmmDeclCmmProcCmmData RawCmmGroupCmmGroup GenCmmGroup CmmProgram topInfoTableneedsSRT isSecConstantblockId pprBBlock$fOutputableGenBasicBlock$fOutputableListGraph $fEqC_SRT$fShowSectionTypeImmImmInt ImmIntegerImmCLblImmLitImmIndexImmFloat ImmDoubleImmConstantSumImmConstantDiffLOHI strImmLitlitToImmAddrMode AddrRegReg AddrRegImm addrOffsetpprCmms writeCmms pprCmmGroup pprStatic pprSection$fOutputableForeignHint$fOutputableC_SRT$fOutputableCmmInfoTable$fOutputableCmmStatic$fOutputableCmmStatics$fOutputableGenCmmDeclcastFloatToWord8ArraycastDoubleToWord8Array floatToBytes doubleToBytespprSectionHeader LlvmCastOpLM_TruncLM_ZextLM_Sext LM_FptruncLM_Fpext LM_Fptoui LM_Fptosi LM_Uitofp LM_Sitofp LM_Ptrtoint LM_Inttoptr LM_Bitcast LlvmCmpOp LM_CMP_Eq LM_CMP_Ne LM_CMP_Ugt LM_CMP_Uge LM_CMP_Ult LM_CMP_Ule LM_CMP_Sgt LM_CMP_Sge LM_CMP_Slt LM_CMP_Sle LM_CMP_Feq LM_CMP_Fne LM_CMP_Fgt LM_CMP_Fge LM_CMP_Flt LM_CMP_Fle LlvmMachOp LM_MO_Add LM_MO_Sub LM_MO_Mul LM_MO_UDiv LM_MO_SDiv LM_MO_URem LM_MO_SRem LM_MO_FAdd LM_MO_FSub LM_MO_FMul LM_MO_FDiv LM_MO_FRem LM_MO_Shl LM_MO_LShr LM_MO_AShr LM_MO_AndLM_MO_Or LM_MO_XorLlvmLinkageTypeInternalLinkOnceWeak Appending ExternWeakExternallyVisibleExternalPrivateLlvmParameterListType FixedArgsVarArgsLlvmCallConventionCC_Ccc CC_Fastcc CC_ColdccCC_GhcCC_Ncc CC_X86_Stdcc LlvmCallTypeStdCallTailCall LlvmFuncAttr AlwaysInline InlineHintOptSizeNoReturnNoUnwindReadNoneReadOnlySspSspReq NoRedZoneNoImplicitFloatNaked LlvmParamAttrZeroExtSignExtInRegByValSRetNoAlias NoCaptureNest LlvmParameterLlvmFunctionDeclsLlvmFunctionDecldecName funcLinkagefuncCc decReturnType decVarargs decParams funcAlign LlvmStatic LMComment LMStaticLit LMUninitType LMStaticStr LMStaticArray LMStaticStrucLMStaticPointerLMBitcLMPtoILMAddLMSubLlvmLitLMIntLit LMFloatLit LMNullLit LMVectorLit LMUndefLitLlvmVar LMGlobalVar LMLocalVar LMNLocalVarLMLitVarLMConstGlobalConstantAliasLMAlign LMSectionLlvmTypeLMIntLMFloatLMDouble LMFloat80 LMFloat128 LMPointerLMArrayLMVectorLMLabelLMVoidLMStruct LMStructULMAlias LMMetadata LMFunction LlvmAliasLMStringLMGlobal getGlobalVargetGlobalValueppParamspprSpecialStaticpprStaticArithppName ppPlainNameppLit garbageLit getVarType getLitType getStatTypegetLinkpLiftpVarLiftpLower pVarLowerisIntisFloat isPointerisVectorisGloballlvmWidthInBitsi128i64i32i16i8i1i8PtrllvmWord llvmWordPtrppDoublenarrowFpwidenFpppFloat fixEndian ppCommaJoin ppSpaceJoin$fOutputableLlvmParamAttr$fOutputableLlvmFuncAttr$fOutputableLlvmCallConvention$fOutputableLlvmLinkageType$fOutputableLlvmFunctionDecl$fOutputableLlvmType$fOutputableLlvmLit$fOutputableLlvmVar$fOutputableLlvmStatic$fOutputableLlvmMachOp$fOutputableLlvmCmpOp$fOutputableLlvmCastOp $fEqLMConst$fEqLlvmParamAttr$fEqLlvmFuncAttr$fEqLlvmCallType$fShowLlvmCallType$fEqLlvmCallConvention$fEqLlvmParameterListType$fShowLlvmParameterListType$fEqLlvmLinkageType$fEqLlvmFunctionDecl $fEqLlvmType $fEqLlvmLit $fEqLlvmVar$fEqLlvmMachOp $fEqLlvmCmpOp$fEqLlvmCastOpMetaDecl MetaNamed MetaUnnamed MetaAnnotMetaExprMetaStrMetaNodeMetaVar MetaStructMetaId$fOutputableMetaId$fOutputableMetaExpr $fEqMetaId $fOrdMetaId $fEnumMetaId $fEqMetaExpr $fEqMetaAnnotLlvmExpressionAllocaLlvmOpCompareExtractExtractVInsertMallocLoadALoad GetElemPtr AtomicRMWCmpXChgCallCallMPhiAsmMExpr LlvmStatement AssignmentFenceBranchBranchIfCommentMkLabelStoreSwitchReturn UnreachableNopMetaStmt LlvmAtomicOpLAO_XchgLAO_AddLAO_SubLAO_AndLAO_NandLAO_OrLAO_XorLAO_MaxLAO_MinLAO_UmaxLAO_UminLlvmSyncOrdering SyncUnord SyncMonotonic SyncAcquire SyncRelease SyncAcqRel SyncSeqCstSingleThreaded LlvmFunctions LlvmFunctionfuncDeclfuncArgs funcAttrsfuncSect funcPrefixfuncBody LlvmModule modComments modAliasesmodMeta modGlobals modFwdDeclsmodFuncs LlvmBlocks LlvmBlock blockLabel blockStmts LlvmBlockId$fShowLlvmSyncOrdering$fEqLlvmSyncOrdering$fShowLlvmAtomicOp$fEqLlvmAtomicOp$fEqLlvmExpression$fEqLlvmStatement ppLlvmModuleppLlvmComments ppLlvmComment ppLlvmGlobals ppLlvmGlobal ppLlvmAliases ppLlvmAlias ppLlvmMetas ppLlvmMetappLlvmFunctionsppLlvmFunctionppLlvmFunctionDeclsppLlvmFunctionDecllmGlobalRegVarlmGlobalRegArg alwaysLivestgTBAAtopNstackNheapNrxNbaseNtbaagetTBAALlvmM LlvmVersion UnresStatic UnresLabelLlvmData LlvmUnresDataLiveGlobalRegsLlvmBasicBlock LlvmCmmDecl cmmToLlvmTypewidthToLlvmFloatwidthToLlvmInt llvmFunTy llvmFunSig llvmFunAlign llvmInfAlignllvmFunSection llvmFunArgsllvmStdFunAttrs tysToParams llvmPtrBitssupportedLlvmVersionllvmVersionStrrunLlvm liftStream withClearVars varInsert funInsert varLookup funLookup markStackReg checkStackReggetMetaUniqueId getLlvmVer getDynFlaggetLlvmPlatform dumpIfSetLlvm renderLlvm markUsedVar getUsedVars setUniqMeta getUniqMetaghcInternalFunctionsstrCLabel_llvmstrDisplayName_llvmstrProcedureName_llvm getGlobalPtrgenerateExternDeclsaliasify$fMonadUniqueLlvmM$fHasDynFlagsLlvmM $fMonadLlvmM$fApplicativeLlvmM$fFunctorLlvmMrunUnlitrunCpprunPprunCc isContainedInaskLdrunSplitrunAs runLlvmOpt runLlvmLlcrunClangfigureLlvmVersionrunLink runLibtoolrunAraskAr runRanlibrunMkDLL runWindrestouch mkExtraObjmkExtraObjToLinkIntoBinarymkNoteObjsToLinkIntoBinary getLinkInfoplatformSupportsSavingLinkOptsghcLinkInfoSectionNameghcLinkInfoNoteName checkLinkInfohaveRtsOptsFlagsinitLlvmTargets initSysToolscopycopyWithHeader linkDynLib libmLinkOptsgetPkgFrameworkOptsgetFrameworkOpts genLlvmDatagenData pprLlvmDatapprLlvmCmmDecl infoSectionregUsageOfInstrpatchRegsOfInstrisJumpishInstrjumpDestsOfInstrpatchJumpInstr mkSpillInstr mkLoadInstrtakeDeltaInstr isMetaInstrmkRegRegMoveInstrtakeRegRegMoveInstr mkJumpInstrmkStackAllocInstrmkStackDeallocInstr NatBasicBlock NatCmmDeclNatCmmRegUsageRUnoUsage entryBlocks RewriteFun TransferFunDataflowLatticefact_bot fact_join JoinedFactChanged NotChangedNewFactOldFactFact changedIf analyzeCmmBwd analyzeCmmFwd rewriteCmmBwdgetFact joinOutFacts mkFactBasefoldNodesBwdOOfoldRewriteNodesBwdOOII8II16II32II64FF32FF64FF80 intFormat floatFormat isFloatFormat cmmTypeFormat formatToWidth formatInBytes $fShowFormat $fEqFormatshowRegclassOfRealRegvirtualRegSqueezerealRegSqueeze allRealRegsgRegoReglRegiRegfRegf6f8f22f26f27g0g1g2fpspo0o1f0f1allocatableRegsargRegs allArgRegscallClobberedRegs mkVirtualReg regDotColorspRelfpRelspillSlotToOffset maxSpillSlotsFreeRegs noFreeRegs initFreeRegs getFreeRegs allocateReg releaseRegbitMask showFreeRegs$fShowFreeRegsHAHIGHERAHIGHESTA allMachRegNos allFPArgRegs fits16Bits makeImmediater0tocr3r4r11r12r27r28r30f20f21tmpRegprimRepCmmType slotCmmType typeCmmTypeprimRepForeignHintslotForeignHinttypeForeignHint mkIntCLitzeroCLitzeroExpr mkWordCLitmkByteStringCLit mkDataLits mkRODataLits mkStgWordCLitpackHalfWordsCLit mkLblExpr cmmOffsetExpr cmmOffset cmmRegOff cmmOffsetLit cmmLabelOffcmmIndex cmmIndexExpr cmmLoadIndex cmmRegOffB cmmOffsetBcmmOffsetExprB cmmLabelOffB cmmOffsetLitBcmmOffsetExprW cmmOffsetW cmmRegOffW cmmOffsetLitW cmmLabelOffW cmmLoadIndexW cmmOrWord cmmAndWord cmmNeWord cmmEqWord cmmULtWord cmmUGeWord cmmUGtWord cmmSLtWord cmmUShrWord cmmAddWord cmmSubWord cmmMulWord cmmQuotWord cmmNegate blankWord cmmToWordisTrivialCmmExprhasNoGlobalRegs cmmTagMaskcmmPointerMaskcmmUntag cmmIsTagged cmmConstrTag1 regsOverlap regUsedIn mkLiveness modifyGraph toBlockMap ofBlockMap insertBlock toBlockListtoBlockListEntryFirst%toBlockListEntryFirstFalseFallthrough ofBlockListbodyToBlockList mapGraphNodesmapGraphNodes1foldGraphBlocks postorderDfs blockTicks$fOutputableGenCmmGraph$fOutputableGraph'$fOutputableBlock$fOutputableBlock0$fOutputableBlock1$fOutputableBlock2$fOutputableCmmReturnInfo$fOutputableForeignTarget$fOutputableForeignConvention$fOutputableConvention$fOutputableCmmNode$fOutputableCmmTopInfo$fOutputableCmmStackInfoLiveBasicBlockLiveInfoliveBorn liveDieRead liveDieWrite LiveInstrInstrSRInstrSPILLRELOAD LiveCmmDeclBlockMapRegMap emptyRegMap mapBlockTop mapBlockTopMmapSCCMmapGenBlockTopmapGenBlockTopMslurpConflictsslurpReloadCoalesce stripLivestripLiveBlockeraseDeltasLivepatchEraseLivepatchRegsLiveInstrnatCmmTopToLive regLivenessreverseBlocksInTops$fOutputableInstrSR$fInstructionInstrSR$fOutputableLiveInstr$fOutputableLiveInfoRA_State ra_blockassig ra_freeregsra_assigra_deltara_stackra_us ra_spills ra_DynFlags RegAllocStatsra_spillInstrs SpillReason SpillAlloc SpillClobber SpillLoad SpillJoinRR SpillJoinRMLocInMemInBothBlockAssignment regsOfLoc$fOutputableLoc$fEqLoc $fShowLoc$fOrdLocbinSpillReasonscountRegRegMovesNatpprStatsRegMrunRspillRloadR getFreeRegsR setFreeRegsR getAssigR setAssigRgetBlockAssigRsetBlockAssigR setDeltaR getDeltaR getUniqueR recordSpill$fHasDynFlagsRegM $fMonadRegM$fApplicativeRegM $fFunctorRegM SpillCostInfoSpillCostRecordzeroSpillCostInfoplusSpillCostInfoplusSpillCostRecordslurpSpillCostInfo chooseSpilllifeMapFromSpillCostInfopprSpillCostRecord cleanSpills$fOutputableStore$fUniquableStore SpillStatsspillStoreLoadregSpill accSpillSL$fOutputableSpillStats regCoalesce slurpJoinMovswriteCspprStringInCStyle $fMonadTE$fApplicativeTE $fFunctorTE genLlvmProc$fMonoidLlvmAccum$fSemigroupLlvmAccum $fEqSignage $fShowSignage UnwindExprUwConstUwRegUwDerefUwLabelUwPlusUwMinusUwTimes UnwindTable UnwindPoint DebugBlock dblProceduredblLabel dblCLabel dblHasInfoTbl dblParentdblTicks dblSourceTick dblPosition dblUnwind dblBlocks dblIsEntry cmmDebugGencmmDebugLabels cmmDebugLink debugToMap toUnwindExpr$fOutputableUnwindExpr$fOutputableUnwindPoint$fOutputableDebugBlock$fEqUnwindExprconstantFoldNodeconstantFoldExpr cmmMachOpFoldcmmMachOpFoldM CmmLocalLive liveLatticecmmLocalLivenesscmmGlobalLivenessgen_killcmmSinkcmmLint cmmLintGraph$fHasDynFlagsCmmLint$fMonadCmmLint$fApplicativeCmmLint$fFunctorCmmLintmkEmptyContInfoTable cmmToRawCmm mkInfoTable srtEscapeclosureInfoPtr entryCode getConstrTagcmmGetClosureType infoTableinfoTableConstrTaginfoTableSrtBitmapinfoTableClosureType infoTablePtrsinfoTableNonPtrs funInfoTable funInfoAritystdInfoTableSizeWfixedInfoTableSizeWprofInfoTableSizeWmaxStdInfoTableSizeWmaxRetInfoTableSizeWstdInfoTableSizeBstdSrtBitmapOffsetstdClosureTypeOffset stdPtrsOffsetstdNonPtrsOffsetconInfoTableSizeBStatus ReachedBy ProcPoint ProcPointSetprocPointAnalysiscallProcPointsminimalProcPointSetsplitAtProcPointsattachContInfoTables$fOutputableStatuscmmImplementSwitchPlans cmmCfgOptscmmCfgOptsProc replaceLabelsremoveUnreachableBlocksProcelimCommonBlocks ParamLocation RegisterParam StackParamassignArgumentsPos assignStackrealArgRegsCover$fOutputableParamLocationTransferJumpRetJumpRetCgStmtCgLabelCgLastCgForkCmmAGraphScoped CmmAGraph catAGraphsmkLabelmkMiddlemkLast outOfLinelgraphOfAGraph labelAGraphmkNop mkCommentmkAssignmkStoremkJump mkRawJump mkJumpExtra mkCbranchmkSwitchmkReturnmkBranch mkFinalCallmkCallReturnsTomkJumpReturnsTo mkUnsafeCallmkUnwind stackStubExpr copyInOflow copyOutOflow mkCallEntry noExtraStacktoCall $fEqTransferTopSRTCAFEnvCAFSetcafAnalemptySRT isEmptySRT srtToDatadoSRTs$fOutputableTopSRTfixStgRegisters llvmCodeGen megaSeqIdInfo seqRuleInfoseqRulesseqExprseqExprsseqBinds seqUnfoldingCoreAltWithFVsCoreExprWithFVs'CoreExprWithFVsCoreBindWithFVsFVAnn exprFreeVarsexprFreeVarsDSetexprFreeVarsList exprFreeIdsexprFreeIdsDSetexprFreeIdsListexprsFreeIdsDSetexprsFreeIdsList exprsFreeVarsexprsFreeVarsList bindFreeVarsexprSomeFreeVarsexprSomeFreeVarsListexprsSomeFreeVarsexprsSomeFreeVarsListexpr_fvsexprsOrphNamesorphNamesOfTypeorphNamesOfTypes orphNamesOfCoorphNamesOfCoConorphNamesOfAxiomorphNamesOfFamInstruleRhsFreeVars ruleFreeVarsrulesFreeVarsDSet idRuleRhsVars rulesFreeVarsruleLhsFreeIdsruleLhsFreeIdsList vectsFreeVars freeVarsOf freeVarsOfAnnvarTypeTyCoVarsvarTypeTyCoFVs idFreeVars dIdFreeVarsidFVsbndrRuleAndUnfoldingVarsDSet idRuleVarsidUnfoldingVarsstableUnfoldingVars freeVarsBindfreeVarsTypeSizeCandidatesQTvsDVdv_kvsdv_tvsTcLevel UserTypeCtxt FunSigCtxt InfSigCtxt ExprSigCtxt TypeAppCtxt ConArgCtxt TySynCtxt PatSynCtxt PatSigCtxt RuleSigCtxt ResSigCtxt ForSigCtxtDefaultDeclCtxt InstDeclCtxt SpecInstCtxt ThBrackCtxt GenSigCtxtGhciCtxt ClassSCCtxt SigmaCtxt DataTyCtxtMetaInfoTauTvSigTv FlatMetaTv FlatSkolTvFlexiIndirectSkolemTv RuntimeUnkMetaTvmtv_infomtv_ref mtv_tclvl SyntaxOpTypeSynAnySynRhoSynListSynFunSynType ExpRhoType ExpSigmaType InferResultIRir_uniqir_lvlir_instir_refExpTypeInfer TcDTyCoVarSet TcDTyVarSet TcTyCoVarSet TcTyVarSetTcKind TcTauType TcRhoType TcSigmaType TcThetaType TcPredTypeTcTyCon TcTyVarBinder TcTyCoVarTcCoVarTcTyVarmkCheckExpType synKnownType mkSynFunTys superSkolemTvpprUserTypeCtxt isSigMaybe maxTcLevel fmvTcLevel topTcLevel isTopTcLevel pushTcLevelstrictlyDeeperThan sameDepthAs tcTyVarLevel tcTypeLevel tcTyFamInsts isTyFamFreeexactTyCoVarsOfTypeexactTyCoVarsOfTypesanyRewritableTyVarallBoundVariablesallBoundVariablesscandidateQTyVarsOfTypecandidateQTyVarsOfTypesisTouchableOrFmvisTouchableMetaTyVarisFloatedTouchableMetaTyVarisImmutableTyVarisTyConableTyVar isFmvTyVar isFskTyVarisFlattenTyVar isSkolemTyVarisOverlappableTyVar isMetaTyVarisAmbiguousTyVar isMetaTyVarTy metaTyVarInfometaTyVarTcLevelmetaTyVarTcLevel_maybe metaTyVarRefsetMetaTyVarTcLevel isSigTyVarisFlexi isIndirectisRuntimeUnkSkolmkTyVarNamePairs findDupSigTvs mkSigmaTy mkInfSigmaTy mkSpecSigmaTymkPhiTy getDFunTyKeymkNakedTyConApp mkNakedAppTys mkNakedAppTy mkNakedCastTy tcSplitPiTystcSplitPiTy_maybetcSplitForAllTy_maybetcSplitForAllTystcSplitForAllTyVarBndrs tcIsForAllTytcSplitPredFunTy_maybe tcSplitPhiTytcSplitSigmaTytcSplitNestedSigmaTystcDeepSplitSigmaTy_maybetcTyConAppTyContcTyConAppTyCon_maybetcTyConAppArgstcSplitTyConApptcRepSplitTyConApp_maybe' tcSplitFunTystcSplitFunTy_maybetcSplitFunTysN tcFunArgTy tcFunResultTytcFunResultTyNtcSplitAppTy_maybe tcSplitAppTy tcSplitAppTystcRepGetNumAppTystcGetCastedTyVar_maybetcGetTyVar_maybe tcGetTyVar tcIsTyVarTy tcSplitDFunTytcSplitDFunHeadtcSplitMethodTytcEqKindtcEqTypetcEqTypeNoKindCheck tcEqTypeVis pickyEqTypeisTyVarClassPredcheckValidClsArgs hasTyVarHeadevVarPred_maybe evVarPredpickQuantifiablePredspickCapturedPredsmkMinimalBySCstransSuperClassesimmSuperClassesisImprovementPred isSigmaTyisRhoTy isRhoExpTyisOverloadedTy isFloatTy isDoubleTy isIntegerTyisIntTyisWordTyisBoolTyisUnitTyisCharTy isFloatingTy isStringTy isCallStackTyisCallStackPred hasIPPred isTyVarHeadisInsolubleOccursCheck isRigidTytoTcType toTcTypeBag deNoteTypetcSplitIOType_maybeisFFITyisFFIArgumentTyisFFIExternalTyisFFIImportResultTyisFFIExportResultTy isFFIDynTy isFFILabelTyisFFIPrimArgumentTyisFFIPrimResultTy isFunPtrTysizeType sizeTypestcTyConVisibilitiesisNextTyConArgVisibleisNextArgVisible$fOutputableMetaDetails$fOutputableTcLevel$fOutputableInferResult$fOutputableExpType$fOutputableCandidatesQTvs$fMonoidCandidatesQTvs$fSemigroupCandidatesQTvs $fEqTcLevel $fOrdTcLevel EvCallStack EvCsEmpty EvCsPushCallEvLitEvNumEvStr EvTypeableEvTypeableTyConEvTypeableTyAppEvTypeableTrFunEvTypeableTyLitEvTerm EvCoercionEvCast EvDFunAppEvDelayedError EvSuperClass EvSelectorEvBindeb_lhseb_rhs eb_is_given EvBindMapev_bind_varenv EvBindsVarebv_uniq ebv_bindsebv_tcvs TcEvBindsEvBinds HsWrapperWpHole WpComposeWpFunWpCastWpEvLamWpEvAppWpTyLamWpTyAppWpLet TcCoercionP TcCoercionR TcCoercionN TcCoercion mkTcReflCo mkTcSymCo mkTcTransCo mkTcNomReflCo mkTcRepReflComkTcTyConAppCo mkTcAppCo mkTcFunCo mkTcAxInstComkTcUnbranchedAxInstCo mkTcForAllCo mkTcForAllCos mkTcNthComkTcLRCo mkTcSubCo maybeTcSubCotcDowngradeRolemkTcAxiomRuleComkTcCoherenceLeftComkTcCoherenceRightCo mkTcPhantomCo mkTcKindCo mkTcCoVarCotcCoercionKindtcCoercionRole coVarsOfTcCo isTcReflCoisTcReflexiveCo<.