-- | Utilities related to Monad and Applicative classes -- Mostly for backwards compatibility. module MonadUtils ( Applicative(..) , (<$>) , MonadFix(..) , MonadIO(..) , liftIO1, liftIO2, liftIO3, liftIO4 , zipWith3M, zipWith3M_, zipWith4M, zipWithAndUnzipM , mapAndUnzipM, mapAndUnzip3M, mapAndUnzip4M, mapAndUnzip5M , mapAccumLM , mapSndM , concatMapM , mapMaybeM , fmapMaybeM, fmapEitherM , anyM, allM, orM , foldlM, foldlM_, foldrM , maybeMapM , whenM, unlessM ) where ------------------------------------------------------------------------------- -- Imports ------------------------------------------------------------------------------- import GhcPrelude import Maybes import Control.Monad import Control.Monad.Fix import Control.Monad.IO.Class ------------------------------------------------------------------------------- -- Lift combinators -- These are used throughout the compiler ------------------------------------------------------------------------------- -- | Lift an 'IO' operation with 1 argument into another monad liftIO1 :: MonadIO m => (a -> IO b) -> a -> m b liftIO1 = (.) liftIO -- | Lift an 'IO' operation with 2 arguments into another monad liftIO2 :: MonadIO m => (a -> b -> IO c) -> a -> b -> m c liftIO2 = ((.).(.)) liftIO -- | Lift an 'IO' operation with 3 arguments into another monad liftIO3 :: MonadIO m => (a -> b -> c -> IO d) -> a -> b -> c -> m d liftIO3 = ((.).((.).(.))) liftIO -- | Lift an 'IO' operation with 4 arguments into another monad liftIO4 :: MonadIO m => (a -> b -> c -> d -> IO e) -> a -> b -> c -> d -> m e liftIO4 = (((.).(.)).((.).(.))) liftIO ------------------------------------------------------------------------------- -- Common functions -- These are used throughout the compiler ------------------------------------------------------------------------------- zipWith3M :: Monad m => (a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m [d] zipWith3M _ [] _ _ = return [] zipWith3M _ _ [] _ = return [] zipWith3M _ _ _ [] = return [] zipWith3M f (x:xs) (y:ys) (z:zs) = do { r <- f x y z ; rs <- zipWith3M f xs ys zs ; return $ r:rs } zipWith3M_ :: Monad m => (a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m () zipWith3M_ f as bs cs = do { _ <- zipWith3M f as bs cs ; return () } zipWith4M :: Monad m => (a -> b -> c -> d -> m e) -> [a] -> [b] -> [c] -> [d] -> m [e] zipWith4M _ [] _ _ _ = return [] zipWith4M _ _ [] _ _ = return [] zipWith4M _ _ _ [] _ = return [] zipWith4M _ _ _ _ [] = return [] zipWith4M f (x:xs) (y:ys) (z:zs) (a:as) = do { r <- f x y z a ; rs <- zipWith4M f xs ys zs as ; return $ r:rs } zipWithAndUnzipM :: Monad m => (a -> b -> m (c, d)) -> [a] -> [b] -> m ([c], [d]) {-# INLINABLE zipWithAndUnzipM #-} -- See Note [flatten_many performance] in TcFlatten for why this -- pragma is essential. zipWithAndUnzipM f (x:xs) (y:ys) = do { (c, d) <- f x y ; (cs, ds) <- zipWithAndUnzipM f xs ys ; return (c:cs, d:ds) } zipWithAndUnzipM _ _ _ = return ([], []) -- | mapAndUnzipM for triples mapAndUnzip3M :: Monad m => (a -> m (b,c,d)) -> [a] -> m ([b],[c],[d]) mapAndUnzip3M _ [] = return ([],[],[]) mapAndUnzip3M f (x:xs) = do (r1, r2, r3) <- f x (rs1, rs2, rs3) <- mapAndUnzip3M f xs return (r1:rs1, r2:rs2, r3:rs3) mapAndUnzip4M :: Monad m => (a -> m (b,c,d,e)) -> [a] -> m ([b],[c],[d],[e]) mapAndUnzip4M _ [] = return ([],[],[],[]) mapAndUnzip4M f (x:xs) = do (r1, r2, r3, r4) <- f x (rs1, rs2, rs3, rs4) <- mapAndUnzip4M f xs return (r1:rs1, r2:rs2, r3:rs3, r4:rs4) mapAndUnzip5M :: Monad m => (a -> m (b,c,d,e,f)) -> [a] -> m ([b],[c],[d],[e],[f]) mapAndUnzip5M _ [] = return ([],[],[],[],[]) mapAndUnzip5M f (x:xs) = do (r1, r2, r3, r4, r5) <- f x (rs1, rs2, rs3, rs4, rs5) <- mapAndUnzip5M f xs return (r1:rs1, r2:rs2, r3:rs3, r4:rs4, r5:rs5) -- | Monadic version of mapAccumL mapAccumLM :: Monad m => (acc -> x -> m (acc, y)) -- ^ combining function -> acc -- ^ initial state -> [x] -- ^ inputs -> m (acc, [y]) -- ^ final state, outputs mapAccumLM _ s [] = return (s, []) mapAccumLM f s (x:xs) = do (s1, x') <- f s x (s2, xs') <- mapAccumLM f s1 xs return (s2, x' : xs') -- | Monadic version of mapSnd mapSndM :: Monad m => (b -> m c) -> [(a,b)] -> m [(a,c)] mapSndM _ [] = return [] mapSndM f ((a,b):xs) = do { c <- f b; rs <- mapSndM f xs; return ((a,c):rs) } -- | Monadic version of concatMap concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b] concatMapM f xs = liftM concat (mapM f xs) -- | Monadic version of mapMaybe mapMaybeM :: (Monad m) => (a -> m (Maybe b)) -> [a] -> m [b] mapMaybeM f = liftM catMaybes . mapM f -- | Monadic version of fmap fmapMaybeM :: (Monad m) => (a -> m b) -> Maybe a -> m (Maybe b) fmapMaybeM _ Nothing = return Nothing fmapMaybeM f (Just x) = f x >>= (return . Just) -- | Monadic version of fmap fmapEitherM :: Monad m => (a -> m b) -> (c -> m d) -> Either a c -> m (Either b d) fmapEitherM fl _ (Left a) = fl a >>= (return . Left) fmapEitherM _ fr (Right b) = fr b >>= (return . Right) -- | Monadic version of 'any', aborts the computation at the first @True@ value anyM :: Monad m => (a -> m Bool) -> [a] -> m Bool anyM _ [] = return False anyM f (x:xs) = do b <- f x if b then return True else anyM f xs -- | Monad version of 'all', aborts the computation at the first @False@ value allM :: Monad m => (a -> m Bool) -> [a] -> m Bool allM _ [] = return True allM f (b:bs) = (f b) >>= (\bv -> if bv then allM f bs else return False) -- | Monadic version of or orM :: Monad m => m Bool -> m Bool -> m Bool orM m1 m2 = m1 >>= \x -> if x then return True else m2 -- | Monadic version of foldl foldlM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a foldlM = foldM -- | Monadic version of foldl that discards its result foldlM_ :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m () foldlM_ = foldM_ -- | Monadic version of foldr foldrM :: (Monad m) => (b -> a -> m a) -> a -> [b] -> m a foldrM _ z [] = return z foldrM k z (x:xs) = do { r <- foldrM k z xs; k x r } -- | Monadic version of fmap specialised for Maybe maybeMapM :: Monad m => (a -> m b) -> (Maybe a -> m (Maybe b)) maybeMapM _ Nothing = return Nothing maybeMapM m (Just x) = liftM Just $ m x -- | Monadic version of @when@, taking the condition in the monad whenM :: Monad m => m Bool -> m () -> m () whenM mb thing = do { b <- mb ; when b thing } -- | Monadic version of @unless@, taking the condition in the monad unlessM :: Monad m => m Bool -> m () -> m () unlessM condM acc = do { cond <- condM ; unless cond acc }