>mkWpFunmkWpFuns mkWpCastR mkWpCastN mkWpTyApps mkWpEvApps mkWpEvVarApps mkWpTyLamsmkWpLamsmkWpLet idHsWrapper isIdHsWrappercollectHsWrapBindersemptyEvBindMap extendEvBindsisEmptyEvBindMap lookupEvBindevBindMapBinds foldEvBindMapfilterEvBindMap evBindVarmkWantedEvBind mkGivenEvBindmkEvCastmkEvScSelectorsemptyTcEvBindsisEmptyTcEvBindsevTermCoercion evVarsOfTerm sccEvBinds pprHsWrapperunwrapIPwrapIP$fOutputableEvLit$fOutputableEvTypeable$fOutputableEvCallStack$fOutputableEvTerm$fOutputableEvBind$fOutputableEvBindMap$fUniquableEvBindsVar$fOutputableEvBindsVar$fOutputableTcEvBinds$fDataTcEvBinds$fOutputableHsWrapper$fDataHsWrapper $fDataEvLit$fDataEvCallStack $fDataEvTerm$fDataEvTypeableOutputableBndrIdDataId ConvertIdX Convertableconvert HasDefaultX HasDefaultdef SourceTextX HasSourceText noSourceText sourceText setSourceText getSourceTextForallX XHsDoublePrim XHsFloatPrimXHsRat XHsInteger XHsWord64Prim XHsInt64Prim XHsWordPrim XHsIntPrimXHsInt XHsStringPrim XHsString XHsCharPrimXHsCharIdPPostRnPostTcGhcTcIdGhcTcGhcRnGhcPsPassParsedRenamed TypecheckedGhcPass$fHasSourceTextSourceText$fHasDefaultSourceText$fHasDefault()$fConvertableaa $fDataPass $fDataGhcPass $fEqGhcPassLPatPat IEWildcard NoIEWildcardIEIEVar IEThingAbs IEThingAll IEThingWithIEModuleContentsIEGroupIEDoc IEDocNamedLIELIEWrappedName IEWrappedNameIEName IEPatternIEType ImportDeclideclSourceSrc ideclName ideclPkgQual ideclSource ideclSafeideclQualified ideclImplicitideclAs ideclHiding LImportDeclsimpleImportDeclieNameieNames ieWrappedNameieLWrappedNamereplaceWrappedNamereplaceLWrappedName pprImpExp$fOutputableIEWrappedName$fOutputableBndrIEWrappedName$fHasOccNameIEWrappedName$fOutputableIE$fOutputableImportDecl$fEqIEWrappedName$fDataIEWrappedName$fEqIEWildcard$fDataIEWildcard$fDataIE$fEqIE$fDataImportDeclLHsExpr SyntaxExprGRHSs MatchGroupHsSpliceHsCmd pprFunBind pprPatBind pprSpliceDecl pprSplicepprLExprAmbiguousFieldOcc Unambiguous AmbiguousFieldOccrdrNameFieldOccselectorFieldOcc LFieldOcc HsConDetails PrefixConRecConInfixCon ConDeclField cd_fld_names cd_fld_type cd_fld_doc LConDeclFieldPromoted NotPromoted HsTupleSortHsUnboxedTuple HsBoxedTupleHsConstraintTupleHsBoxedOrConstraintTuple HsAppType HsAppInfix HsAppPrefix LHsAppTypeHsWildCardInfo AnonWildCardHsTyLitHsNumTyHsStrTyHsType HsForAllTyHsQualTyHsTyVarHsAppsTyHsAppTyHsFunTyHsListTyHsPArrTy HsTupleTyHsSumTyHsOpTyHsParTy HsIParamTyHsEqTy HsKindSig HsSpliceTyHsDocTyHsBangTyHsRecTyHsCoreTyHsExplicitListTyHsExplicitTupleTy HsWildCardTy hst_bndrshst_bodyhst_ctxt HsTyVarBndr UserTyVar KindedTyVarHsIPName LHsSigWcType LHsWcType LHsSigTypeHsWildCardBndrsHsWChswc_wcs hswc_bodyHsImplicitBndrsHsIB hsib_vars hsib_body hsib_closed LHsQTyVarsHsQTvs hsq_implicit hsq_explicit hsq_dependent LHsTyVarBndrLHsKindHsKindLHsType HsContext LHsContextBangType LBangType getBangTypegetBangStrictnessmkHsQTvs hsQTvExplicit emptyLHsQTvsisEmptyLHsQTvshsImplicitBody hsSigType hsSigWcType dropWildCardsmkHsImplicitBndrsmkHsWildCardBndrsmkEmptyImplicitBndrsmkEmptyWildCardBndrs hsIPNameFSisHsKindedTyVarhsTvbAllKindedupdateGadtResult hsWcScopedTvs hsScopedTvs hsTyVarName hsLTyVarNamehsExplicitLTyVarNameshsAllLTyVarNameshsLTyVarLocNamehsLTyVarLocNameshsLTyVarBndrToTypehsLTyVarBndrsToTypes sameWildCard ignoreParensmkAnonWildCardTymkHsOpTy mkHsAppTy mkHsAppTyssplitHsFunTypegetAppsTyHead_maybe splitHsAppsTyhsTyGetAppHead_maybe splitHsAppTyssplitLHsPatSynTysplitLHsSigmaTysplitLHsForAllTysplitLHsQualTysplitLHsInstDeclTygetLHsInstDeclHeadgetLHsInstDeclClass_maybe mkFieldOccmkAmbiguousFieldOccrdrNameAmbiguousFieldOccselectorAmbiguousFieldOccunambiguousFieldOccambiguousFieldOcc pprHsForAllpprHsForAllExtrapprHsForAllTvs pprHsContextpprHsContextNoArrowpprHsContextMaybepprConDeclFields pprHsTypeisCompoundHsTypeparenthesizeCompoundHsType$fOutputableHsImplicitBndrs$fOutputableHsWildCardBndrs$fOutputableBndrHsIPName$fOutputableHsIPName$fOutputableHsTyLit$fOutputableHsWildCardInfo$fOutputableHsConDetails$fOutputableFieldOcc$fOutputableHsTyVarBndr$fOutputableHsType$fOutputableConDeclField$fOutputableHsAppType$fOutputableLHsQTyVars!$fOutputableBndrAmbiguousFieldOcc$fOutputableAmbiguousFieldOcc $fEqHsIPName$fDataHsIPName $fDataHsTyLit$fDataHsTupleSort$fDataPromoted $fEqPromoted$fShowPromoted$fDataHsConDetails$fDataAmbiguousFieldOcc$fDataFieldOcc $fOrdFieldOcc $fEqFieldOcc$fDataConDeclField$fDataHsAppType$fDataHsWildCardInfo $fDataHsType$fDataHsTyVarBndr$fDataHsWildCardBndrs$fDataHsImplicitBndrs$fDataLHsQTyVars OverLitVal HsIntegral HsFractional HsIsString HsOverLitOverLitol_val ol_rebindable ol_witnessol_typeHsChar HsCharPrimHsString HsStringPrimHsInt HsIntPrim HsWordPrim HsInt64Prim HsWord64Prim HsIntegerHsRat HsFloatPrim HsDoublePrimnegateOverLitVal overLitType convertLit pp_st_suffix pmPprHsLitisCompoundHsLitisCompoundHsOverLit$fOutputableHsLit $fEqHsLit$fOutputableOverLitVal$fOrdOverLitVal$fEqOverLitVal$fOutputableHsOverLit$fOrdHsOverLit $fEqHsOverLit$fDataOverLitVal$fDataHsOverLit $fDataHsLit HsPatSynDirUnidirectionalImplicitBidirectionalExplicitBidirectionalRecordPatSynFieldrecordPatSynSelectorIdrecordPatSynPatVarHsPatSynDetails TcSpecPragSpecPrag LTcSpecPrag TcSpecPragsIsDefaultMethod SpecPrags FixitySig LFixitySigSigTypeSig PatSynSig ClassOpSigIdSigFixSig InlineSigSpecSig SpecInstSig MinimalSig SCCFunSigCompleteMatchSigLSigIPBindLIPBind HsIPBindsIPBinds PatSynBindPSBpsb_idpsb_fvspsb_argspsb_defpsb_dirABExportABEabe_polyabe_monoabe_wrap abe_pragsHsBindLRFunBindPatBindVarBindAbsBindsfun_id fun_matches fun_co_fnbind_fvsfun_tickpat_lhspat_rhs pat_rhs_ty pat_ticksvar_idvar_rhs var_inlineabs_tvs abs_ev_vars abs_exports abs_ev_binds abs_bindsabs_sig LHsBindLR LHsBindsLRHsBindLHsBindsLHsBind HsValBindsLR ValBindsIn ValBindsOut HsValBindsLHsLocalBindsLRHsLocalBindsLREmptyLocalBinds LHsLocalBinds HsLocalBinds pprLHsBindspprLHsBindsForUser pprDeclListemptyLocalBindsisEmptyLocalBindseqEmptyLocalBindsisEmptyValBindsemptyValBindsInemptyValBindsOut emptyLHsBindsisEmptyLHsBindsplusHsValBinds ppr_monobindpprTicksisEmptyIPBinds noSpecPrags hasSpecPragsisDefaultMethod isFixityLSig isTypeLSig isSpecLSigisSpecInstLSig isPragLSig isInlineLSig isMinimalLSig isSCCFunSigisCompleteMatchSighsSigDocppr_sig pragBracketspragSrcBrackets pprVarSigpprSpecpprTcSpecPrags pprMinimalSig$fOutputableIPBind$fOutputableHsIPBinds$fOutputableFixitySig$fOutputableSig$fOutputableTcSpecPrag$fOutputableABExport$fTraversableRecordPatSynField$fFoldableRecordPatSynField$fOutputableRecordPatSynField$fFunctorRecordPatSynField$fOutputablePatSynBind$fOutputableHsBindLR$fOutputableHsValBindsLR$fOutputableHsLocalBindsLR$fDataTcSpecPrag$fDataTcSpecPrags$fDataRecordPatSynField$fDataHsPatSynDir$fDataFixitySig $fDataSig $fDataIPBind$fDataHsIPBinds$fDataPatSynBind$fDataABExport$fDataHsBindLR$fDataHsValBindsLR$fDataHsLocalBindsLR HsRecField' HsRecField hsRecFieldLbl hsRecFieldArghsRecPun HsRecUpdFieldLHsRecUpdField LHsRecField LHsRecField' HsRecFieldsrec_flds rec_dotdotHsConPatDetailsWildPatVarPatLazyPatAsPatParPatBangPatListPatTuplePatSumPatPArrPatConPatIn ConPatOutViewPat SplicePatLitPatNPat NPlusKPatSigPatIn SigPatOutCoPatpat_con pat_arg_tyspat_tvs pat_dicts pat_bindspat_argspat_wrapOutPatInPat hsConPatArgs hsRecFieldshsRecFieldsArgs hsRecFieldSel hsRecFieldIdhsRecUpdFieldRdrhsRecUpdFieldIdhsRecUpdFieldOcc pprParendLPat pprConArgsmkPrefixConPatmkNilPat mkCharLitPat isBangedLPatlooksLazyPatBindisIrrefutableHsPathsPatNeedsParens isCompoundPatparenthesizeCompoundPatcollectEvVarsPats$fOutputableHsRecField'$fOutputableHsRecFields$fOutputablePat$fDataHsRecField'$fFunctorHsRecField'$fFoldableHsRecField'$fTraversableHsRecField'$fFunctorHsRecFields$fFoldableHsRecFields$fTraversableHsRecFields$fDataHsRecFields $fDataPat ClosureInfo closureName closureLFInfoclosureInfoLabel CallMethodEnterItJumpToItReturnItSlowCall DirectEntryDynTagStandardFormInfoLambdaFormInfoNonVoid SelfLoopInfoCgLocCmmLocLneLoc isKnownFun fromNonVoid nonVoidIdsassertNonVoidIdsnonVoidStgArgsassertNonVoidStgArgs idPrimRep addIdReps addArgReps argPrimRep mkLFArgumentmkLFLetNoEscape mkLFReEntrant mkLFThunk mkConLFInfomkSelectorLFInfo mkApLFInfo mkLFImported mkLFStringLit isSmallFamily tagForCon tagForAritylfDynTag maybeIsLFCon isLFThunk isLFReEntrantnodeMustPointToIt getCallMethod mkCmmInfo mkClosureInfoblackHoleOnEntryisStaticClosureclosureUpdReqd lfUpdatableclosureSingleEntryclosureReEntrantclosureFunInfofunTagisToplevClosurestaticClosureLabelclosureSlowEntryLabelclosureLocalEntryLabelmkDataConInfoTablecafBlackHoleInfoTableindStaticInfoTablestaticClosureNeedsLink$fOutputableCgLoc$fOutputableNonVoid $fEqNonVoid $fShowNonVoidVirtualHpOffset HeapUsagevirtHprealHpCgState MkCgState cgs_stmtscgs_tops cgs_binds cgs_hp_usg cgs_uniqs ReturnKindAssignedDirectly ReturnedToSequelAssignToCgIdInfocg_idcg_lfcg_locCgInfoDownwards MkCgInfoDown cgd_dflagscgd_mod cgd_updfr_off cgd_ticky cgd_sequel cgd_self_loopcgd_tick_scopeFCodeinitCrunCfixCinitUpdFrameOffheapHWM initHpUsagegetStatesetState getHpUsage setHpUsage setVirtHp getVirtHp setRealHpgetBindssetBinds newUnique getInfoDown getSelfLoop withSelfLoopgetThisPackage getModuleName withSequel getSequelwithUpdFrameOffgetUpdFrameOffgetTickyCtrLabelsetTickyCtrLabel getTickScope tickScopeforkClosureBody forkLneBodycodeOnlyforkAltsgetCodeRgetCode getCodeScoped getHeapUsage emitLabel emitCommentemitTick emitUnwind emitAssign emitStoreemitemitDecl emitOutOfLineemitProcWithStackFrameemitProcWithConventionemitProcgetCmmmkCmmIfThenElsemkCmmIfThenElse' mkCmmIfGoto mkCmmIfGoto' mkCmmIfThen mkCmmIfThen'mkCall mkCmmCall aGraphToGraph$fOutputableCgIdInfo$fOutputableSequel$fHasDynFlagsFCode$fMonadUniqueFCode $fMonadFCode$fApplicativeFCode$fFunctorFCodecgLit mkSimpleLit addToMemLbl addToMemLblEaddToMem addToMemEmkTaggedObjectLoad tagToClosure emitRtsCallemitRtsCallWithResultemitRtsCallGencallerSaveVolatileRegsget_GlobalReg_addr emitDataLitsemitRODataLits newStringCLitnewByteStringCLit assignTempnewTempnewUnboxedTupleRegsemitMultiAssign emitSwitchemitCmmLitSwitchccsTypeccTypecurCCS storeCurCCS mkCCostCentremkCCostCentreStackcostCentreFrom staticProfHdr dynProfHdrinitUpdFrameProfsaveCurrentCostCentrerestoreCurrentCostCentre profDynAlloc profAllocenterCostCentreThunkenterCostCentreFuninitCostCentres emitSetCCCldvRecordCreateldvEnterClosureldvEnterunECEnvNamedVarNFunNLabelN loopDeclswithNamenewLocalnewLabelnewFunctionName newImport lookupLabel lookupNamecode$fHasDynFlagsCmmParse$fMonadUniqueCmmParse$fMonadCmmParse$fApplicativeCmmParse$fFunctorCmmParsecgBind litIdInfo lneIdInfo rhsIdInfo mkRhsInit idInfoToAmodemaybeLetNoEscapeaddBindC addBindsC getCgIdInfo getArgAmodegetNonVoidArgAmodes bindToReg rebindToReg bindArgToRegbindArgsToRegsidToRegArgRepNVFDV16V32V64 argRepStringtoArgRepisNonV argRepSizeWidArgRepslowCallPattern$fOutputableArgRepwithNewTickyCounterFunwithNewTickyCounterLNEwithNewTickyCounterThunkwithNewTickyCounterStdThunkwithNewTickyCounterContickyPushUpdateFrametickyUpdateFrameOmittedtickyEnterDynContickyEnterStaticContickyEnterViaNodetickyEnterThunktickyEnterStdThunktickyBlackHoletickyUpdateBhCaf tickyEnterFun tickyEnterLNEtickyReturnOldContickyReturnNewContickyUnboxedTupleReturntickyDirectCalltickyKnownCallTooFewArgstickyKnownCallExacttickyKnownCallExtraArgstickyUnknownCall tickySlowCalltickySlowCallPat tickyDynAlloctickyAllocHeaptickyAllocPrimtickyAllocThunk tickyAllocPAPtickyHeapChecktickyStackCheckFieldOffOrPaddingFieldOffPadding emitReturnemitCalladjustHpBackwards directCallslowCallgetHpRelOffsetmkVirtHeapOffsetsWithPaddingmkVirtHeapOffsetsmkVirtConstrOffsetsmkVirtConstrSizes mkArgDescremitClosureProcAndInfoTableemitClosureAndInfoTableallocDynClosureallocDynClosureCmmallocHeapClosure emitSetDynHdrmkStaticClosureFieldsmkStaticClosureentryHeapCheckentryHeapCheck' altHeapCheckaltHeapCheckReturnsTonoEscapeHeapCheckheapStackCheckGen cgForeignCall emitCCall emitPrimCallemitForeignCallemitSaveThreadStatesaveThreadStateemitCloseNurseryemitLoadThreadStateloadThreadStateemitOpenNurserycgOpAppshouldInlinePrimOpcgPrimOpcmmLayoutStacksetInfoTableStackMap$fOutputableStackMap$fOutputableStackSlotClsInstLookupResult InstMatch DFunInstTypeVisibleOrphanModulesInstEnvs ie_globalie_local ie_visibleClsInst is_cls_nmis_tcs is_dfun_nameis_tvsis_clsis_tysis_dfunis_flag is_orphanfuzzyClsInstCmpisOverlappable isOverlapping isIncoherentinstanceDFunIdtidyClsInstDFuninstanceRoughTcs pprInstancepprInstanceHdr pprInstances instanceHeadorphNamesOfClsInst instanceSigmkLocalInstancemkImportedInstance emptyInstEnv instEnvElts instIsVisibleclassInstances memberInstEnvextendInstEnvList extendInstEnvdeleteFromInstEnvidenticalClsInstHeadlookupUniqueInstEnv lookupInstEnvinstanceBindFun$fOutputableClsInst$fNamedThingClsInst$fOutputableClsInstEnv $fDataClsInst optCoercion checkAxInstCo RoleAnnotDeclLRoleAnnotDecl AnnProvenanceValueAnnProvenanceTypeAnnProvenanceModuleAnnProvenance HsAnnotationLAnnDeclWarnDeclWarning LWarnDecl WarnDeclsWarningswd_src wd_warnings LWarnDeclsDocDeclDocCommentNextDocCommentPrevDocCommentNamedDocGroupLDocDeclVectDeclHsVectHsNoVect HsVectTypeIn HsVectTypeOut HsVectClassInHsVectClassOut HsVectInstIn HsVectInstOut LVectDeclRuleBndr RuleBndrSig LRuleBndrRuleDeclHsRule LRuleDecl RuleDeclsHsRulesrds_src rds_rules LRuleDecls ForeignExportCExport CImportSpec CFunctionCWrapper ForeignImportCImport ForeignDeclfd_name fd_sig_tyfd_cofd_fifd_fe LForeignDecl DefaultDecl LDefaultDecl DerivDecl deriv_typederiv_strategyderiv_overlap_mode LDerivDeclInstDeclClsInstD DataFamInstD TyFamInstDcid_inst dfid_inst tfid_inst LInstDecl ClsInstDecl cid_poly_ty cid_bindscid_sigscid_tyfam_instscid_datafam_instscid_overlap_mode LClsInstDeclFamEqn feqn_tycon feqn_pats feqn_fixityfeqn_rhs FamInstEqn LFamInstEqnDataFamInstDecldfid_eqnLDataFamInstDecl TyFamInstDecltfid_eqnLTyFamInstDecl TyFamDefltEqn TyFamInstEqnHsTyPatsLTyFamDefltEqn LTyFamInstEqnHsConDeclDetailsConDecl ConDeclGADT ConDeclH98 con_namescon_typecon_doccon_name con_qvarscon_cxt con_detailsLConDecl NewOrDataNewTypeDataTypeHsDerivingClausederiv_clause_strategyderiv_clause_tysLHsDerivingClause HsDeriving HsDataDefndd_NDdd_ctxtdd_cType dd_kindSigdd_cons dd_derivs FamilyInfo DataFamilyOpenTypeFamilyClosedTypeFamilyInjectivityAnnLInjectivityAnn FamilyDeclfdInfofdLNamefdTyVarsfdFixity fdResultSigfdInjectivityAnn LFamilyDeclFamilyResultSigNoSigKindSigTyVarSigLFamilyResultSig TyClGroup group_tyclds group_roles group_instdsTyClDeclFamDeclSynDeclDataDecl ClassDecltcdFamtcdLName tcdTyVars tcdFixitytcdRhstcdFVs tcdDataDefn tcdDataCusktcdCtxttcdFDstcdSigstcdMethstcdATs tcdATDefstcdDocs LTyClDecl SpliceDecl LSpliceDeclHsGrouphs_valds hs_splcds hs_tyclds hs_derivdshs_fixdshs_defdshs_fords hs_warndshs_annds hs_ruledshs_vectshs_docsHsDeclTyClDInstDDerivDValDSigDDefDForDWarningDAnnDRuleDVectDSpliceDDocD RoleAnnotDLHsDecl emptyRdrGroup emptyRnGrouphsGroupInstDecls appendGroups isDataDecl isSynDecl isClassDecl isFamilyDeclisTypeFamilyDeclisOpenTypeFamilyInfoisClosedTypeFamilyInfoisDataFamilyDecltyFamInstDeclNametyFamInstDeclLName tyClDeclLNametcdNametyClDeclTyVarscountTyClDecls hsDeclHasCuskpprTyClDeclFlavouremptyTyClGrouptyClGroupTyClDeclstyClGroupInstDeclstyClGroupRoleDecls mkTyClGroupfamDeclHasCuskresultVariableName getConNames getConDetailsgadtDeclDetailshsConDeclArgTyspprDataFamInstFlavour pprFamInstLHSinstDeclDataFamInstsnoForeignImportCoercionYetnoForeignExportCoercionYetflattenRuleDeclscollectRuleBndrSigTyspprFullRuleName lvectDeclName lvectInstDecl docDeclDocannProvenanceName_mayberoleAnnotDeclName$fOutputableSpliceDecl$fOutputableHsDerivingClause$fOutputableNewOrData$fOutputableConDecl$fOutputableHsDataDefn$fOutputableDataFamInstDecl$fOutputableTyFamInstDecl$fOutputableFamilyInfo$fOutputableFamilyDecl$fOutputableClsInstDecl$fOutputableInstDecl$fOutputableDerivDecl$fOutputableDefaultDecl$fOutputableForeignImport$fOutputableForeignExport$fOutputableForeignDecl$fOutputableRuleBndr$fOutputableRuleDecl$fOutputableRuleDecls$fOutputableVectDecl$fOutputableDocDecl$fOutputableTyClDecl$fOutputableWarnDecl$fOutputableWarnDecls$fOutputableAnnDecl$fOutputableRoleAnnotDecl$fOutputableTyClGroup$fOutputableHsGroup$fOutputableHsDecl $fEqNewOrData$fDataNewOrData$fDataCImportSpec$fDataForeignImport$fDataForeignExport $fDataDocDecl$fDataRoleAnnotDecl$fDataAnnProvenance$fTraversableAnnProvenance$fFoldableAnnProvenance$fFunctorAnnProvenance $fDataAnnDecl$fDataWarnDecl$fDataWarnDecls$fDataVectDecl$fDataRuleBndr$fDataRuleDecl$fDataRuleDecls$fDataForeignDecl$fDataDefaultDecl$fDataDerivDecl$fDataInstDecl$fDataClsInstDecl $fDataFamEqn$fDataDataFamInstDecl$fDataTyFamInstDecl $fDataConDecl$fDataHsDerivingClause$fDataHsDataDefn$fDataFamilyInfo$fDataInjectivityAnn$fDataFamilyDecl$fDataFamilyResultSig$fDataTyClGroup$fDataTyClDecl$fDataSpliceDecl $fDataHsGroup $fDataHsDecl HsStmtContextListComp MonadCompPArrCompDoExprMDoExpr ArrowExpr GhciStmtCtxtPatGuard ParStmtCtxt TransStmtCtxtHsMatchContextFunRhs LambdaExprCaseAltIfAltProcExpr PatBindRhsRecUpdStmtCtxt ThPatSplice ThPatQuotemc_fun mc_fixity mc_strictness ArithSeqInfoFromFromThenFromTo FromThenTo HsBracketExpBrPatBrDecBrLDecBrGTypBrVarBrTExpBrPendingTcSpliceUntypedSpliceFlavourUntypedExpSpliceUntypedPatSpliceUntypedTypeSpliceUntypedDeclSplicePendingRnSpliceSplicePointNameHsSplicedThing HsSplicedExpr HsSplicedTy HsSplicedPatThModFinalizersSpliceDecoration HasParens HasDollarNoParens HsTypedSpliceHsUntypedSplice HsQuasiQuote HsSplicedApplicativeArgApplicativeArgOneApplicativeArgMany ParStmtBlock TransFormThenForm GroupFormStmtLRLastStmtBindStmtApplicativeStmtBodyStmtLetStmtParStmt TransStmtRecStmttrS_form trS_stmts trS_bndrs trS_usingtrS_bytrS_rettrS_bindtrS_bind_arg_tytrS_fmap recS_stmtsrecS_later_ids recS_rec_ids recS_bind_fn recS_ret_fn recS_mfix_fn recS_bind_tyrecS_later_rets recS_rec_rets recS_ret_tyGhciStmt GhciLStmt GuardStmt GuardLStmtExprStmt ExprLStmtCmdStmtCmdLStmtStmtLStmtLRLStmtGRHSLGRHS grhssGRHSsgrhssLocalBindsm_ctxtm_patsm_grhssLMatchMGmg_alts mg_arg_tys mg_res_ty mg_origin HsRecordBindsHsCmdTop LHsCmdTop HsArrAppTypeHsHigherOrderAppHsFirstOrderApp HsCmdArrApp HsCmdArrFormHsCmdAppHsCmdLamHsCmdPar HsCmdCaseHsCmdIfHsCmdLetHsCmdDo HsCmdWrapLHsCmd LHsWcTypeXHsTupArgPresentMissing LHsTupArgHsVar HsUnboundVar HsConLikeOutHsRecFld HsOverLabelHsIPVarHsLam HsLamCaseHsApp HsAppTypeOutOpAppNegAppHsParSectionLSectionR ExplicitTuple ExplicitSumHsCaseHsIf HsMultiIfHsLetHsDo ExplicitList ExplicitPArr RecordCon RecordUpd ExprWithTySigExprWithTySigOutArithSeqPArrSeqHsSCC HsCoreAnnHsRnBracketOutHsTcBracketOut HsSpliceEHsProcHsStaticHsArrApp HsArrFormHsTick HsBinTick HsTickPragmaEWildPatEAsPatEViewPatELazyPatHsWrap rcon_con_name rcon_con_like rcon_con_expr rcon_flds rupd_expr rupd_flds rupd_cons rupd_in_tys rupd_out_tys rupd_wrap UnboundVar OutOfScope TrueExprHoleCmdSyntaxTablesyn_expr syn_arg_wraps syn_res_wrap PostTcTable PostTcExpr noPostTcExpr noPostTcTablenoExpr noSyntaxExprmkRnSyntaxExpr unboundVarOcc tupArgPresent isQuietHsExprpprBinds ppr_lexprppr_exprppr_appspprExternalSrcLocpprDebugParendExprpprParendLExprhsExprNeedsParensisAtomicHsExprpprLCmdpprCmd isQuietHsCmdppr_lcmdppr_cmd pprCmdArg isInfixMatchisEmptyMatchGroupisSingletonMatchGroupmatchGroupArity hsLMatchPats pprMatchespprMatchpprGRHSspprGRHSpp_rhspprStmtpprTransformStmt pprTransStmtpprBypprDo ppr_do_stmtspprComppprQuals isTypedSplicepprPendingSpliceppr_splice_decl ppr_quasi ppr_spliceisTypedBracket pprHsBracket thBrackets thTyBrackets pp_dotdot isPatSynCtxtisListCompExprisMonadCompExprisMonadFailStmtContextmatchSeparatorpprMatchContextpprMatchContextNounpprAStmtContextpprStmtContextmatchContextErrStringpprMatchInCtxt pprStmtInCtxt$fOutputableUnboundVar$fOutputableSpliceDecoration$fDataThModFinalizers$fOutputableHsStmtContext$fOutputableHsMatchContext$fOutputableArithSeqInfo$fOutputablePendingTcSplice$fOutputablePendingRnSplice$fOutputableHsBracket$fOutputableHsSplice$fOutputableHsSplicedThing$fOutputableStmtLR$fOutputableParStmtBlock$fOutputableMatch$fOutputableHsCmdTop$fOutputableHsCmd$fOutputableHsExpr$fOutputableSyntaxExpr$fDataUnboundVar$fDataHsArrAppType$fDataTransForm$fDataSpliceDecoration$fEqSpliceDecoration$fShowSpliceDecoration$fDataUntypedSpliceFlavour$fFunctorHsStmtContext$fFunctorHsMatchContext$fDataPendingTcSplice$fDataPendingRnSplice$fDataHsStmtContext$fDataHsMatchContext$fDataArithSeqInfo$fDataHsBracket$fDataHsSplicedThing$fDataHsSplice$fDataApplicativeArg$fDataParStmtBlock $fDataStmtLR $fDataGRHS $fDataGRHSs $fDataMatch$fDataMatchGroup$fDataHsCmdTop $fDataHsCmd$fDataHsTupArg $fDataHsExpr$fDataSyntaxExprmkHsPar mkSimpleMatchunguardedGRHSs unguardedRHS mkMatchGroupmkHsApp mkHsAppType mkHsAppTypesmkHsAppTypeOutmkHsLammkHsLams mkHsCaseAlt nlHsTyApp nlHsTyAppsmkLHsParmkParPatnlParPat mkHsIntegralmkHsFractional mkHsIsStringnoRebindableInfomkHsDomkHsCompmkHsIfmkNPat mkNPlusKPatemptyTransStmtmkTransformStmtmkTransformByStmtmkGroupUsingStmtmkGroupByUsingStmt mkLastStmt mkBodyStmt mkBindStmt mkTcBindStmt emptyRecStmtemptyRecStmtNameemptyRecStmtId mkRecStmt mkHsOpAppmkUntypedSplice mkHsSpliceE mkHsSpliceTE mkHsSpliceTymkHsQuasiQuoteunqualQuasiQuote mkHsStringmkHsStringPrimLituserHsLTyVarBndrsuserHsTyVarBndrsnlHsVar nlHsDataConnlHsLit nlHsIntLitnlVarPatnlLitPatnlHsAppnlHsSyntaxAppsnlHsApps nlHsVarApps nlConVarPatnlConVarPatName nlInfixConPatnlConPat nlConPatNamenlNullaryConPat nlWildConPat nlWildPat nlWildPatName nlWildPatIdnlHsDo nlHsOpAppnlHsLamnlHsParnlHsIfnlHsCasenlList nlHsAppTy nlHsTyVar nlHsFunTy nlHsParTy nlHsTyConAppmkLHsTupleExpr mkLHsVarTuple nlTuplePat missingTupArgmkBigLHsVarTup mkBigLHsTupmkBigLHsVarPatTupmkBigLHsPatTup mkChunkifiedchunkify mkLHsSigTypemkLHsSigWcType mkHsSigEnv mkClassOpSigs typeToLHsType mkLHsWrapmkHsWrap mkHsWrapCo mkHsWrapCoR mkLHsWrapCo mkHsCmdWrap mkLHsCmdWrap mkHsWrapPat mkHsWrapPatCo mkHsDictLet mkFunBind mkTopFunBind mkHsVarBind mkVarBind mkPatSynBindisInfixFunBindmk_easy_FunBindmkPrefixFunRhsmkMatchisUnliftedHsBindisBangedHsBindcollectLocalBinderscollectHsIdBinderscollectHsValBinderscollectHsBindBinderscollectHsBindsBinderscollectHsBindListBinderscollectMethodBinderscollectLStmtsBinderscollectStmtsBinderscollectLStmtBinderscollectStmtBinderscollectPatBinderscollectPatsBindershsGroupBindershsTyClForeignBindershsLTyClDeclBindershsForeignDeclsBindershsPatSynSelectorsgetPatSynBindshsDataFamInstBindershsDataDefnBinderslStmtsImplicitshsValBindsImplicits lPatImplicitsHsModule hsmodName hsmodExports hsmodImports hsmodDeclshsmodDeprecMessagehsmodHaddockModHeader$fOutputableHsModule$fDataHsModule SumOrTupleSumTuple ImpExpQcSpec ImpExpQcName ImpExpQcTypeImpExpQcWildcard ImpExpSubSpec ImpExpAbs ImpExpAll ImpExpList ImpExpAllWithmkTyClDmkInstD mkClassDecl mkATDefaultmkTyData mkTySynonymmkTyFamInstEqn mkDataFamInst mkTyFamInst mkFamDecl mkSpliceDeclmkRoleAnnotDecl cvTopDecls cvBindGroupcvBindsAndSigssplitConmkPatSynMatchGroup mkConDeclH98 mkGadtDeclsetRdrNameSpacecheckRecordSyntax checkContext checkPattern checkPatternsplaceHolderPunRhsbang_RDR checkValDefcheckValSigLhscheckDoAndIfThenElse splitTildesplitTildeAppscheckMonadComp checkCommand checkPrecPmkRecConstrOrUpdatemkRdrRecordUpdmkRdrRecordConmkInlinePragmamkImport parseCImportmkExport mkExtNamemkModuleImpExp mkTypeImpExpcheckImportSpecmkImpExpSubSpecparseErrorSDoc mkSumOrTuple ComplexEqSimpleEqPmLitPmSLitPmOLit PmExprVar PmExprCon PmExprLitPmExprEq PmExprOthereqPmLit toComplex truePmExpr falsePmExprisNotPmExprOther isTruePmExpr isFalsePmExprsubstComplexEqlhsExprToPmExprhsExprToPmExpr filterComplex runPmPprMpprPmExprWithParens$fOutputablePmLit$fOutputablePmExprCompleteMatchMap CompleteMatchcompleteMatchConLikescompleteMatchTyConUnlinkedDotODotADotDLLBCOsLinkableLM linkableTimelinkableModulelinkableUnlinkedHsParsedModule hpm_module hpm_src_fileshpm_annotationsIfaceTrustInfo IsSafeImport IfaceVectInfoifaceVectInfoVarifaceVectInfoTyConifaceVectInfoTyConReuseifaceVectInfoParallelVarsifaceVectInfoParallelTyConsVectInfo vectInfoVar vectInfoTyConvectInfoDataConvectInfoParallelVarsvectInfoParallelTyCons AnyHpcUsageHpcInfo NoHpcInfohpcInfoTickCount hpcInfoHashhpcUsedSourceModifiedSourceUnmodifiedSourceUnmodifiedAndStable ModSummaryms_mod ms_hsc_src ms_location ms_hs_date ms_obj_date ms_iface_date ms_srcimpsms_textual_imps ms_parsed_mod ms_hspp_file ms_hspp_opts ms_hspp_buf ModuleGraphEpsStats n_ifaces_in n_decls_in n_decls_out n_rules_in n_rules_out n_insts_in n_insts_outExternalPackageStateEPS eps_is_booteps_PITeps_free_holeseps_PTE eps_inst_enveps_fam_inst_env eps_rule_base eps_vect_info eps_ann_enveps_complete_matcheseps_mod_fam_inst_env eps_statsPackageCompleteMatchMapPackageFamInstEnvPackageInstEnvPackageRuleBasePackageTypeEnvUsageUsagePackageModuleUsageHomeModule UsageFileUsageMergedRequirementusg_mod usg_mod_hashusg_safe usg_mod_name usg_entities usg_exports usg_file_path usg_file_hash DependenciesDepsdep_modsdep_pkgs dep_orphs dep_finstsIsBootInterfaceWhetherHasOrphansFixItem FixityEnv NoWarningsWarnAllWarnSome MonadThings lookupThinglookupId lookupDataCon lookupTyConTypeEnvInteractiveImportIIDeclIIModuleInteractiveContext ic_dflags ic_mod_index ic_imports ic_tythings ic_rn_gbl_env ic_instances ic_fix_env ic_default ic_resumeic_monad ic_int_printic_cwdSptEntry ForeignStubsNoStubsCgGuts cg_module cg_tyconscg_binds cg_foreigncg_foreign_files cg_dep_pkgs cg_hpc_info cg_modBreakscg_spt_entriesModGuts mg_module mg_hsc_srcmg_loc mg_exportsmg_deps mg_usages mg_used_th mg_rdr_env mg_fix_envmg_tcsmg_insts mg_fam_insts mg_patsynsmg_rulesmg_binds mg_foreignmg_foreign_filesmg_warnsmg_annsmg_complete_sigs mg_hpc_info mg_modBreaks mg_vect_decls mg_vect_info mg_inst_envmg_fam_inst_envmg_safe_haskell mg_trust_pkgImportedModsValimv_nameimv_span imv_is_safe imv_is_hidingimv_all_exports imv_qualified ImportedByImportedByUserImportedBySystem ImportedMods ModDetails md_exportsmd_typesmd_insts md_fam_instsmd_rulesmd_anns md_vect_infomd_complete_sigs IfaceExportModIface mi_module mi_sig_of mi_iface_hash mi_mod_hash mi_flag_hash mi_opt_hash mi_hpc_hash mi_orphan mi_finsts mi_hsc_srcmi_deps mi_usages mi_exports mi_exp_hash mi_used_th mi_fixitiesmi_warnsmi_annsmi_decls mi_globalsmi_insts mi_fam_instsmi_rulesmi_orphan_hash mi_vect_info mi_warn_fn mi_fix_fn mi_hash_fnmi_hpcmi_trust mi_trust_pkgmi_complete_sigs FindResultFound NoPackage FoundMultipleNotFoundfr_pathsfr_pkgfr_mods_hiddenfr_pkgs_hiddenfr_suggestionsInstalledFindResultInstalledFoundInstalledNoPackageInstalledNotFound FinderCacheMetaHook MetaResult MetaRequestMetaEMetaPMetaTMetaDMetaAW HomeModInfohm_iface hm_details hm_linkablePackageIfaceTableHomePackageTableTargetId TargetModule TargetFileTargettargetIdtargetAllowObjCodetargetContentsIServ iservPipe iservProcessiservLookupSymbolCacheiservPendingFreesHscEnv hsc_dflags hsc_targets hsc_mod_graphhsc_IChsc_HPThsc_EPShsc_NChsc_FChsc_type_env_var hsc_iserv GhcApiError SourceError HscStatusHscNotGeneratingCode HscUpToDate HscUpdateBoot HscUpdateSig HscRecomprunHscrunInteractiveHscmkSrcErrsrcErrorMessagesmkApiErr throwOneErrorhandleSourceErrorprintOrThrowWarningshandleFlagWarningshscEPS pprTarget pprTargetIdemptyHomePackageTableemptyPackageIfaceTablepprHPT lookupHptlookupHptDirectlyeltsHpt filterHptallHptmapHpt delFromHptaddToHpt addListToHpt listToHptlookupHptByModulelookupIfaceByModulehptCompleteSigs hptInstances hptVectInfohptRules metaRequestE metaRequestP metaRequestT metaRequestD metaRequestAWprepareAnnotationsmi_bootmi_fixmi_semantic_module mi_free_holesrenameFreeHoles emptyModIfacemkIfaceHashCacheemptyModDetailsimportedByUser appendStubCemptyInteractiveContexticInteractiveModule icInScopeTTs icPrintUnqualextendInteractiveContextextendInteractiveContextWithIdssetInteractivePackagesetInteractivePrintNameicExtendGblRdrEnvsubstInteractiveContextmkPrintUnqualified mkQualModule mkQualPackagepkgQualimplicitTyThingsimplicitClassThingsimplicitTyConThingsisImplicitTyThingtyThingParent_maybetyThingsTyCoVarstyThingAvailInfo emptyTypeEnv typeEnvElts typeEnvTyConstypeEnvCoAxioms typeEnvIdstypeEnvPatSynstypeEnvDataConstypeEnvClasses mkTypeEnvmkTypeEnvWithImplicitstypeEnvFromEntities lookupTypeEnv extendTypeEnvextendTypeEnvListextendTypeEnvWithIds plusTypeEnv lookupTypelookupTypeHscEnv tyThingTyContyThingCoAxiomtyThingDataContyThingConLike tyThingIdmkIfaceWarnCacheemptyIfaceWarnCache plusWarnsmkIfaceFixCacheemptyFixityEnv lookupFixitynoDependencies addEpsInStatsupdNameCacheIOmkSOName mkHsSONamesoExtneedsTemplateHaskellOrQQmapMG mgBootModulesmgModSummaries mgElemModulemgLookupModuleemptyMGisTemplateHaskellOrQQNonBootextendMG mkModuleGraphms_installed_mod ms_mod_namems_imps msHsFilePath msHiFilePath msObjFilePath isBootSummary showModMsg emptyHpcInfo isHpcUsed noVectInfo plusVectInfonoIfaceVectInfoisNoIfaceVectInfo getSafeMode setSafeModenoIfaceTrustInfotrustInfoToNumnumToTrustInfoisObjectLinkable linkableObjsisObjectisInterpretable nameOfObjectbyteCodeOfObjectmkCompleteMatchMapextendCompleteMatchMap$fExceptionSourceError$fShowSourceError$fExceptionGhcApiError$fShowGhcApiError$fOutputableTargetId$fOutputableTarget$fOutputableSptEntry$fOutputableInteractiveImport$fBinaryWarnings$fOutputableFixItem$fBinaryDependencies$fOutputableVectInfo$fBinaryIfaceVectInfo$fOutputableIfaceVectInfo $fBinaryUsage$fBinaryIfaceTrustInfo$fOutputableIfaceTrustInfo$fBinaryModIface$fOutputableModSummary$fOutputableUnlinked$fOutputableLinkable$fOutputableCompleteMatch$fHasDynFlagsHsc $fMonadIOHsc $fMonadHsc$fApplicativeHsc $fFunctorHsc $fEqTargetId $fEqWarnings$fEqDependencies $fEqUsage RoleAnnotEnvTcPluginResultTcPluginContradiction TcPluginOkTcPlugin tcPluginInit tcPluginSolve tcPluginStopTcPluginSolver TypeOrKind TypeLevel KindLevelCtOrigin GivenOrigin OccurrenceOfOccurrenceOfRecSel AppOriginSpecPragOrigin TypeEqOrigin KindEqOrigin IPOccOriginOverLabelOrigin LiteralOrigin NegateOriginArithSeqOrigin PArrSeqOrigin SectionOrigin TupleOrigin ExprSigOrigin PatSigOrigin PatOriginProvCtxtOriginRecordUpdOrigin ViewPatOriginScOrigin DerivOrigin DerivOriginDCDerivOriginCoerceStandAloneDerivOrigin DefaultOriginDoOrigin DoPatOrigin MCompOriginMCompPatOriginIfOrigin ProcOrigin AnnOrigin FunDepOrigin1 FunDepOrigin2 HoleOriginUnboundOccurrenceOf ListOrigin StaticOriginFailablePatternShouldn'tHappenOriginInstProvidedOrigin uo_actual uo_expecteduo_thing uo_visible SkolemInfoSigSkolClsSkol DerivSkolInstSkolInstSCDataSkol FamInstSkolPatSkol ArrowSkolIPSkolRuleSkol InferSkol BracketSkolUnifyForAllSkolUnkSkolCtLoc ctl_originctl_env ctl_t_or_k ctl_depth SubGoalDepth CtFlavourRole ShadowInfoWDerivWOnly CtFlavourGivenWantedDerived CtEvidenceCtGivenCtWanted CtDerived ctev_pred ctev_evarctev_loc ctev_dest ctev_noshTcEvDest EvVarDestHoleDest ImplicStatus IC_Solved IC_Insoluble IC_Unsolvedics_dead ImplicationImplicic_tclvlic_skolsic_infoic_given ic_no_eqsic_env ic_wantedic_binds ic_need_inner ic_need_outer ic_statusWantedConstraintsWC wc_simplewc_implHoleExprHoleTypeHoleCtCDictCan CIrredCanCTyEqCan CFunEqCan CNonCanonicalCHoleCancc_evcc_class cc_tyargs cc_pend_sccc_insolcc_tyvarcc_rhs cc_eq_relcc_funcc_fskcc_holeCtsXi TcPatSynInfoTPSI patsig_namepatsig_implicit_bndrspatsig_univ_bndrs patsig_reqpatsig_ex_bndrs patsig_provpatsig_body_ty TcIdSigInstTISI sig_inst_sigsig_inst_skolssig_inst_theta sig_inst_tau sig_inst_wcs sig_inst_wcx TcIdSigInfo CompleteSig PartialSigsig_bndrsig_ctxtsig_loc psig_name psig_hs_ty TcSigInfoTcIdSig TcPatSynSigTcSigFun WhereFrom ImportByUserImportBySystemImportByPlugin ImportAvailsimp_mods imp_dep_pkgsimp_trust_pkgsimp_trust_own_pkg imp_orphs imp_finsts ClosedTypeIdRhsNames IsGroupClosed IdBindingInfo NotLetBound ClosedLet NonClosedLet PromotionErrTyConPEClassPE FamDataConPEPatSynPE RecDataConPE NoDataKindsTC NoDataKindsDCNoTypeInTypeTCNoTypeInTypeDC TcTyThingAGlobalATcIdATyVarATcTyCon APromotionErrtct_idtct_info ArrowCtxt NoArrowCtxtThLevel PendingStuffRnPendingUntypedRnPendingTyped TcPendingThStageSplice RunSpliceCompBrack SpliceTypeTypedUntypedTcBinderTcIdBndrTcIdBndr_ExpTypeTcTvBndr TcBinderStackTcIdSetTcIdTcRef TcTypeEnvErrCtxtTcLclEnvtcl_loctcl_ctxt tcl_tclvl tcl_th_ctxt tcl_th_bndrstcl_arrow_ctxttcl_rdrtcl_env tcl_bndrs tcl_tyvarstcl_lietcl_errs SelfBootInfo NoSelfBootSelfBootsb_mdssb_tcs RecFieldEnvtcg_modtcg_semantic_modtcg_src tcg_rdr_env tcg_default tcg_fix_env tcg_field_env tcg_type_env tcg_inst_envtcg_fam_inst_env tcg_ann_env tcg_exports tcg_importstcg_dus tcg_used_grestcg_keep tcg_th_usedtcg_th_splice_usedtcg_th_top_level_locs tcg_dfun_n tcg_mergedtcg_rn_exportstcg_rn_imports tcg_rn_declstcg_dependent_filestcg_th_topdeclstcg_th_foreign_filestcg_th_topnamestcg_th_modfinalizerstcg_th_coreplugins tcg_th_statetcg_th_remote_state tcg_ev_binds tcg_tr_module tcg_bindstcg_sigs tcg_imp_specs tcg_warnstcg_annstcg_tcs tcg_insts tcg_fam_insts tcg_rules tcg_fords tcg_vects tcg_patsyns tcg_doc_hdrtcg_hpc tcg_self_boottcg_main tcg_safeInfertcg_tc_plugins tcg_top_loc tcg_static_wctcg_complete_matchesFrontendResultFrontendTypecheck DsMetaValDsBoundDsSplice DsMetaEnvDsLclEnvdsl_metadsl_loc dsl_dicts dsl_tm_cs dsl_pm_iterDsGblEnvds_modds_fam_inst_env ds_unqualds_msgs ds_if_env ds_dph_env ds_parr_bids_complete_matches PArrBuiltin lengthPVar replicatePVar singletonPVarmapPVar filterPVarzipPVar crossMapPVar indexPVar emptyPVarappPVarenumFromToPVarenumFromThenToPVarIfLclEnvif_modif_bootif_loc if_nsubstif_implicits_env if_tv_env if_id_envIfGblEnvif_doc if_rec_typesenv_topenv_usenv_gblenv_lclTcMRnMDsMIfLIfGIfMTcRnTcRnIf ns_mod_name ns_exportsns_maptcVisibleOrphanModstopStage topAnnStagetopSpliceStageimpLevel outerLevelthLevelpprTcTyThingCategory pprPECategory mkModDeps modDepsEltsemptyImportAvailsplusImportAvails isPartialSighasCompleteSigholeOccmkNonCanonicalmkNonCanonicalCt mkIrredCt mkInsolubleCtmkGivens ctEvidencectLocsetCtLocctOriginctPredctEvIdmkTcEqPredLikeEv ctFlavourctEqRel tyCoVarsOfCttyCoVarsOfCtList tyCoVarsOfCtstyCoVarsOfCtsList tyCoVarsOfWCtyCoVarsOfWCList dropDerivedWCdropDerivedSimples isDroppableCtarisesFromGivens isWantedCt isGivenCt isDerivedCt isCTyEqCanisCDictCan_MaybeisCFunEqCan_maybe isCFunEqCanisCNonCanonicalisHoleCtisOutOfScopeCt isExprHoleCt isTypeHoleCtgetUserTypeErrorMsgisUserTypeErrorCtisPendingScDictsuperClassesMightHelpsingleCtandCts listToCtsctsEltsconsCtssnocCts extendCtsList andManyCtsemptyCts isEmptyCtspprCtsemptyWC mkSimpleWC mkImplicWC isEmptyWCandWCunionsWC addSimples addImplics addInsolsinsolublesOnlyisSolvedStatusisInsolubleStatusinsolubleImplic insolubleWCinsolubleWantedCt insolubleEqCtnewImplication pprEvVars pprEvVarThetapprEvVarWithTypewrapTypeWithImplicationwrapTypectEvPredctEvLoc ctEvOrigin ctEvEqRelctEvRolectEvTerm ctEvCoercionctEvEvIdisWantedisGiven isDerivedisGivenOrWDeriv ctEvFlavourctEvFlavourRole ctFlavourRole eqCanRewriteeqCanRewriteFReqMayRewriteFRfunEqCanDischargefunEqCanDischargeFeqCanDischargeFRinitialSubGoalDepthbumpSubGoalDepthmaxSubGoalDepthsubGoalDepthExceeded mkKindLoc toKindLoc mkGivenLocctLocEnv ctLocLevel ctLocDepth ctLocOrigin ctLocSpanctLocTypeOrKind_maybe setCtLocSpanbumpCtLocDepthsetCtLocOriginupdateCtLocOrigin setCtLocEnv pushErrCtxtpushErrCtxtSameOrigintermEvidenceAllowed pprSkolInfopprSigSkolInfo isTypeLevel isKindLevelisVisibleOrigintoInvisibleOrigin lexprCtOrigin exprCtOriginmatchesCtOrigin grhssCtOriginpprCtLoc pprCtOrigin runTcPluginMunsafeTcPluginTcMgetEvBindsTcPluginMmkRoleAnnotEnvemptyRoleAnnotEnvlookupRoleAnnot getRoleAnnots$fContainsModuleEnv$fContainsDynFlagsEnv$fContainsModuleDsGblEnv$fHasOccNameTcBinder$fOutputableTcBinder$fOutputablePromotionErr$fOutputableIdBindingInfo$fOutputableTcTyThing$fOutputableWhereFrom$fOutputableTcIdSigInfo$fOutputableTcIdSigInst$fOutputableTcPatSynInfo$fOutputableTcSigInfo$fOutputableHole$fOutputableImplicStatus$fOutputableTcEvDest$fOutputableCtFlavour$fOutputableSkolemInfo$fOutputableTypeOrKind$fMonadFailTcPluginM$fMonadTcPluginM$fApplicativeTcPluginM$fFunctorTcPluginM$fOutputableCtOrigin$fOutputableCtEvidence$fOutputableImplication$fOutputableWantedConstraints$fOutputableCt$fOutputableThStage$fContainsModuleTcGblEnv$fEqShadowInfo $fEqCtFlavour$fEqSubGoalDepth$fOrdSubGoalDepth$fOutputableSubGoalDepth$fEqTypeOrKind unifyKind unifyTypetypeNatAddTyContypeNatSubTyContypeNatMulTyContypeNatDivTyContypeNatModTyContypeNatExpTyContypeNatLogTyContypeNatLeqTyContypeNatCmpTyContypeSymbolCmpTyContypeSymbolAppendTyContypeNatCoAxiomRulesfinishTHrunRemoteModFinalizersrunQuasilookupThName_mayberunMetaDrunMetaTrunMetaPrunMetaEtcTopSpliceExpr runAnnotationtcTypedBrackettcUntypedBracket tcSpliceExprtcCheckHoleFitbadReexportedBootThingmissingBootThingcheckBootDeclM tcMatchesFun tcGRHSsPat tcCheckId tcSyntaxOpGen tcSyntaxOp tcInferRho tcInferSigmatcInferSigmaNC tcMonoExpr tcMonoExprNC tcPolyExpr tcInitTidyEnv rnMbLHsDocrnLHsDocrnHsDocrnStmtsrnLExprinitTc initTcWithGblinitTcInteractiveinitTcForLookup initTcRnIf discardResult getTopEnv updTopEnv getGblEnv updGblEnv setGblEnv getLclEnv updLclEnv setLclEnvgetEnvssetEnvsxoptMdoptMgoptMwoptMsetXOptM unsetXOptM unsetGOptM unsetWOptM whenDOptM whenGOptM whenWOptM whenXOptM unlessXOptM getGhcModewithDoDynamicToo getEpsVargetEps updateEps updateEps_getHpt getEpsAndHpt withException newArrowScopeescapeArrowScopenewUniqueSupplycloneLocalNamenewName newNameAt newSysName newSysLocalIdnewSysLocalIdsnewTcRef readTcRef writeTcRefupdTcReftraceTctraceRn traceOptTcRn traceTcRngetPrintUnqualifiedprintForUserTcRntraceIf traceHiDiffs traceOptIf getIsGHCi getGHCiMonadgetInteractivePrintNametcIsHsBootOrSigtcSelfBootInfogetGlobalRdrEnv getRdrEnvs getImports getFixityEnvextendFixityEnvgetRecFieldEnvgetDeclaredDefaultTysaddDependentFiles getSrcSpanM setSrcSpanaddLocMwrapLocM wrapLocFstM wrapLocSndM getErrsVar setErrsVarfailWithfailAtaddErrAtaddErrscheckErr addMessagesdiscardWarnings mkLongErrAt mkErrDocAt addLongErrAt reportErrors reportError reportWarningrecoverMmapAndRecoverMfoldAndRecoverM mapAndReportMtryTc discardErrstryTcDiscardingErrs askNoErrs checkNoErrs whenNoErrsifErrsM failIfErrsMcheckTHfailTH getErrCtxt setErrCtxt addErrCtxt addErrCtxtMaddLandmarkErrCtxtaddLandmarkErrCtxtMupdCtxt popErrCtxt getCtLocM setCtLocMaddErrTc addErrsTc addErrTcMmkErrTcMmkErrTc failWithTc failWithTcMcheckTccheckTcMfailIfTc failIfTcM warnIfFlagwarnIfwarnTcwarnTcM addWarnTc addWarnTcM addWarnAtadd_warn mkErrInfodebugTc newTcEvBindsgetTcEvTyCoVarsgetTcEvBindsMapsetTcEvBindsMap addTcEvBindchooseUniqueOccTcgetConstraintVarsetConstraintVaremitStaticConstraintsemitConstraints emitSimple emitSimplesemitImplicationemitImplications emitInsolublediscardConstraintstryCaptureConstraintscaptureConstraintspushLevelAndCaptureConstraints pushTcLevelM_ pushTcLevelM getTcLevel setTcLevelisTouchableTcM getLclTypeEnv setLclTypeEnvtraceTcConstraintsemitWildCardHoleConstraints recordThUserecordThSpliceUserecordTopLevelSpliceLocgetTopLevelSpliceLocs keepAlivegetStagegetStageAndBindLevelsetStageaddModFinalizersWithLclEnvrecordUnsafeInfer finalSafeModefixSafeInstancesgetLocalRdrEnvsetLocalRdrEnv mkIfLclEnv initIfaceTcRn initIfaceLoadinitIfaceCheck initIfaceLclinitIfaceLclWithSubst getIfModulefailIfM forkM_maybeforkMsetImplicitEnvM$fMonadUniqueIOEnvnonBidirectionalErrtcPatSynBuilderBindtcCheckPatSynDecltcInferPatSynDeclnewMetaKindVarnewMetaKindVars newEvVarsnewEvVar newWanted newWanteds cloneWantedcloneWC emitWanted emitWantedEqemitWantedEvVaremitWantedEvVarsnewDictnewCoercionHolefillCoercionHoleisFilledCoercionHoleunpackCoercionHoleunpackCoercionHole_maybecheckCoercionHolenewInferExpTypeNoInstnewInferExpTypeInstnewInferExpTypereadExpType_maybe readExpTypecheckingExpType_maybecheckingExpType tauifyExpType expTypeToTypeinferResultToType tcInstTypetcSkolDFunTypetcSuperSkolTyVarstcInstSkolTyVarstcInstSkolTyVarsXtcInstSuperSkolTyVarsXfreshenTyVarBndrsfreshenCoVarBndrsXinstSkolTyCoVars newFskTyVar newSigTyVar newFmvTyVarnewMetaDetailscloneMetaTyVar readMetaTyVarisFilledMetaTyVarisUnfilledMetaTyVarwriteMetaTyVargenInstSkolTyVarsX newFlexiTyVarnewFlexiTyVarTynewFlexiTyVarTysnewOpenTypeKindnewOpenFlexiTyVarTynewMetaSigTyVars newMetaTyVars newMetaTyVarXnewMetaTyVarsXnewMetaSigTyVarX newWildCardXnewMetaTyVarTyAtLevelquantifyTyVarszonkQuantifiedTyVar defaultTyVarskolemiseRuntimeUnktcGetGlobalTyCoVarszonkTcTypeAndFVzonkTcTypeAndSplitDepVarszonkTcTypesAndSplitDepVarszonkTyCoVarsAndFVzonkTyCoVarsAndFVList zonkTcTyVarszonkTyCoVarKind zonkTcTypes zonkEvVarzonkWC zonkSimpleszonkCtzonkSkolemInfozonkId zonkCoVarzonkTcTypeMapper zonkTcTypezonkCozonkTcTyCoVarBndrzonkTcTyVarBinder zonkTcTyVarzonkTcTyVarToTyVarzonkSigTyVarPairszonkTidyTcTypezonkTidyOrigintidyCt tidyEvVartidySkolemInfoensureNotLevPolycheckForLevPolycheckForLevPolyXformatLevPolyErr tcAnnotationsannCtxtrnTopSpliceDecls rnSpliceDecl rnSplicePat rnSpliceTypetcIfaceCompleteSigstcIfaceAnnotationstcIfaceFamInst tcIfaceInsttcIfaceVectInfo tcIfaceRules tcIfaceDecl hsLPatType hsPatType hsLitType shortCutLit hsOverLitName emptyZonkEnvmkEmptyZonkEnv zonkTopBndrs zonkTyBndrsXzonkTyVarBindersXzonkTyVarBinderX zonkTopExpr zonkTopLExpr zonkTopDecls zonkTcEvBinds zonkEvBinds zonkTyVarOcczonkTcTypeToTypezonkTcTypeToTypes zonkCoToCo zonkSigType$fOutputableZonkEnvTmStatePmVarEnv canDivergeflattenPmVarEnvinitialTmState solveOneEq extendSubstexprDeepLookuptmOracle pmLitType mkTickBoxinitHpc WhereLookingWL_Any WL_Global WL_LocalTop WL_LocalOnlymkUnboundNameRdrreportUnboundName unboundName unboundNameXunknownNameSuggestionsperhapsForallMsgPipelineOutput Temporary Persistent SpecificFile PipeStatehsc_env maybe_loc foreign_osPipeEnv stop_phase src_filename src_basename src_suffix output_spec PhasePlus RealPhaseHscOut CompPipelineevalP getPipeEnv getPipeState setDynFlagssetModLocation setForeignOs$fOutputablePhasePlus$fHasDynFlagsCompPipeline$fMonadIOCompPipeline$fMonadCompPipeline$fApplicativeCompPipeline$fFunctorCompPipeline$fShowPipelineOutputloadSysInterfaceNameCacheUpdaterNCUupdateNameCachenewGlobalBindernewInteractiveBinderallocateGlobalBinderifaceExportNamesmkNameCacheUpdater updNameCache lookupOrigexternaliseName setNameModule tcIfaceLclIdextendIfaceIdEnv tcIfaceTyVarlookupIfaceTyVarlookupIfaceVarextendIfaceTyVarEnvextendIfaceEnvslookupIfaceTop newIfaceName newIfaceNamesemptyNameShape mkNameShapeextendNameShapenameShapeExportssubstNameShapemaybeSubstNameShape tcRnModIfacetcRnModExports rnModIface rnModExportsdataConInfoPtrToNamedsForeignsHooktcForeignImportsHooktcForeignExportsHookhscFrontendHookhscCompileCoreExprHookghcPrimIfaceHook runPhaseHook runMetaHooklinkHookrunRnSpliceHookgetValueSafelyHookcreateIservProcessHook getHooked lookupHook WarnErrLoggerGhcTunGhcTSessionGhcunGhc getSession setSession withSessiongetSessionDynFlags modifySessionwithTempSession logWarnings reflectGhcreifyGhcliftGhcTprintExceptiondefaultWarnErrLogger $fGhcMonadGhc$fHasDynFlagsGhc$fExceptionMonadGhc $fMonadFixGhc $fMonadIOGhc $fMonadGhc$fApplicativeGhc $fFunctorGhc$fGhcMonadGhcT$fHasDynFlagsGhcT$fExceptionMonadGhcT $fMonadIOGhcT $fMonadGhcT$fApplicativeGhcT $fFunctorGhcTiservCmd withIServevalStmt abandonStmtevalIO evalStringevalStringToIOString mallocData mkCostCentres createBCOs addSptEntrycostCentreStackInfo newBreakArrayenableBreakpointbreakpointStatusgetBreakpointVar initObjLinker lookupSymbol lookupClosurepurgeLookupSymbolCacheloadDLL loadArchive unloadObjaddLibrarySearchPathremoveLibrarySearchPath resolveObjsfindSystemLibrary iservCall readIServ writeIServ stopIServmkFinalizedHValuefreeHValueRefswormhole wormholeRef mkEvalOptsfromEvalResultflushFinderCachesfindImportedModulefindPluginModulefindExactModulefindExposedPackageModuleaddHomeModuleToFinder uncacheModulefindHomeModulemkHomeModLocationmkHomeModLocation2mkHiOnlyModLocation mkObjPathmkHiPath mkStubPathsfindObjectLinkableMaybefindObjectLinkablecannotFindModulecannotFindInterfacemkDependencies mkUsedNames mkUsageInfo cmmPipeline ClosureEnvemptyClosureEnvextendClosureEnvlinkBCOlookupStaticPtrlookupIElinkFail nameToCLabelmkITbls ppSourceStats BlankSrcSpanNoBlankSrcSpan showAstData$fEqBlankSrcSpan$fShowBlankSrcSpan addFieldDoc addFieldDocs addConDoc addConDocsaddConDocFirstaddTicksToBinds hpcInitCode$fMonadUniqueTM$fHasDynFlagsTM $fMonadTM$fApplicativeTM $fFunctorTM$fEqTickDensity$fEqTickishTypeconvertToHsDeclsconvertToHsExpr convertToPatconvertToHsTypethRdrNameGuesses $fMonadCvtM$fApplicativeCvtM $fFunctorCvtM LRenamingRenaming renameFromrenameTo IncludeDeclidUnitId idModRenamingidSignatureInclude LHsUnitDecl HsUnitDeclDeclDIncludeD HsDeclTypeModuleD SignatureDLHsUnitHsUnit hsunitName hsunitBody LHsModuleId HsModuleId HsModuleVarLHsModuleSubst HsModuleSubst LHsUnitIdHsUnitId HsComponentId hsPackageName hsComponentId$fOutputableHsComponentId parseModuleparseSignature parseImportparseStatementparseDeclarationparseExpression parsePatternparseTypeSignature parseStmtparseIdentifier parseType parseBackpack parseHeader mkPrelImportsgetOptionsFromFile getOptionscheckProcessArgsResultoptionsErrorMsgs CheapAppFunexprType coreAltType coreAltsType isExprLevPolyapplyTypeToArgsmkCastmkTickmkTicks mkTickNoHNF tickHNFArgs stripTicksTopstripTicksTopEstripTicksTopT stripTicksE stripTicksT bindNonRecneedsCaseBinding mkAltExpr findDefault addDefault isDefaultAltfindAlt mergeAlts trimConArgs filterAltsrefineDefaultAltcombineIdenticalAlts exprIsTrivialgetIdFromTrivialExprgetIdFromTrivialExpr_maybe exprIsBottom exprIsDupable exprIsCheapexprIsExpandableexprIsWorkFree exprIsCheapX isCheapAppisExpandableAppexprOkForSpeculationexprOkForSideEffectsaltsAreExhaustive exprIsHNF exprIsConLikeexprIsTopLevelBindableexprIsLiteralStringdataConRepInstPatdataConRepFSInstPat cheapEqExpr cheapEqExpr' exprIsBigeqExprdiffExpr diffBinds tryEtaReduce rhsIsStatic isEmptyTycollectMakeStaticArgs isJoinBind doStaticArgs FloatBindFloatLet FloatCase sortQuantVars mkCoreAppmkWildEvBindermkWildValBinder mkWildCase mkIfThenElsecastBottomExpr mkIntExprIntmkWordExprWord mkIntegerExpr mkNaturalExprmkStringExprFSmkStringExprFSWith mkCoreVarTupmkCoreVarTupTy mkCoreTup mkCoreUbxTupmkCoreTupBoxitymkBigCoreVarTupmkBigCoreVarTup1mkBigCoreVarTupTy mkBigCoreTupmkBigCoreTupTyunitExprmkTupleSelectormkTupleSelector1mkSmallTupleSelector mkTupleCasemkSmallTupleCase wrapFloat mkNilExpr mkConsExpr mkListExpr mkFoldrExpr mkBuildExpr mkNothingExpr mkJustExprmkRuntimeErrorAppmkImpossibleExprerrorIdsrEC_SEL_ERROR_IDrUNTIME_ERROR_IDiRREFUT_PAT_ERROR_IDrEC_CON_ERROR_ID pAT_ERROR_IDnO_METHOD_BINDING_ERROR_IDnON_EXHAUSTIVE_GUARDS_ERROR_ID tYPE_ERROR_IDaBSENT_ERROR_IDmkAbsentErrorApp$fOutputableFloatBindexitifyProgram IdSubstEnvSubst isEmptySubst emptySubst mkEmptySubstmkSubst substInScope zapSubstEnv extendIdSubstextendIdSubstListextendSubstWithVarextendSubstList lookupIdSubstlookupTCvSubstdelBndrdelBndrs mkOpenSubst addInScopeSet extendInScopeextendInScopeListextendInScopeIds setInScope substExprSC substExpr substBindSC substBind deShadowBinds substBndr substBndrs substRecBndrs cloneIdBndr cloneIdBndrs cloneBndrs cloneBndrcloneRecIdBndrs getTCvSubst substIdInfosubstUnfoldingSCsubstUnfolding substIdOcc substSpecsubstRulesForImportedIds substDVarSet substTickish$fOutputableSubstCheapFun manifestArity joinRhsArity exprArity typeArityexprBotStrictness_maybeexprEtaExpandArity findRhsArity etaExpandetaExpandToJoinPointetaExpandToJoinPointRule$fOutputableArityType$fOutputableEtaInfooccurAnalysePgmoccurAnalyseExproccurAnalyseExpr_NoBinderSwap$fOutputableOccEncl$fOutputableUsageDetails$fOutputableDetailstidyExpr tidyRulestidyRule tidyVarOcc tidyUnfolding simpleOptExprsimpleOptExprWith simpleOptPgmjoinPointBinding_maybejoinPointBindings_maybeexprIsConApp_maybeexprIsLiteral_maybeexprIsLambda_maybe pushCoArg pushCoTyArg pushCoValArgcollectBindersPushingCo$fOutputableSimpleOptEnvmkRule roughTopNamespprRulesForUser mkRuleInfoextendRuleInfo addRuleInfoaddIdSpecialisations rulesOfBindsgetRules emptyRuleBase mkRuleBaseextendRuleBaseList unionRuleBase pprRuleBase lookupRuleruleCheckProgramCallCtxt BoringCtxtRhsCtxt DiscArgCtxt RuleArgCtxt ValAppCtxtCaseCtxt ArgSummaryTrivArg NonTrivArgValueArgmkTopUnfoldingmkImplicitUnfoldingmkSimpleUnfoldingmkDFunUnfoldingmkWwInlineRulemkCompulsoryUnfoldingmkWorkerUnfoldingmkInlineUnfoldingmkInlineUnfoldingWithAritymkInlinableUnfolding specUnfoldingmkCoreUnfolding mkUnfoldinginlineBoringOkcouldBeSmallEnoughToInlinesmallEnoughToInlinecertainlyWillInlinecallSiteInline$fOutputableExprSize$fOutputableArgSummary$fOutputableCallCtxt primOpRules builtinRules caseRules$fHasDynFlagsRuleM$fMonadPlusRuleM$fAlternativeRuleM$fMonadFailRuleM $fMonadRuleM$fApplicativeRuleM$fFunctorRuleMDCB wiredInIds ghcPrimIds mkDictSelRhs mkDataConRepwrapNewTypeBodyunwrapNewTypeBodywrapFamInstBodywrapTypeUnbranchedFamInstBodyunwrapFamInstScrut unwrapTypeUnbranchedFamInstScrut mkFCallId mkDictFunId mkDictFunTyunsafeCoerceNamenoinlineIdName proxyHashIdunsafeCoerceId nullAddrIdseqIdlazyId noinlineIdrunRWIdcoerceIdrealWorldPrimId voidPrimId voidArgIdcoercionTokenIdunarise$fOutputableUnariseValstg2stg toIfaceTvBndr toIfaceIdBndrtoIfaceTvBndrs toIfaceBndrtoIfaceTyVarBinders toIfaceKind toIfaceType toIfaceTyVartoIfaceTyCon_nametoIfaceCoerciontidyToIfaceTypetidyToIfaceTcArgstidyToIfaceContextpatSynToIfaceDecl toIfaceBangtoIfaceSrcBangtoIfaceLetBndrtoIfaceIdDetails toIfaceIdInfo toIfUnfolding toIfaceExprtoIfaceOneShottoIfaceTickish toIfaceBind toIfaceAlt toIfaceCon toIfaceApp toIfaceVar knownKeyNameslookupKnownKeyNameisKnownKeyNamelookupKnownNameInfoprimOpIdghcPrimExportsmaybeCharLikeConmaybeIntLikeConisNumericClassisStandardClass cgTopRhsCon buildDynCon bindConArgscgExprcgTopRhsClosureemitBlackHoleCodepushUpdateFrameemitUpdateFrame parseCmmFilecodeGenTraceBinIFaceReadingQuietBinIFaceReading CheckHiWay IgnoreHiWay readBinIface writeBinIface getSymtabNamegetDictFastString$fEqCheckHiWay$fEqTraceBinIFaceReadingfingerprintDynFlagsfingerprintOptFlagsfingerprintHpcFlagstcLookupImported_maybe importDeclcheckWiredInTyConifCheckWiredInThingloadSrcInterfaceloadSrcInterface_maybeloadModuleInterfaceloadModuleInterfacesloadInterfaceForNameloadInterfaceForModuleloadUserInterfaceloadPluginInterface loadInterfacemoduleFreeHolesPrecise loadDeclsfindAndReadIface readIfaceinitExternalPackageState ifaceStats showIfacepprModIfaceSimple pprModIface$fOutputableWarnings InstBindings ib_tyvarsib_binds ib_pragmas ib_extensions ib_derivedInstInfoiSpeciBinds lookupGlobaltcLookupLocatedGlobaltcLookupGlobaltcLookupDataContcLookupPatSyntcLookupConLike tcLookupClass tcLookupTyCon tcLookupAxiomtcLookupLocatedGlobalIdtcLookupLocatedClasstcLookupLocatedTyContcLookupInstance tcGetInstEnvssetGlobalTypeEnvtcExtendGlobalEnvImplicittcExtendGlobalEnvtcExtendTyConEnvtcExtendGlobalValEnvtcExtendRecEnvtcLookupLocatedtcLookupLcl_maybetcLookup tcLookupTyVar tcLookupIdtcLookupIdMaybetcLookupLocalIdsgetInLocalScopetcExtendKindEnvListtcExtendKindEnvtcExtendTyVarEnvtcExtendTyVarEnv2isTypeClosedLetBndrtcExtendRecIdstcExtendSigIdstcExtendLetEnv tcExtendIdEnvtcExtendIdEnv1tcExtendIdEnv2tcExtendLocalTypeEnvtcExtendBinderStacktcInitOpenTidyEnvtcAddDataFamConPlaceholderstcAddPatSynPlaceholdersgetTypeSigNames tcExtendRulescheckWellStagedtopIdLvltcMetaTy isBrackStagetcGetDefaultTysiDFunIdpprInstInfoDetailssimpleInstInfoClsTysimpleInstInfoTysimpleInstInfoTyCon newDFunName newDFunName'newFamInstTyConNamenewFamInstAxiomNamemkStableIdFromStringmkStableIdFromName mkWrapperName pprBinders wrongThingErr$fMonadThingsIOEnv$fOutputableInstInfosptCreateStaticBindssptModuleInitCode HsDocContext TypeSigCtxPatCtxSpecInstSigCtxDefaultDeclCtxForeignDeclCtx DerivDeclCtxRuleCtx TyDataCtxTySynCtx TyFamilyCtx FamPatCtx ConDeclCtx ClassDeclCtxExprWithTySigCtxTypBrCtx HsTypeCtxGHCiCtx SpliceTypeCtxClassInstanceCtx VectDeclCtx GenericCtxnewLocalBndrRnnewLocalBndrsRnbindLocalNamesbindLocalNamesFVextendTyVarEnvFVRncheckDupRdrNames checkDupNamescheckShadowedRdrNamescheckDupAndShadowedNamesaddFvRnmapFvRn mapMaybeFvRnwarnUnusedTopBindswarnUnusedLocalBindswarnUnusedMatcheswarnUnusedTypePatterns mkFieldEnvaddNameClashErrRnunknownSubordinateErr dupNamesErrbadQualBndrErr checkTupSizewithHsDocContextinHsDocContextpprHsDocContextCoreMPreInlineUnconditionallyPostInlineUnconditionally UnfoldingDone RuleFiredLetFloatFromLet EtaExpansion EtaReduction BetaReduction CaseOfCase KnownBranch CaseMergeAltMergeCaseElim CaseIdentityFillInCaseDefault BottomFoundSimplifierDone SimplCount PluginPassFloatOutSwitchesfloatOutLambdasfloatOutConstantsfloatOutOverSatAppsfloatToTopLevelOnly SimplModesm_namessm_phase sm_dflagssm_rules sm_inline sm_case_case sm_eta_expandCoreToDoCoreDoSimplifyCoreDoPluginPassCoreDoFloatInwardsCoreDoFloatOutwardsCoreLiberateCaseCoreDoPrintCoreCoreDoStaticArgsCoreDoCallArity CoreDoExitifyCoreDoStrictnessCoreDoWorkerWrapperCoreDoSpecialisingCoreDoSpecConstrCoreCSECoreDoRuleCheckCoreDoVectorisation CoreDoNothing CoreDoPasses CoreDesugarCoreDesugarOpt CoreOccurAnalpprPassDetailsrunWhenrunMaybe bindsOnlyPass simplCountNzeroSimplCountisZeroSimplCounthasDetailedCountsdoFreeSimplTick doSimplTickplusSimplCount pprSimplCountrunCoreMliftIOWithCount getHscEnv getRuleBasegetVisibleOrphanMods addSimplCountgetOrigNameCachegetPackageFamInstEnvreinitializeGlobalsgetAnnotationsgetFirstAnnotationsputMsgS errorMsgSfatalErrorMsgSdebugTraceMsgSthNameToGhcName$fOutputableSimplMode$fOutputableFloatOutSwitches $fOrdTick$fEqTick$fOutputableTick$fMonadThingsCoreM$fHasModuleCoreM$fHasDynFlagsCoreM$fMonadIOCoreM$fMonadUniqueCoreM$fMonadPlusCoreM$fAlternativeCoreM$fApplicativeCoreM $fMonadCoreM$fFunctorCoreM$fOutputableCoreToDo specProgram$fOutputableCallKey$fOutputableCallInfo$fOutputableCallInfoSet$fHasModuleSpecM$fHasDynFlagsSpecM$fMonadUniqueSpecM$fMonadFailSpecM $fMonadSpecM$fApplicativeSpecM$fFunctorSpecMSimplMinitSmpl traceSmpl getSimplRules getFamEnvsnewId newJoinId getSimplCounttick checkedTickfreeTick$fMonadIOSimplM$fHasDynFlagsSimplM$fMonadUniqueSimplM $fMonadSimplM$fApplicativeSimplM$fFunctorSimplM JoinFloats JoinFloat LetFloatsSimplSRDoneExDoneIdContEx SimplFloats sfLetFloats sfJoinFloats sfInScopeseMode seTvSubst seCvSubst seIdSubst seInScope emptyFloats pprSimplEnv mkSimplEnvgetMode seDynFlagssetModeupdMode getInScope setInScopeSetsetInScopeFromEsetInScopeFromFaddNewInScopeIds modifyInScope setSubstEnvmkContExdoFloatFromRhsemptyLetFloatsemptyJoinFloats unitLetFloat unitJoinFloat mkFloatBind extendFloats addLetFloats addJoinFloats addFloats addLetFlts letFloatBinds addJoinFlts mkRecFloats wrapFloatswrapJoinFloatsXwrapJoinFloatsgetTopFloatBinds mapLetFloatssubstIdrefineFromInScope lookupRecBndr simplBinders simplBindersimplNonRecBndrsimplNonRecJoinBndr simplRecBndrssimplRecJoinBndrs$fOutputableSimplSR$fOutputableFloatFlag$fOutputableLetFloats$fOutputableSimplFloatsValArgTyArgCastBy as_arg_ty as_hole_tyArgInfoai_funai_argsai_typeai_rulesai_enclai_strsai_discsDupFlagNoDup SimplifiedOkToDup StaticEnv SimplContStopCastIt ApplyToVal ApplyToTySelect StrictBind StrictArgTickItsc_dupsc_argsc_envsc_cont sc_arg_ty sc_hole_tysc_bndrsc_altssc_bndrssc_bodysc_funsc_cci isSimplified addValArgTo addTyArgTo addCastToargInfoAppArgspushSimplifiedArgs argInfoExpr mkBoringStop mkRhsStop mkLazyArgStopcontIsRhsOrArg contIsStop contIsDupable contIsTrivialcontResultType contHoleType countArgscontArgs mkArgInfointerestingCallContextsimplEnvForGHCiupdModeForStableUnfoldingsupdModeForRulesactiveUnfoldinggetUnfoldingInRuleMatch activeRulepreInlineUnconditionallypostInlineUnconditionallymkLamtryEtaExpandRhsabstractFloats prepareAltsmkCase$fOutputableDupFlag$fOutputableArgSpec$fOutputableSimplCont simplTopBinds simplExpr simplRules FloatSpecFloatMeStayPut LevelTypeBndrLvl JoinCeilLvlLevel LevelledBndr LevelledBind LevelledExprfloatSpecLevel tOP_LEVEL incMinorLvl asJoinCeilLvlltLvlltMajLvlisTopLvl isJoinCeilLvl setLevels $fEqLevel$fOutputableLevel$fOutputableFloatSpec $fEqLevelTypefrontendFrontendPluginActioninstallCoreToDostcPluginCommandLineOption defaultPlugindefaultFrontendPlugin floatOutwards$fOutputableFloatBinds floatInwards MiniFixityEnvaddLocalFixitieslookupFixityRnlookupFixityRn_helplookupTyFixityRnlookupFieldFixityRn HsSigCtxt TopSigCtxt LocalBindCtxt ClsDeclCtxt HsBootCtxt RoleAnnotCtxtChildLookupResult NameNotFoundIncorrectParent FoundNameFoundFLnewTopSrcBinderlookupTopBndrRnlookupLocatedTopBndrRnlookupExactOcclookupInstDeclBndrlookupFamInstNamelookupConstructorFieldslookupRecFieldOcclookupSubBndrOcc_helpercombineChildLookupResultlookupLocatedOccRnlookupLocalOccRn_maybelookupLocalOccThLvl_maybe lookupOccRnlookupLocalOccRnlookupKindOccRnlookupTypeOccRnlookupOccRn_maybelookupOccRn_overloadedlookupGlobalOccRn_maybelookupGlobalOccRnlookupInfoOccRnlookupGlobalOccRn_overloadedlookupGreAvailRnaddUsedDataCons addUsedGRE addUsedGREslookupSigOccRnlookupSigCtxtOccRnlookupLocalTcNames dataTcOccslookupIfThenElselookupSyntaxName'lookupSyntaxNamelookupSyntaxNames$fMonoidDisambigInfo$fSemigroupDisambigInfo$fOutputableDisambigInfo$fOutputableChildLookupResult$fOutputableHsSigCtxt rnHsSigWcTypernHsSigWcTypeScoped rnHsWcTypeextractFilteredRdrTyVarsextractFilteredRdrTyVarsDups rnHsSigType rnLHsInstType rnLHsType rnLHsTypesrnHsType rnLHsKindrnHsKind rnContextrnLTyVarbindSigTyVarsFV bindLRdrNames bindHsQTyVarsbindLHsTyVarBndrnewTyVarNameRncollectAnonWildCardsrnConDeclFields mkOpAppRn mkNegAppRn mkOpFormRn mkConOpPatRncheckPrecMatchcheckSectionPrecfreeKiTyVarsAllVarsfreeKiTyVarsKindVarsfreeKiTyVarsTypeVarsextractHsTyRdrTyVarsextractHsTyRdrTyVarsDupsextractHsTyRdrTyVarsKindVarsextractHsTysRdrTyVarsextractHsTysRdrTyVarsDupsrmDupsInRdrTyVarsextractRdrKindSigVarsextractDataDefnKindVarselemRdr$fOutputableRnTyKiWhat$fOutputableRnTyKiEnv$fOutputableOpName$fOutputableFreeKiTyVarsHsRecFieldContext HsRecFieldCon HsRecFieldPat HsRecFieldUpd NameMakerCpsRnliftCpstopRecNameMakerisTopRecNameMakerlocalRecNameMakerrnPatsrnPatapplyNameMaker rnBindPat rnPatAndThen rnHsRecFieldsrnHsRecUpdFieldsrnLit rnOverLit patSigErr $fMonadCpsRn$fApplicativeCpsRn$fFunctorCpsRn rnImportscalculateAvailsextendGlobalRdrEnvRngetLocalNonValBindersnewRecordSelector mkChildEnv findChildrenreportUnusedNamesdodgyMsgdodgyMsgInsert checkConName tcRnExportsexports_from_avail rnTopBindsLHSrnTopBindsBootrnLocalBindsAndThenrnLocalValBindsLHS rnValBindsRHSrnLocalValBindsRHSmakeMiniFixityEnv rnMethodBinds renameSigs rnMatchGrouprnGRHSsrnGRHSrnSrcFixityDecl rnSrcDecls addTcgDUs findSplice SpliceInfospliceDescription spliceSource spliceIsDeclspliceGenerated rnBracket rnSpliceExpr traceSplicecheckThLocalNamernExpr$fOutputableStmtTreeRecompileRequiredUpToDate MustCompile RecompBecausemkIface mkIfaceTcwriteIfaceFilemkIfaceExportsrecompileRequired checkOldIfacetyThingToIfaceDecl$fBinaryIfaceIdExtras$fBinaryIfaceDeclExtras$fOutputableIfaceDeclExtras$fEqRecompileRequired pprTyThingLoc pprTyThingHdrpprTyThingInContextpprTyThingInContextLoc pprTyThingpprTypeForUser newFamInstcheckFamInstConsistencytcInstNewTyCon_maybetcLookupDataFamInsttcLookupDataFamInst_maybetcTopNormaliseNewTypeTF_maybetcExtendLocalFamInstEnvmakeInjectivityErrorsinjTyVarsOfTypeinjTyVarsOfTypestcGetFamInstEnvs FunDepEqnFDEqnfd_qtvsfd_eqsfd_pred1fd_pred2fd_locimproveFromAnother pprEquationimproveFromInstEnvcheckInstCoverage checkFunDeps$fOutputableFunDepEqnnewMethodFromNamedeeplySkolemisetopInstantiatetopInstantiateInferreddeeplyInstantiateinstTyVarsWithinstCallinstCallConstraints instDFunTypeinstStupidTheta tcInstBinders tcInstBindernewOverloadedLit mkOverLit tcSyntaxNamegetOverlapFlag tcGetInsts newClsInsttcExtendLocalInstEnvOccCheckResultOC_OKOC_Bad OC_OccursmatchExpectedFunTysmatchActualFunTysmatchActualFunTysPartmatchExpectedListTymatchExpectedPArrTymatchExpectedTyConAppmatchExpectedAppTy tcSubTypeHR tcSubTypeET tcSubTypeO tcSubType_NC tcSubTypeDStcSubTypeDS_NC_O tcWrapResult tcWrapResultO tcInferNoInst tcInferInst promoteTcType tcSkolemise tcSkolemiseETcheckConstraintsbuildImplicationFor unifyThetauTypeswapOverTyVarscanSolveByUnificationmatchExpectedFunKindoccCheckForErrorsmetaTyVarUpdateOKoccCheckExpand$fMonadOccCheckResult$fApplicativeOccCheckResult$fFunctorOccCheckResultCustomTermPrinter TermFoldMfTermMfPrimM fSuspensionM fNewtypeWrapM fRefWrapMTermFoldfTermfPrim fSuspension fNewtypeWrapfRefWrapClosuretipeinfoPtrptrsnonPtrs ClosureType BlackholeAPPAP IndirectionMutVarMVarOtherTerm Suspension NewtypeWrapRefWraptydcvalsubTermsvaluectypebound_to wrapped_termisTerm isSuspensionisPrim isNewtypeWrapisFuntermTypeisFullyEvaluatedTermgetClosureDataisConstr isIndirectionisFullyEvaluatedfoldTerm foldTermM idTermFold mapTermType termTyCoVarspprTermcPprTerm cPprTermBase cvObtainTermcvReconstructTypeimproveRTTIType$fOutputableClosureType$fOutputableTerm$fShowClosureType$fEqClosureTypereportUnsolvedreportAllUnsolvedwarnAllUnsolvedwarnDefaultingsolverDepthErrorTcS$fMonoidReport$fSemigroupReport$fOutputableReport$fOutputableTypeErrorChoice$fOutputableHoleChoice$fOutputableReportErrCtxtMaybeNewFreshCachedTcSDictMap EqualCtList InertCansIC inert_eqs inert_funeqs inert_dictsinert_safehask inert_irreds inert_countInertSetIS inert_cans inert_fsksinert_flat_cacheinert_solved_dictsWorkListWLwl_eqs wl_funeqswl_rest wl_implicsappendWorkList workListSizeworkListWantedCountextendWorkListEqextendWorkListFunEqextendWorkListNonEqextendWorkListImplicextendWorkListCtextendWorkListCtsisEmptyWorkList emptyWorkList getWorkListselectNextWorkItem isImprovable foldTyEqs findTyEqslookupInertTyVarlookupFlattenTyVar addInertEq addInertCankickOutAfterUnificationaddInertSafehaskinsertSafeOverlapFailureTcSgetSafeOverlapFailures addSolvedDict updInertTcS getInertCans setInertCans updInertCans updInertDictsupdInertSafehaskupdInertFunEqsupdInertIrreds getInertEqsgetInertInsolsgetInertGivensgetPendingScDictsgetUnsolvedInerts isInInertEqs getNoGivenEqsmatchableGivensprohibitedSuperClassSolveremoveInertCtslookupFlatCachelookupInertDictlookupSolvedDict foldIrreds emptyDictMapfindDictfindDictsByClassdelDictaddDictaddDictsByClass filterDicts foldDicts findFunEqfindFunEqsByTyCon insertFunEq wrapErrTcS wrapWarnTcSfailTcSwarnTcS addErrTcSpanicTcStraceTcSrunTcPluginTcSgetGlobalRdrEnvTcSbumpStepCountTcS csTraceTcS traceFireTcSrunTcSrunTcSDerivedsrunTcSEqualitiesrunTcSWithEvBinds setEvBindsTcS nestImplicTcSnestTcSbuildImplication getTcSInerts setTcSInertsupdWorkListTcS emitWorkNCemitWorkgetTcEvBindsVar unifyTyVarreportUnificationsgetDefaultInfo getInstEnvsgetFamInstEnvscheckWellStagedDFunpprEqisTouchableMetaTyVarTcSisFilledMetaTyVar_maybenewFlattenSkolemextendFlatCache unflattenFmvdemoteUnfilledFmv newFlexiTcSTy instFlexi instFlexiXisFresh freshGoals getEvTerm setEvBind setWantedEq setEqIfWantedsetWantedEvTermsetWantedEvBindsetEvBindIfWanted newGivenEvVarnewBoundEvVarIdnewGivenEvVarsemitNewWantedEq newWantedEqnewWantedEvVarNCnewWantedEvVar newWantedNCemitNewDerivedsemitNewDerivedEq newDerivedNCcheckReductionDepthmatchFam matchFamTcM$fOutputableWorkList$fOutputableInertCans$fOutputableInertSet$fHasDynFlagsTcS$fMonadUniqueTcS$fMonadFailTcS $fMonadTcS$fApplicativeTcS $fFunctorTcS FlattenMode FM_FlattenAll FM_SubstOnlyflattenflattenManyNomunflattenWanteds$fOutputableFlattenMode$fApplicativeFlatM$fFunctorFlatM $fMonadFlatMStopOrContinue ContinueWith canonicalizesolveCallStackmakeSuperClasses continueWithstopWith unifyDerivedmaybeSym$fOutputableStopOrContinue$fFunctorStopOrContinuesolveSimpleGivenssolveSimpleWanteds$fOutputableInteractResult$fOutputableLookupInstResult InferModeApplyMREagerDefaultingNoRestrictionscaptureTopConstraintssimplifyTopImplic simplifyTopsolveEqualitiessimplifyAmbiguityChecksimplifyInteractivesimplifyDefault tcSubsumestcCheckSatisfiability simplifyInfergrowThetaTyVarssimplifyWantedsTcMsolveWantedsAndDrop solveWanteds approximateWC$fOutputableInferMode ClsInstInfoRank ContextKindTheKind AnythingKindOpenKindcheckValidTypecheckValidMonoType checkTySynRhsexpectedKindInCtxtcheckValidThetaarityErrvalidDerivPredcheckValidInstancecheckInstTerminationbadATErrcheckValidCoAxiomcheckValidCoAxBranchcheckValidTyFamEqncheckValidFamPatscheckValidTelescopecheckZonkValidTelescopecheckValidInferredKindsallDistinctTyVars DerivStuff DerivAuxBind DerivFamInst DerivHsBind BagDerivStuff gen_Eq_binds gen_Ord_bindsgen_Enum_bindsgen_Bounded_binds gen_Ix_bindsgen_Read_bindsgen_Show_bindsgen_Data_bindsgen_Lift_bindsgen_Newtype_bindsmkCoerceClassMethEqn genAuxBinds mkRdrFunBindmkRdrFunBindECmkRdrFunBindSEordOpTbl boxConTbl litConTbl error_Expr$fEqAuxBindSpec FFoldTypeFTft_trivft_var ft_co_varft_funft_tup ft_ty_app ft_bad_app ft_forallgen_Functor_bindsfunctorLikeTraversedeepSubtypesContainingfoldDataConArgsgen_Foldable_bindsgen_Traversable_binds GenericKindGen0Gen1gen_Generic_bindsget_gen1_constrained_tys canDoGenericscanDoGenerics1 ThetaOriginto_tvs to_givensto_wanted_origins PredOrigin DerivStatus CanDeriveDerivableClassErrorDerivableViaInstanceNonDerivableClass DerivContextDerivSpecMechanismDerivSpecStockDerivSpecNewtypeDerivSpecAnyClass DerivSpecDSds_locds_nameds_tvsds_thetads_clsds_tysds_tc ds_overlap ds_mechanismDerivEnvdenv_overlap_modedenv_tvsdenv_cls denv_cls_tysdenv_tc denv_tc_args denv_rep_tcdenv_rep_tc_args denv_mtheta denv_stratDerivM pprDerivSpecisDerivSpecStockisDerivSpecNewtypeisDerivSpecAnyClass mkPredOrigin mkThetaOriginmkThetaOriginFromPredssubstPredOriginhasStockDerivingcheckSideConditionscanDeriveAnyClassstd_class_via_coerciblenon_coercible_classnewDerivClsInstextendLocalInstEnv$fOutputableDerivSpecMechanism$fOutputableDerivSpec$fOutputableDerivEnv$fOutputablePredOrigin$fOutputableThetaOrigininferConstraintssimplifyInstanceContexts coreToStg$fMonadFixCtsM $fMonadCtsM$fApplicativeCtsM $fFunctorCtsM $fEqLetInfo $fEqHowBound liberateCaseendPass endPassIOdumpPassResultlintPassResultlintInteractiveExprlintCoreBindings lintUnfoldinglintExpr lintAnnots$fHasDynFlagsLintM$fMonadFailLintM$fEqStaticPtrCheck corePrepPgm corePrepExpr cvtLitIntegerlookupMkIntegerNamelookupIntegerSDataConName$fOutputableFloatingBind$fOutputableOkToSpec$fOutputableFloatsmkBootModDetailsTcglobaliseAndTidyId tidyProgram $fMonadDFFV$fApplicativeDFFV $fFunctorDFFV cseProgram cseOneExprcallArityAnalProgram callArityRHSBCInstrSTKCHECKPUSH_LPUSH_LLPUSH_LLLPUSH8PUSH16PUSH32PUSH8_WPUSH16_WPUSH32_WPUSH_G PUSH_PRIMOPPUSH_BCO PUSH_ALTSPUSH_ALTS_UNLIFTED PUSH_PAD8 PUSH_PAD16 PUSH_PAD32 PUSH_UBX8 PUSH_UBX16 PUSH_UBX32PUSH_UBX PUSH_APPLY_N PUSH_APPLY_V PUSH_APPLY_F PUSH_APPLY_D PUSH_APPLY_L PUSH_APPLY_P PUSH_APPLY_PPPUSH_APPLY_PPPPUSH_APPLY_PPPPPUSH_APPLY_PPPPPPUSH_APPLY_PPPPPPSLIDEALLOC_APALLOC_AP_NOUPD ALLOC_PAPMKAPMKPAPUNPACKPACKLABELTESTLT_ITESTEQ_ITESTLT_WTESTEQ_WTESTLT_FTESTEQ_FTESTLT_DTESTEQ_DTESTLT_PTESTEQ_PCASEFAILJMPCCALLSWIZZLEENTERRETURN RETURN_UBXBRK_FUNProtoBCO protoBCONameprotoBCOInstrsprotoBCOBitmapprotoBCOBitmapSize protoBCOArity protoBCOExpr protoBCOFFIs bciStackUse$fOutputableBCInstr$fOutputableProtoBCO bcoFreeNames assembleBCOsassembleOneBCOiNTERP_STACK_CHECK_THRESH$fMonadAssembler$fApplicativeAssembler$fFunctorAssemblerextendLoadedPkgs extendLinkEnvdeleteFromLinkEnv getHValuewithExtendedLinkEnvshowLinkerState initDynLinkerlinkCmdLineLibslinkExpr linkDecls linkModuleunload linkPackages byteCodeGencoreExprToBCOs$fOutputableDiscr$fHasDynFlagsBcM $fMonadBcM$fApplicativeBcM $fFunctorBcM $fEnumByteOff $fEqByteOff$fIntegralByteOff $fNumByteOff $fOrdByteOff $fRealByteOff $fEnumWordOff $fEqWordOff$fIntegralWordOff $fNumWordOff $fOrdWordOff $fRealWordOff $fEqDiscr $fOrdDiscr TcMethInfomkDataTyConRhs mkNewTyConRhs buildDataCon buildPatSyn buildClassnewImplicitBindernewTyConRepNametypecheckIfacetypecheckIfacesForMergingtypecheckIfaceForInstantiate tcHiBootIface tcIfaceExpr tcIfaceGlobal DataKindCheckLiftedDataKindLiftedOrVarDataKind AnyDataKind funsSigCtxt addSigCtxt pprSigCtxt tcHsSigWcType kcHsSigTypetcClassSigType tcHsSigType tcHsDerivtcHsClsInstType tcHsVectInst tcHsTypeApp tcHsOpenTypetcHsLiftedTypetcHsOpenTypeNCtcHsLiftedTypeNCtcCheckLHsType tcLHsTypetcLHsTypeUnsaturated typeLevelMode kindLevelMode tcInferAppscheckExpectedKindXinstantiateTyUntilN tcHsContext tcLHsPredTypetcWildCardBinders kcLHsQTyVarskcLHsTyVarBndrstcImplicitTKBndrstcImplicitTKBndrsTypetcExplicitTKBndrskindGeneralizekcLookupTcTyCon kcTyClTyVars tcTyClTyVars tcDataKindSigtcHsPartialSigTypetcHsPatSigTypetcPatSig tcLHsKindSig funAppCtxtreportFloatingKvs$fOutputableTcTyMode TcPragEnv tcIdSigName tcSigInfoNamecompleteSigPolyId_maybetcTySigs tcUserTypeSigcompleteSigFromId tcInstSig emptyPragEnv lookupPragEnv extendPragEnv mkPragEnvaddInlinePrags tcSpecPrags tcSpecWrapper tcImpPrags LetBndrSpec LetLclBndr LetGblBndrtcLetPattcPatstcPattcPat_O newLetBndraddDataConStupidTheta badFieldCon polyPatSig$fOutputableLetBndrSpec tcDefaultsaddTypecheckedBinds tcTopBinds tcRecSelBinds tcHsBootSigsbadBootDeclErr tcLocalBinds tcPolyCheckchooseInferredQuantifiers tcVectDecls$fOutputableGeneralisationPlanmkTypeableBinds$fFunctorKindRepM$fApplicativeKindRepM$fMonadKindRepM RolesInfocheckSynCyclescheckClassCycles inferRolestcAddImplicitsmkDefaultMethodType mkRecSelBindsmkOneRecordSelector$fMonadSynCycleM$fApplicativeSynCycleM$fFunctorSynCycleM $fMonadRoleM$fApplicativeRoleM$fFunctorRoleMtcPatSynBuilderOcc TcStmtCheckerTcCmdStmtCheckerTcExprStmtChecker TcMatchCtxtMCmc_whatmc_body tcMatchesCase tcMatchLambdatcGRHS tcDoStmtstcBodytcStmtstcStmtsAndThen tcGuardStmttcDoStmttcProcfindExtraSigImports'findExtraSigImportsimplicitRequirementsimplicitRequirements' checkUnitIdtcRnCheckUnitIdtcRnMergeSignaturesmergeSignaturestcRnInstantiateSignatureinstantiateSignature DsWarning CanItFailCanFailCantFail MatchResult DsWrapper EquationInfoEqnInfoeqn_patseqn_rhsDsMatchContext idDsWrapperorFailfixDsinitDsTcinitDsinitDsWithModGutsinitTcDsForSolver newUniqueIdduplicateLocalDs newPredVarDsnewSysLocalDsNoLP newSysLocalDsnewFailLocalDsnewSysLocalsDsNoLPnewSysLocalsDs getGhcModeDs getDictsDs addDictsDs getTmCsDs addTmCsDsincrCheckPmIterDs resetPmIterDs getSrcSpanDs putSrcSpanDswarnDs warnIfSetDserrDs errDsCoreExpr failWithDsfailDs askNoErrsDsmkPrintUnqualifiedDsdsLookupGlobaldsLookupGlobalId dsLookupTyCondsLookupDataCondsLookupConLikedsGetFamInstEnvs dsGetMetaEnvdsGetCompleteMatchesdsLookupMetaEnvdsExtendMetaEnvdiscardWarningsDs dsNoLevPolydsNoLevPolyExpr dsWhenNoErrsdsInitPArrBuiltin dsDPHBuiltindsLookupDPHRdrEnvdsLookupDPHRdrEnv_maybepprRuntimeTrace$fOutputableDsMatchContext$fOutputableEquationInfo tcInferRhoNCgetFixedTyVarsaddExprErrCtxttcRulesisForeignImportisForeignExportnormaliseFfiTypetcForeignImportstcForeignImports' tcFImport tcCheckFIType checkCTargettcForeignExportstcForeignExports' tcFExport tcCheckFETypecheckForeignArgscheckForeignResnonIOokmustBeIO checkSafe noCheckSafematchSinglePat matchSimply matchWrappermatch dsLocalBinds dsSyntaxExprdsLExpr dsLExprNoLPdsExpr MkCaseAltalt_pat alt_bndrs alt_wrapper alt_resultselectSimpleMatchVarLselectMatchVarsselectMatchVarfirstPat shiftEqns matchCanFailalwaysFailMatchResultcantFailMatchResultextractMatchResultcombineMatchResultsadjustMatchResultadjustMatchResultDs wrapBindswrapBindseqVarmkCoLetMatchResultmkViewMatchResultmkEvalMatchResultmkGuardedMatchResultmkCoPrimCaseMatchResultmkCoAlgCaseMatchResultmkCoSynCaseMatchResult mkErrorAppDs mkCoreAppDs mkCoreAppsDsmkCastDsmkSelectorBinds mkLHsPatTupmkLHsVarPatTupmkVanillaTuplePatmkBigLHsVarTupId mkBigLHsTupIdmkBigLHsVarPatTupIdmkBigLHsPatTupId mkOptTickBoxmkBinaryTickBoxdecideBangHoodaddBangdsLit dsOverLit dsOverLit'warnAboutIdentitieswarnAboutOverflowedLiteralswarnAboutEmptyEnumerations tidyLitPattidyNPat matchLiteralshsLitKey matchNPatsmatchNPlusKPats dsBracket dsGuardeddsGRHSsdsGRHS isTrueLHsExprdsCCallmkFCallunboxArg boxResult resultWrapper dsForeigns dsTopLHsBinds dsLHsBindsdsSpec dsMkUserRuledecomposeRuleLhs dsHsWrapper dsTcEvBinds_s dsTcEvBinds dsEvBindsmatchConFamily matchPatSyn checkSingle checkMatchespmIsClosedTypepmTopNormaliseType_maybe genCaseTmCs2 genCaseTmCs1isAnyPmCheckEnabled$fOutputableValVec$fMonoidCovered$fSemigroupCovered$fOutputableCovered$fMonoidDiverged$fSemigroupDiverged$fOutputableDiverged$fMonoidProvenance$fSemigroupProvenance$fOutputableProvenance$fMonoidPartialResult$fSemigroupPartialResult$fOutputablePartialResult $fShowCovered$fShowDiverged$fShowProvenance$fEqProvenance$fOrdProvenancematchEquations dsListComp dsPArrComp dsMonadComp dsProcExpr dsValBindsHsSigFun tcClassSigs tcClassDecl2tcClassMinimalDefinstantiateMethod mkHsSigFunfindMethodBind tcMkDeclCtxt tcAddDeclCtxt badMethodErr instDeclCtxt1 instDeclCtxt2 instDeclCtxt3 tcATDefault DerivInfo di_rep_tc di_clausesdi_ctxt mkDerivInfos tcDeriving$fOutputableEarlyDerivSpec tcInstDecls1tcTyAndClassDeclstcTyFamInstEqn kcDataDefn tcFamTyPatsdataDeclChecks tcConDeclscheckValidTyContcAddTyFamInstCtxttcMkDataFamInstCtxttcAddDataFamInstCtxt dataConCtxtwrongKindOfFamilytcInstDeclsDeriv tcInstDecls2 TcRnExprModeTM_Inst TM_NoInst TM_Default tcRnModuletcRnModuleTcRnMcheckHiBootIface' checkBootDecl rnTopSrcDecls tcTopSrcDeclsrunTcInteractivetcRnStmt isGHCiMonadtcRnExprtcRnImportDeclstcRnType tcRnDeclsigetModuleInterfacetcRnLookupRdrNametcRnLookupName tcRnGetInfoloadUnqualIfacesdeSugar deSugarExprBuiltins parrayTyCon pdataTyCon pdatasTyConprClassprTyCon preprTyConpaClasspaTyCon paDataConpaPRSelreplicatePDVarreplicatePD_PrimVars emptyPDVaremptyPD_PrimVarspackByTagPDVarpackByTagPD_PrimVars combinePDVarscombinePD_PrimVarss scalarClass scalarZips voidTyConvoidVar fromVoidVar sumTyCons wrapTyConpvoidVar pvoidsVar closureTyCon closureVarliftedClosureVarapplyVarliftedApplyVarclosureCtrFunsselTysselsTys selsLengths selReplicatesselTagss selElementssliftingContext mAX_DPH_PROD mAX_DPH_SUMmAX_DPH_COMBINEmAX_DPH_SCALAR_ARGSaLL_DPH_PRIM_TYCONSselTyselsTy selsLength selReplicateselTags selElements prodTyCon prodDataConreplicatePD_PrimVaremptyPD_PrimVarpackByTagPD_PrimVar combinePDVarcombinePD_PrimVar scalarZip closureCtrFun initBuiltinsinitBuiltinVarsglobal_vect_avoid global_varsglobal_parallel_varsglobal_vect_decls global_tyconsglobal_parallel_tyconsglobal_dataconsglobal_pa_funsglobal_pr_funsglobal_inst_envglobal_fam_inst_envglobal_bindingsLocalEnv local_vars local_tyvarslocal_tyvar_palocal_bind_nameScopeLocal emptyLocalEnv initGlobalEnvextendImportedVarsEnv extendFamEnv setPAFunsEnv setPRFunsEnv modVectInfoVMrunVMVResultYesNoliftDs cantVectorisemaybeCantVectorisemaybeCantVectoriseMemitVttraceVt dumpOptVtdumpVtnoVtraceNoVensureV traceEnsureVonlyIfVtryErrVtryVmaybeV traceMaybeV orElseErrVorElseVfixV$fHasDynFlagsVM $fMonadIOVM $fFunctorVM$fApplicativeVM $fMonadVMreadGEnvsetGEnvupdGEnvisVectAvoidanceAggressive defGlobalVarundefGlobalVarlookupVectDeclglobalParallelVarsglobalParallelTyCons defTyConNamedefTyConglobalVectTyCons defDataCon lookupTyConPA defTyConPAs lookupTyConPR existsInst lookupInst lookupFamInstreadLEnvsetLEnvupdLEnvlocalVclosedV getBindNameinBind lookupTyVarPA defLocalTyVardefLocalTyVarWithPA localTyVarsmkLocalisedName mkDerivedNamemkVectIdcloneVarnewExportedVar newLocalVar newLocalVars newDummyVarnewTyVarnewCoVarinitV liftBuiltinDsbuiltinbuiltins lookupVarlookupVar_maybeaddGlobalParallelVaraddGlobalParallelTyConclassifyTyConsVBindVExprVVar vectorisedliftedmapVectvVarTypevVarvTypevTickvNonRecvRecvLetvLamsvVarApps vCaseDEFAULTvoidType newLocalVVar mkDataConTag mkWrapTypemkClosureTypes mkPReprType mkPDataType mkPDatasTypesplitPrimTyCon mkBuiltinCowrapNewTypeBodyOfWrapunwrapNewTypeBodyOfWrapwrapNewTypeBodyOfPDataWrapunwrapNewTypeBodyOfPDataWrapwrapNewTypeBodyOfPDatasWrapunwrapNewTypeBodyOfPDatasWrappdataReprTyConpdataReprTyConExactpdatasReprTyConExactpdataUnwrapScrut preprFamInst paDictArgType paDictOfTypepaMethodprDictOfPReprInstTyConprDictOfReprType polyAbstract polyArity polyApply polyVApply DontInlineaddInlineArityinlineMe hoistBinding hoistExpr hoistVExprhoistPolyVExpr takeHoisted mkClosure mkClosureApp buildClosurescollectAnnTypeArgscollectAnnDictArgscollectAnnTypeBinderscollectAnnValBinders isAnnTypeArgemptyPD replicatePD packByTagPD combinePDliftPDisScalar zipScalars scalarClosure vectTyConvectAndLiftTypevectTypevectBndr vectBndrNew vectBndrIn vectBndrNewIn vectBndrsInvectVar vectConstvectTyConDeclsfromVectCompReprKeepWrapProdRepr EmptyProd UnaryProdProd repr_tup_tc repr_ptup_tc repr_ptups_tc repr_comp_tys repr_compsConReprrepr_dc repr_prodSumReprEmptySumUnarySum repr_sum_tc repr_psum_tc repr_psums_tc repr_sel_ty repr_sels_tyrepr_selsLength_v repr_con_tys repr_cons tyConRepr sumReprType compOrigType$fOutputableCompRepr$fOutputableProdRepr$fOutputableConRepr$fOutputableSumReprbuildPDataTyConbuildPDatasTyConbuildPReprTyConbuildPAScAndMethods buildPADict vectTypeEnv vectTopExpr vectTopExprs vectScalarFunvectScalarDFun$fEqVectAvoidInfo$fShowVectAvoidInfo vectorise mkWwBodiesisWorkerSmallEnough mkWorkerArgsmkWWstrdeepSplitProductType_maybe findTypeShape wwTopBindsspecConstrProgram$fOutputableValue$fOutputableHowBound$fOutputableCall$fOutputableArgOcc$fOutputableScUsagedmdAnalProgram$fOutputableAnalEnv core2core simplifyExprCARRYOFLOPARITY NOTPARITY maybeFlipCondEAIndex EAIndexNoneEABase EABaseNone EABaseReg EABaseRip AddrBaseIndexImmAddr addrModeRegs firstfakeeaxebxecxedxesiediebpespfake0fake1fake2fake3fake4fake5raxrbxrcxrdxrsirdirbprspr8r9r10r13r14r15xmm0xmm1xmm2xmm3xmm4xmm5xmm6xmm7xmm8xmm9xmm10xmm11xmm12xmm13xmm14xmm15ripRelxmm allIntArgRegsinstrClobberedRegstargetVirtualRegSqueezetargetRealRegSqueezetargetClassOfRealRegtargetMkVirtualRegtargetRegDotColortargetClassOfRegJumpDestOperandOpRegOpImmOpAddrPrefetchVariantNTALvl0Lvl1Lvl2COMMENTLOCATIONLDATANEWBLOCKUNWINDDELTAMOVCMOVMOVZxLMOVSxLLEAADDADCSUBSBBMULMUL2IMULIMUL2DIVIDIVADD_CCSUB_CCANDORXORNOTNEGIBSWAPSHLSARSHRBTNOPGMOVGLDGSTGLDZGLD1GFTOIGDTOIGITOFGITODGDTOFGADDGDIVGSUBGMULGCMPGABSGNEGGSQRTGSINGCOSGTANGFREECVTSS2SDCVTSD2SS CVTTSS2SIQ CVTTSD2SIQCVTSI2SSCVTSI2SDFDIVSQRTTESTCMPSETCCPUSHPOPJXXJXX_GBLJMP_TBLCALLCLTDFETCHGOTFETCHPCPOPCNTBSFBSRPDEPPEXTPREFETCHLOCKXADDCMPXCHGMFENCEarchWordFormati386_insert_ffreesallocMoreStackgetJumpDestBlockId canShortcut shortcutJumpshortcutStatics$fInstructionInstr pprNatCmmDeclpprData pprFormatpprImm pprDataItempprInstr$fOutputableInstrLDSTUMULSMULUDIVSDIVRDYWRYANDNORNXNORSLLSRLSRASETHIFABSFADDFCMPFMOVFMULFNEGFSQRTFSUBFxTOyBIBFRIRIRegRIImmriZerofpRelEAmoveSpisUnconditionalJump DestBlockIdDestImm shortBlockId pprBasicBlock checkBlock expandTopRegisterFixedAnyAmode ChildCode64CondCode InstrBlocksetFormatOfRegistergetRegisterRegmangleIndexTreeRegAllocStatsStartRegAllocStatsSpillRegAllocStatsColored raLiveCmmraGraph raSpillCostsraCode raCoalesced raSpillStats raSpilledraGraphColoredraCodeCoalesced raPatched raSpillCleanraFinalraSRMspprStatsSpillspprStatsLifetimespprStatsConflictpprStatsLifeConflict countSRMsaddSRM$fOutputableRegAllocStatsregAllocLDFARLDRLASTFARSTUSTCLISLIMRCMPLBCCBCCFARMTCTRBCTRBLBCTRLADDOADDCADDEADDZEADDISSUBFSUBFOSUBFCSUBFEMULLMULLOMFOVMULHUANDCNANDORISXORISEXTSCNTLZSLSRRLWINMCLRLICLRRIFCTIWZFCTIDZFCFIDFRSPCRNORMFCRMFLRHWSYNCISYNCLWSYNC UPDATE_SPstackFrameHeaderSizemakeFarBranchesNatM DwarfFiles NatM_Statenatm_us natm_delta natm_importsnatm_pic natm_dflagsnatm_this_module natm_modloc natm_fileidnatm_debug_map mkNatM_StateinitNat mapAccumLNat getUniqueNat getDeltaNat setDeltaNatgetThisModuleNat addImportNat getBlockIdNatgetNewLabelNat getNewRegNatgetNewRegPairNatgetPicBaseMaybeNat getPicBaseNat getModLoc getFileId getDebugBlock$fHasDynFlagsNatM$fMonadUniqueNatM $fMonadNatM$fApplicativeNatM $fFunctorNatM getRegister getSomeReg getCondCode condIntCode condFltCodegetAmodeassignMem_I64CodeassignReg_I64Code iselExpr64CmmMakeDynamicReferenceM addImport getThisModule ReferenceKind DataReference CallReference JumpReferencecmmMakeDynamicReferenceneedImportedSymbolspprGotDeclarationpprImportedSymbolinitializePicBase_ppcinitializePicBase_x86$fCmmMakeDynamicReferenceMNatM$fEqReferenceKind cmmTopCodeGengenerateJumpTableForInstrextractUnwindPointsFR frAllocateReg frGetFreeRegsfrInitFreeRegs frReleaseReg $fFRFreeRegs $fFRFreeRegs0 $fFRFreeRegs1 $fFRFreeRegs2 joinToTargetsdW_LANG_HaskelldW_TAG_array_typedW_TAG_lexical_blockdW_TAG_pointer_typedW_TAG_compile_unitdW_TAG_structure_typedW_TAG_typedefdW_TAG_subroutine_typedW_TAG_subrange_typedW_TAG_base_typedW_TAG_file_typedW_TAG_subprogramdW_TAG_variabledW_TAG_auto_variabledW_TAG_arg_variabledW_TAG_ghc_src_note dW_AT_namedW_AT_stmt_list dW_AT_low_pc dW_AT_high_pcdW_AT_languagedW_AT_comp_dirdW_AT_producerdW_AT_externaldW_AT_frame_basedW_AT_use_UTF8dW_AT_MIPS_linkage_namedW_AT_ghc_tick_parentdW_AT_ghc_span_filedW_AT_ghc_span_start_linedW_AT_ghc_span_start_coldW_AT_ghc_span_end_linedW_AT_ghc_span_end_coldW_CHILDREN_nodW_CHILDREN_yes dW_FORM_addr dW_FORM_data2 dW_FORM_data4dW_FORM_string dW_FORM_flagdW_FORM_block1dW_FORM_ref_addr dW_FORM_ref4dW_FORM_flag_presentdW_ATE_addressdW_ATE_boolean dW_ATE_float dW_ATE_signeddW_ATE_signed_chardW_ATE_unsigneddW_ATE_unsigned_chardW_CFA_set_locdW_CFA_undefineddW_CFA_same_valuedW_CFA_def_cfadW_CFA_def_cfa_offsetdW_CFA_def_cfa_expressiondW_CFA_expressiondW_CFA_offset_extended_sfdW_CFA_def_cfa_sfdW_CFA_def_cfa_offset_sfdW_CFA_val_offsetdW_CFA_val_expression dW_CFA_offset dW_OP_addr dW_OP_deref dW_OP_consts dW_OP_minus dW_OP_mul dW_OP_plus dW_OP_lit0 dW_OP_breg0dW_OP_call_frame_cfadwarfInfoSectiondwarfAbbrevSectiondwarfLineSectiondwarfFrameSectiondwarfGhcSectiondwarfARangesSection dwarfSectiondwarfInfoLabeldwarfAbbrevLabeldwarfLineLabeldwarfFrameLabel dwarfRegNodwarfReturnRegNoDwarfFrameBlockdwFdeBlkHasInfo dwFdeUnwindDwarfFrameProc dwFdeProc dwFdeHasInfo dwFdeBlocks DwarfFrame dwCieLabel dwCieInit dwCieProcs DwarfARangedwArngStartLabeldwArngEndLabel DwarfInfoDwarfCompileUnitDwarfSubprogram DwarfBlock DwarfSrcNote dwChildrendwName dwProducer dwCompDir dwLowLabel dwHighLabel dwLineLabeldwLabeldwParentdwMarker dwSrcSpanpprAbbrevDecls pprDwarfInfopprDwarfARanges pprDwarfFrame wordAlignpprBytepprHalf pprData4' pprDwWordpprWord pprLEBWord pprLEBInt sectionOffset$fOutputableDwarfFrameBlock$fEqDwarfAbbrev$fEnumDwarfAbbrevdwarfGenNcgImplncg_x86fp_kludge ncgExpandTopncgAllocMoreStackncgMakeFarBranches nativeCodeGen x86NcgImpl cmmNativeGen$fHasDynFlagsCmmOptM!$fCmmMakeDynamicReferenceMCmmOptM$fMonadCmmOptM$fApplicativeCmmOptM$fFunctorCmmOptM codeOutputoutputForeignStubsMessager newHscEnv ioMsgMaybehscTcRnLookupRdrNamehscTcRcLookupNamehscTcRnGetInfohscIsGHCiMonadhscGetModuleInterfacehscRnImportDeclshscParse hscParse'hscTypecheckRename tcRnModule' hscDesugar hscDesugar'makeSimpleDetailsgenericHscFrontendhscIncrementalCompile oneShotMsgbatchMsghscFileFrontEnd hscCheckSafe hscGetSafe hscSimplify hscSimplify'hscSimpleIface'hscNormalIface'hscGenHardCodehscInteractivehscCompileCmmFilehscStmthscStmtWithLocation hscParsedStmthscDeclshscDeclsWithLocationhscAddSptEntries hscImport hscTcExpr hscKcType hscParseExprhscParseIdentifierhscCompileCoreExprhscCompileCoreExpr'dumpIfaceStatsshowModuleIndexdefaultRunMetarunMeta' $fQuasiIOEnvgetResumeContextgetHistoryModulegetHistorySpan getModBreaks execOptionsexecStmtrunDeclsrunDeclsWithLocationparseImportDecl resumeExecbackforwardabandon abandonAllavailsToGlobalRdrEnv getContextmoduleIsInterpretedgetInfogetNamesInScopegetRdrNamesInScope parseNameisStmt hasImportisImportisDecl parseExpr compileExprcompileExprRemotecompileParsedExprRemotecompileParsedExprdynCompileExpr showModulemoduleIsBootOrNotObjectLinkableobtainTermFromValobtainTermFromIdreconstructType preprocess compileOne compileOne'link linkingNeededoneShot compileFilephaseOutputFilenamegetOutputFilenamerunPhase getLocation linkBinary exeFileNamemaybeCreateManifestwriteInterfaceOnlyModehscPostBackendPhase SummaryNodeIsBootNotBoot LoadHowMuchLoadAllTargetsLoadUpToLoadDependenciesOfdepanalload'hscSourceToIsBootmoduleGraphNodesms_home_srcimps ms_home_impssummariseModule noModErrorcyclicModuleErr $fOrdIsBoot $fEqIsBoot $fShowIsBoot $fReadIsBoot ModuleInfo CoreModule cm_modulecm_typescm_bindscm_safeTypecheckedSource RenamedSource ParsedSourceDesugaredModuledm_typechecked_moduledm_core_moduleTypecheckedModuletm_parsed_moduletm_renamed_sourcetm_typechecked_sourcetm_checked_module_info tm_internals_pm_mod_summarypm_parsed_sourcepm_extra_src_filespm_annotations coreModuleTypecheckedMod renamedSourcetypecheckedSource moduleInfo ParsedMod parsedSourcedefaultErrorHandlerdefaultCleanupHandlerrunGhcTwithCleanupSessionsetSessionDynFlagssetProgramDynFlags setLogActiongetProgramDynFlagssetInteractiveDynFlagsgetInteractiveDynFlagsparseDynamicFlags setTargets getTargets addTarget removeTarget guessTargetworkingDirectoryChanged getModSummarytypecheckModule desugarModule loadModulecompileToCoreModulecompileToCoreSimplifiedgetModuleGraphisLoaded getBindingsgetInstsgetPrintUnqual getModuleInfomodInfoTyThingsmodInfoTopLevelScopemodInfoExportsmodInfoExportsWithSelectorsmodInfoInstancesmodInfoIsExportedNamemkPrintUnqualifiedForModulemodInfoLookupName modInfoIface modInfoSafemodInfoModBreaks isDictonaryIdlookupGlobalNamefindGlobalAnnsgetGREgetNameToInstancesIndex dataConTypepprParenSymNamegetTokenStreamgetRichTokenStreamaddSourceToTokensshowRichTokenStream findModule lookupModuleisModuleTrustedmoduleTrustReqs setGHCiMonadparser$fParsedModParsedModule$fOutputableCoreModule$fParsedModTypecheckedModule$fParsedModDesugaredModule$fTypecheckedModDesugaredModule!$fTypecheckedModTypecheckedModule$fDesugaredModDesugaredModule doMkDependHSpprintClosureCommandshowTermpprTypeAndContents doBackpack$fGhcMonadIOEnv$fEqSessionType++ghc-primGHC.Primseqfilterzip System.IOprint Data.Tuplefstsnd otherwise$GHC.Real fromIntegral realToFracGHC.EnumBoundedminBoundmaxBoundEnumenumFrom enumFromThenenumFromThenTo enumFromTofromEnumtoEnumpred GHC.ClassesEq==/= GHC.FloatFloatingpiexplogsqrt**logBasesincostanasinacosatansinhcoshtanhasinhacoshatanh Fractional fromRational/recipIntegral toIntegerquotremdivmodquotRemdivModMonad>>=>>returnfailFunctorfmap<$GHC.NumNum*+-negate fromIntegerabssignumOrd>=minmax><<=compareGHC.ReadRead readsPrecreadListReal toRational RealFloat floatRadix floatDigits floatRange decodeFloat encodeFloatexponent significand scaleFloatisNaN isInfiniteisDenormalizedisNegativeZeroisIEEEatan2RealFracproperFractiontruncateroundceilingfloorGHC.ShowShow showsPrecshowshowList Data.FoldableFoldablefoldrfoldMaplengthfoldlfoldl1sumproductfoldr1maximumminimumelem Traversabletraverse sequenceAsequence SemigroupMonoidmemptymappendmconcat GHC.TypesBoolFalseTrueCharDoubleFloatInt integer-gmpGHC.Integer.TypeIntegerMaybeNothingJustOrderingLTEQGTRationalIOWord Data.EitherEitherLeftRightreadIOreadLn appendFile writeFilereadFileinteract getContentsgetLinegetCharputStrLnputStrputCharGHC.IO.ExceptionioErrorGHC.IOFilePath userErrorIOErrornotElemallanyorand concatMapconcat sequence_mapM_ Data.OldListunwordswordsunlineslines Text.Readreadreadseitherlex readParenText.ParserCombinators.ReadPReadSlcmgcd^^^oddeven showParen showStringshowCharshowsShowSunzip3unzipzipWith3zipWithzip3!!lookupreversebreakspansplitAtdroptake dropWhile takeWhilecycle replicaterepeatiteratescanr1scanrscanl1scanlinitlast Data.MaybemaybeuncurrycurrysubtractasTypeOfuntil$!flip.constid=<<StringGHC.Err undefinederrorWithoutStackTraceerror&&||notmaskcatchmask_bracketfinallyhandleassertControl.ExceptionallowInterruptcatchesHandlerbracketOnErrorbracket_ onExceptiontryJust mapException handleJust catchJustPatternMatchFail RecSelError RecConError RecUpdError NoMethodError TypeErrorNonTerminationNestedAtomicallyasyncExceptionFromExceptionasyncExceptionToExceptionBlockedIndefinitelyOnMVarBlockedIndefinitelyOnSTMDeadlockAllocationLimitExceededCompactionFailedAssertionFailedSomeAsyncExceptionAsyncException StackOverflow HeapOverflow ThreadKilled UserInterruptArrayExceptionIndexOutOfBoundsUndefinedElementevaluateuninterruptibleMaskuninterruptibleMask_getMaskingState interruptiblethrowIO MaskingStateUnmaskedMaskedInterruptibleMaskedUninterruptible IOExceptionthrow ErrorCallErrorCallWithLocationArithExceptionOverflow UnderflowLossOfPrecision DivideByZeroDenormalRatioZeroDenominator SomeExceptionword64Base62Len getPaddedIntgetGNUArchEntries putArchEntryfileInfoMaybeCfoldBlockNodesF3 short_usagesignalHandlersRefCountis_ctypecharType$restrictedDamerauLevenshteinDistance hashInt32mapMaybe catMaybes listToMaybe maybeToList fromMaybefromJust isNothingisJustGHC.ForeignPtr ForeignPtr mkZFastStringGHC.IO.Handle.TypesHandleokIdOccokIdChar reservedIds reservedOpsisDashesRDocspaces reduceDocfirst txtPrintersdocLastColourPprCodeskipBOMisOneLineRealSpanisPointRealSpancombineRealSrcSpans plusWithInf mulWithInf uniqueMask TaggedVal powersetL powersetLSBody'postorder_dfs_from_except dotNodeEdges checkNode colorScan assignColors selectColorbytestring-0.10.8.2Data.ByteString.Internal ByteString holeUnitId rawHashUnitIdparseIntdropEqversionedFilePathwopt_set_fatalwopt_unset_fatalGHC.LanguageExtensions.Type Extension setLanguagesetSafeHaskellcombineSafeFlags LogOutput safeFlagCheck allFlagsDepsunrecognisedWarningflagSpec flagSpec' depFlagSpecOp depFlagSpecdepFlagSpecOp' depFlagSpec'depFlagSpecCond flagGhciSpec flagGhciSpec'flagHiddenSpecflagHiddenSpec'hideFlag flagSpecOfnegatableFlagsDeps dFlagsDepslanguageFlagsDepssafeHaskellFlagsDepssmallestGroupsstandardWarnings minusWOpts minusWallOptsminusWeverythingOptsminusWcompatOptsdefaultGlobalDynFlagsmkFlagminClosureSizemk_derivmk_simple_deriv_withData.Typeable.InternalTypeableerrMsgShortStringwithDumpFileHandlechooseDumpFilebeautifyDumpNamePackagePrecedenceIndexRevIndexUnusablePackageReasonIgnoredWithFlagBrokenDependenciesCyclicDependenciesIgnoredDependenciesShadowedDependenciespkgIdMappackageNameMap unwireMapmoduleToPkgConfAllpluginModuleToPkgConfAllModuleToPkgConfAllUnitVisibility uv_renamingsuv_package_nameuv_requirements uv_explicit VisibilityMappreloadClosureInstalledUnitIdMapfromExposedModulesfromReexportedModulesfromFlag originVisible originEmptyemptyPackageConfigMapextendPackageConfigMap isIndefinite findPackagesselectPackages renamePackagesortByPreferencecompareByPreference reverseDepsremovePackagesdepsNotAvailableInstalledPackageIndexdepsAbiMismatchmergeDatabasesvalidateDatabasemkModuleToPkgConfAlllibraryDirsForWayrewrites rewriteLinerewriteSymType rewriteAVX replaceOnce splitLinedirectory-1.3.1.5System.DirectorygetTemporaryDirectory entryNameentryBS SectionTablesectionTableOffsetsectionEntrySizesectionEntryCountsectionNameIndex ElfHeadergw16gw32gwNwordSize readElfHeaderreadElfSectionTablereadElfSectionByIndexfindSectionFromName readElfNoteBS runGetOrThrowFlatSwitchPlanmaxJumpTableHoleminJumpTableSizeminJumpTableOffsetlookupGRE_Name_OccNameGenSemicwarnoptallocateComments NotExportedExportedIdScope realUniqueFunTyConAlgTyCon FamilyTyCon SynonymTyCon PrimTyConPromotedDataContcRolesalgTcGadtSyntaxalgTcStupidThetaalgTcRhs algTcParentsynTcRhs famTcFlav famTcParentfamTcInj isUnlifteddataCon promDcRepInfotcTyConFlavourokParenttyConFieldLabelEnvfieldsOfAlgTcRhs kindTyConKeys mkPrimTyCon'defaultRuntimeRepVars ppr_itv_bndrs ppr_equalityif_print_coercionsAnonUnivCoUnsafeCoerceProv PhantomProvProofIrrelProv PluginProvHoleCoTyVarTyAppTyTyConAppFunTyForAllTyLitTyCastTy CoercionTy delBinderVartyCoVarsOfTypesSetcloseOverKindsFVinjectiveVarsOfBinderinjectiveVarsOfTypenoFreeVarsOfConoFreeVarsOfProvmkTyCoInScopeSet zipCvSubstsubstTyWithInScopesubstTysWithCoVarsisValidTCvSubstcheckValidSubstsubstForAllCoBndrUncheckedsubstForAllCoBndrsubstTyVarBndrUncheckedsubstTyVarBndrCallback debugPprTypeTyLitNumTyLitStrTyLitRefl TyConAppCoAppCoForAllCoFunCoCoVarCo AxiomInstCoSymCoTransCo AxiomRuleCoNthCoLRCoInstCo CoherenceCoKindCoSubCo ch_co_varch_ref KindCoercion coHoleCoVartyCoVarsOfCoListtyCoVarsOfProv coVarsOfCos setCvSubstEnvextendCvSubstWithClonesubstForAllCoBndrCallbackpprTyLit pprDataConsprovSize TypeOrderingTLTTEQTEQXTGTpiResultTy_maybemkRuntimeRepCodowngradeRole_maybe instCoercionextendLiftingContextEx ty_co_substtc_match_tys_x tc_unify_tys don'tBeSoSure ty_co_matchdcTagfitsIn kindPrimRepExnStrVanStr Termination ThrowsExnDunnoLazyArgStrHyperStrSCallSProdHeadStrcollectValBindersBndrMapTypeMapGDeBruijnTypeMapXGenMapCoreMapXCoreMapG trieMapView deBruijnizeNormMallTyVarsInTys allTyVarsInTyvanillaCafInfounboxedTupleSumKind mkSumTyConOccmkSumDataConOcc unboxedSumArrmk_sumextractPromotedListpcDataConWithFixitysizeAnnnoAnnpprArg pprTopBinds lf_unarised stgEqTypeCseEnv ce_conAppMapce_subst ce_bndrMap ce_in_scopeinitEnvmkStgLet&&& CmmLabelInfo CmmRetInfoCmmRetCmmCode CmmClosure CmmPrimCallRtsSelectorInfoTableRtsApInfoTable RtsApFastSRT InfoTableEntryLocalInfoTable LocalEntry RednCountsConEntry ConInfoTable ClosureTableBytesBlockInfoTable AsmTempLabelAsmTempDerivedLabelIdLabelLocalBlockLabelRtsLabel ForeignLabelDynamicLinkerLabel PicBaseLabelDeadStripPreventer HpcTicksLabelSRTLabel LargeSRTLabelLargeBitmapLabel labelType scopeToPaths scopeUniquesppLlvmFunctionHeader ppLlvmBlocks ppLlvmBlockppLlvmBlockLabelppLlvmStatementppLlvmExpressionppCallnewLine exclamationrootN envVersion envDynFlags envOutputenvUniq envFreshMeta envUniqMeta envFunMap envAliases envUsedVars envVarMap envStackRegs llvmGhcCC modifyEnv saveAlias structStrllvmSectionType llvmSection genStaticLit sortBlocks mkDepBlocks updateFactcheckIsReverseDependentcomputeLiveness livenessBlocklivenessForward livenessBack makeRAStats takeVirtualsspillCost_length nodeDegreeCleanS sJumpValid sJumpValidAcc sReloadedBy sCleanedCountsCleanedSpillsAccCleanMSlot cleanSpincleanBlockForward cleanForward cleanReloadcleanTopBackwardcollateJoinPoints findRegOfSlot initCleanS accJumpValid isStoreReg emptyAssocaddAssocdelAssoc delAssoc1 elemAssoc closeAssocintersectAssoc cleanBackwardSpillSstateUS stateSpillSLSpillM regSpill_topregSpill_blockregSpill_instr spillRead spillWrite spillModify patchInstr initSpillSmakeSpillStats buildAllocsinkReg LlvmAccumEOption exprToVarExprDatabasicBlocksCodeGenbasicBlockCodeGen stmtsToInstrs stmtToInstrs getInstrinct2 getInstrinctbarriergenCallgenCallWithOverflowgenCallExtract getFunPtrW getFunPtr arg_varsWarg_vars castVarsWcastVarscastVarcmmPrimOpFunctionsgenJump genAssigngenStore genStore_fast genStore_slow genBranch genCondBranch genExpectLit genSwitchi1Option wordOption genMachOpgenMachOp_fastgenMachOp_slowgenLoad genLoad_fast genLoad_slow getCmmReg getCmmRegValallocReggenLit funPrologue funEpilogue getTrashStmts getHsFuncdoExpr expandCmmReg blockIdToLlvmtoI32 getTBAAMetagetTBAARegMeta BlockContext blockContextsBlockEntryLiveness noLiveOnEntry conflicts wordAlignedmkLivenessBits dont_care copyTickscmmDataLlvmGens fixBottom cmmLlvmGencmmMetaLlvmPreludecmmUsedLlvmGensexprFVsexprsFVsexprSomeFreeVarsDSetexprsSomeFreeVarsDSet exprOrphNamesruleFVsrulesFVs ruleLhsFVIds tc_eq_typeconPatNeedsParensisCompoundConPatisSmallFamilyTyConLitBoundmk_discrete_switchDecls addVarDecladdLabelemitCallWithExtraStackslowArgs generic_gc mkGcLabel closeNursery openNursery asUnsigneddoPrefetchByteArrayOpdoPrefetchMutableByteArrayOpdoPrefetchAddrOpdoPrefetchValueOpmkBasicPrefetchdoNewByteArrayOpdoCopyByteArrayOpdoCopyMutableByteArrayOpdoCopyByteArrayToAddrOpdoCopyMutableByteArrayToAddrOpdoCopyAddrToByteArrayOpdoSetByteArrayOp doNewArrayOp doCopyArrayOpdoCopyMutableArrayOpemitCloneArrayemitCloneSmallArray emitSetCards doAtomicRMWdoAtomicReadByteArraydoAtomicWriteByteArrayemitMemcpyCallemitMemmoveCallemitMemsetCall emitCopyArrayemitCopySmallArraydoCasByteArraysm_spsm_args sm_ret_offsm_regs fixupStackallocate manifestSpfalseStackCheckelimStackStoresinsert_overlappingReprFlagSymFlagopt_co1opt_co2opt_co3 opt_co4_wrapopt_co4 opt_phantomwrapRole chooseRolehasReturnKindSignature checkTyVarsPisNegatedPmLit isNilPmExpr isPmExprEq isConsDataCon substPmExpr pprPmExprWhetherHasFamInsthptAnnshptSomeThingsBelowUs tyCoFVsOfCt tyCoFVsOfCts tyCoFVsOfWCtyCoFVsOfImplic lGRHSCtOriginpprCtOminuslogExactdivide rootExactgenRootgenLoglabelledTraceOptTcRn add_warn_atzonkTcTypeInKnotZonkEnvextendIdZonkEnvRec TmOracleEnvvarInsolveComplexEqextendSubstAndSolvesimplifyComplexEqsimplifyPmExprsimplifyEqExprapplySubstComplexEq varDeepLookupimportSuggestions ShNameSubst ns_module substNamesubstNameAvailInfosetNameFieldSelector mergeAvails uAvailInfos uAvailInfouName uHoleNameShIfEnvShIfM initRnIface rnIfaceGlobalrnIfaceNeverExportedrnIfaceClsInst ForeignRef RemoteRef orIfNotFoundhomeSearchCachefindInstalledHomeModulefindPackageModulefindPackageModule_QextQext1Qext2Qext1ext2shouldTickBindaddTickLHsExprLetBodytickSameFileOnlycvtOpApp cvtOpAppPmk_apps mk_arr_apps cvtOpAppTcvtMaybeKindToFamilyResultSigcvtFamilyResultSigcvtInjectivityAnnotation mkHsForAllTytemplate-haskell mkHsQualTyCxtmjmu toUnicodeAnnaaamamsaljsajsammsamsumomcmcommasmvbarsollaslHappyStkisDivOp exprIsHNFlike diffIdInfo diffUnfoldlocBindmkCoreAppTypedmkSmallTupleSelector1exitify substIdBndrvanillaArityTypedecideJoinPointHood ruleCantMatchmatchNExprSize _es_size_is_es_args _es_discountlitSizecallSizejumpSize boundsCmp intResult wordResultdataConSrcToImplBang dataConArgRep UnariseEnv extendRhounariseSumAltsmkUbxSum unariseFunArg unariseConArgStgToDo getStgToDoknownKeyNamesOkaycgTickinfoConvwithSourceNoteinitBinMemSizeloadWiredInHomeIfaceloadInterfaceWithExceptionis_external_sigcomputeInterface reportable liftIOEnvDictBind specImportsmkDBrecWithDumpedDicts simplTick makeTrivialmakeTrivialWithInfoGHC.SerializeddeserializeWithDataserializeWithDatafromSerialized toSerialized SerializednoFloatIntoRhslookupFixityRn'lookupExactOcc_eitherFreeKiTyVarsNoDups FreeKiTyVarsFreeKiTyVarsWithDupsOpNameNormalOpNegateOp UnboundOpRecFldOppartition_nwcswildCardsAllowedcheckTypeInTypelookupFixityOp rnImportDecl gresFromIEwarnMissingSignaturescheckPatSynParentInstDeclFreeVarsMappatchForeignImportcheckCanonicalInstances rnRoleAnnotsmkInstDeclFreeVarsMaprnInjectivityAnnextendPatSynEnv runRnSpliceStmtTree MonadNamesrnStmtsWithPostProcessing postProcessStmtsForApplicativeDonoPostProcessStmtsrebindableContextrearrangeForApplicativeDomkStmtTreeHeuristicmkStmtTreeOptimalstmtTreeToStmtssegments splitSegmentmkApplicativeStmtneedJoin isReturnApprnStmtaddFingerprintsgetOrphanHashesmkIfaceAnnCache checkVersions checkHsig checkFlagHashcheckOptimHash checkHpcHash checkModUsageInjErrorBuildercheckForInjectivityConflictsunusedInjTvsInRHS isTFHeadedbareTvInRHSViolatedinjectivityErrorHeraldconflictInjInstErrunusedInjectiveVarsErr tfHeadedErrbareVariableInRHSErr mkHEqBoxTy mkEqBoxTymkCoercibleBoxTytraceTR instSchemeReportreport_unsolved importantrelevant_bindingsvalid_substitutionsmkCoercibleExplanationexpandSynonymsToMatchuseVarsFlattenTvResultFTRNotFollowed FTRFollowedFlatM FlattenEnvsetEqRel flattenKindsflatten_many_nom flatten_many flatten_co zonk_eq_typescan_eq_newtype_nc canEqCast canEqFailurecanEqHardFailure canCFunEqCancanEqReflexiveandWhenContinueSafeOverlappingTcPluginProgresspluginInputCtspluginSolvedCts pluginBadCts pluginNewCts SolvedCtsSplitCtsrunTcPluginsGivenrunTcPluginsWanted runTcPluginsnaturallyCoherentClass matchTypeabledoFunTy doTyConApponlyNamedBndrsApplieddefaultCallStacksdefaultTyVarTcScheckHasFieldInstisTerminatingClassppr_tidycheckConsistentFamInstmk_showString_appmk_showsPrec_app mk_shows_app mkFunBindSE mkFunBindEC postfixModTbl assoc_ty_idmkAuxBinderNameArgTyAlg argTyFoldfoldBalinferConstraintsDataConArgsinferConstraintsDAC simplifyDeriv AllowAnywhereAllowAtTopLevelRejectEverywherelf_check_static_ptrslintRhs lintCoreExpr withoutAnnotscpe_env FloatTick cpeBodyNFCpeBodycpeBodyFloatsokCpeArgguardIntegerUse wrapTickscollectCostCentrescse_bindCSEnv addBindermakeForeignNamedHValueRefs linkSomeBCOs getGCCPathsgccSearchDirCachegetSystemDirectoriesBCEnvpushConstrAtomisSupportedCConvmkStackOffsetsisAbstractIfaceDeclmergeIfaceDeclmergeIfaceDecls tc_iface_declTcTyModedecideKindGeneralisationPlantc_infer_lhs_typetc_infer_hs_typetc_infer_hs_type_ektcTyAppsinstantiateTyN newWildTyVar tcHsTyVarName finish_tupletcExplicitTKBndrsXisCompleteHsSigmatchExpectedPatTy localSigWarnKindRepM KindRepEnvtrTyConDataCon trNameLit TypeRepTodoExportedKindRepsTodo mod_rep_exprpkg_fingerprintmod_fingerprint todo_tycons TypeableTyConmkTypeRepTodoBindsmkPrimTypeableTodosghcPrimTypeableTyCons collect_stuff mkTrNameLitmkTyConRepBindstyConIsTypeabletypeIsTypeablebuiltInKindRepsmkExportedKindReps runKindRepM getKindRep mkKindRepRhsmkTyConRepTyConRHS SynCycleMcheckNameIsAcyclictc_patsyn_finishmkPatSynRecSelBindstauifyMultipleMatches tcMatchescheckHsigIface check_instrequirementMergesifaceDeclNeverExportedRefscheckImplementsmkDsEnvsFromTcGbl dsLoadModuleinitDPHloadDAP checkLoadDAPinitDPHBuiltinsNotClosedReasontcArgscheckClosedInStaticForm tcSynArgE tcSynArgArepFamilyResultSigrepFamilyResultSigToMaybeKindrepInjectivityAnn repTyVarBndr repMaybeLTy coreNothing coreNothing'coreJust coreJust'dsHsBind makeCorePairds_ev_typeablegetRepPmArityUncoveredCandidatesPmResult Provenance FromBuiltin FromCompleteDeltaValVec emptyPmResultuncoveredWithTy checkSingle' checkMatches'checkEmptyCase'inhabitationCandidatesfake_pat isFakeGuardmkCanFailPmPat nilPattern mkLitPattern translateNPattranslatePatVectranslateConPatVectranslateGuardscantFailPatterntranslateGuard translateLet translateBindtranslateBoolGuard pmPatType mkOneConFullmkGuardmkNegEqmkPosEqmkIdEqmkPmVarmkPmVarsmkPmId mkPmId2Forms vaToPmExpr coercePatVec coercePmPatsingleConstructorallCompleteMatchestyOracle patVecArity patternArityrunManymkInitialUncoveredpmcheckIpmcheckpmcheckGuardsI pmcheckGuards pmcheckHdI pmcheckHdusimpleutailuconkconmkUnionmkConsforcesforce_if substInValAbs wrapUpTmStatedsPmWarn warnPmIters exhaustiveexhaustiveWarningFlag ValSetAbsPatVecValAbsPattern dsMcBindStmtmaxBuildLengthcheckForcedEtaExpansionbadUseOfLevPolyPrimop deriveClause tcInjectivity rejigConRescheckValidTyConTyVarstcDefaultAssocDecl kcTyFamEqnRhs mkGADTVars PlanResultrun_th_modfinalizers andThenCheck checkUnless checkListBycheck checkSuccesstcPreludeClashWarn getMainFunrunPlans tcUserStmt tcGhciStmts getGhciStepIOtcMissingParentClassWarn indexBuiltinlookupEnvBuiltin externalVar externalFun externalTyCon externalType externalClass tyConsOfTyCon tyConsOfTypes zipWithVectprDictOfPReprInst prDFunApply buildClosure abstractType vectTyConDecl vectMethoddefMethSpecOfDefMethvectAlgTyConRhs vectDataCon identityConvidentityConvTyConmkSumTysPAInstanceBuilder buildToPReprbuildFromPReprbuildToArrPReprbuildFromArrPReprbuildToArrPReprsVIParrvectAnnPolyExprvectExpr vectFnExprVIEncaps vectPolyApp vectDictExprvectLamunlessVIParrExpr vectTopBinder vectTopBind tryConvertuseLetUpextendAnalEnvsx86_regUsageOfInstr interestingx86_patchRegsOfInstrx86_mkSpillInstrx86_mkLoadInstrx86_takeDeltaInstrx86_mkRegRegMoveInstrx86_takeRegRegMoveInstrx86_mkJumpInstr pprSizeDeclpprSectionAlignpprAlignForSectionsparc_regUsageOfInstrsparc_patchRegsOfInstrsparc_mkSpillInstrsparc_mkLoadInstrsparc_takeDeltaInstrsparc_mkRegRegMoveInstrsparc_takeRegRegMoveInstrsparc_mkJumpInstrpprRegpprReg_ofRegNo pprStFormatpprCondpprAddrpprRIpprFormatRegRegpprFormatRegRegReg pprRegRIReg expandBlockexpandBlockInstrs remapRegPairfRegHi maxSpinCount regAlloc_spin buildGraphgraphAddConflictSetgraphAddCoalescepatchRegsFromGraphppc_regUsageOfInstrppc_patchRegsOfInstrppc_isJumpishInstrppc_jumpDestsOfInstrppc_patchJumpInstrppc_mkSpillInstr stackAlignppc_takeDeltaInstrppc_mkRegRegMoveInstrppc_mkJumpInstrppc_takeRegRegMoveInstr integerExtend conversionNopidivirem coerceInt2FP coerceFP2Int coerceDbl2Flt coerceFlt2Dbl picRelativeaddSpUnwindingsjumpTableEntrygetSimpleAmodeaddAlignmentCheckarg_to_int_vregs move_final assign_codeoutOfLineMachOpoutOfLineMachOp_tablemakeRegMovementGraph expandNodehandleComponentmakeMovejoinToTargets'linearRegAlloc processBlock initBlocklinearRAraInsn clobberRegs newLocationloadTemplinearRegAlloc' DwarfAbbrev DwAbbrNull pprAbbrevpprDwarfInfoOpenpprDwarfInfoClose pprFrameProc pprFrameBlockdwarfGlobalRegNo pprSetUnwind pprLEBRegNo pprUnwindExprpprUndefUnwindpprData4 pprString' pprString escapeChar mkDwarfARangecompileUnitHeadercompileUnitFooterdebugSplitProcs procToDwarf blockToDwarf debugFrame procToFrame NativeGenAcc ngs_natives ngs_unwinds cmmNativeGenscomputeUnwindingmakeImportsDoclogWarningsReportErrors throwErrors ioMsgMaybe'extract_renamed_stuffhscIncrementalFrontendhscCheckSafeImportscheckSafeImports hscCheckSafe' checkPkgTrustmarkUnsafeInferhscGetSafeMode hscTypecheck hscTypecheck' seqSerializedaddModFinalizerRef runRemoteTH readQResult getTHState annotThType mkIsPolyTvsfindEnclosingDeclsupdateFixityEnvpipeLoopfastLlvmPipeline llvmOptions linkStaticLibgetGhcVersionPathName runPipeline'CompilationGraphGHC.MVarLogQueue StableModulesupsweep loadFinish discardProg discardICguessOutputFilepruneHomePackageTablefindPartiallyCompletedCyclesbuildCompGraph BuildModule parUpsweep upsweep_mod getModLoopwarnUnnecessarySourceImports downsweepenableCodeGenForTHmsDepsparUpsweep_onepreprocessFilecheckBrokenTablesNextToCodecheckNewDynFlagsbindSuspensionsBkpEnv bkp_session bkp_filename bkp_table bkp_levelBkpM SessionType ExeSession TcSession CompSessionwithBkpSession hsunitDeps getBkpEnv getBkpLeveloverHscDynFlags innerBkpM updateEpsGhc_ getEpsGhcinitBkpMbackpackProgressMsg mkBackpackMsg backpackStyle msgTopPackage msgUnitId msgIncludehsunitModuleGraphhsModuleToModSummarynewInstalledUnitId