{-# LANGUAGE DuplicateRecordFields #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE NamedFieldPuns #-} {-# LANGUAGE ParallelListComp #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} module GHC.Tc.Errors( reportUnsolved, reportAllUnsolved, warnAllUnsolved, warnDefaulting, -- * GHC API helper functions solverReportMsg_ExpectedActuals, mismatchMsg_ExpectedActuals ) where import GHC.Prelude import GHC.Driver.Env (hsc_units) import GHC.Driver.DynFlags import GHC.Driver.Ppr import GHC.Driver.Config.Diagnostic import GHC.Rename.Unbound import GHC.Tc.Types import GHC.Tc.Utils.Monad import GHC.Tc.Errors.Types import GHC.Tc.Errors.Ppr import GHC.Tc.Types.Constraint import GHC.Tc.Types.CtLoc import GHC.Tc.Utils.TcMType import GHC.Tc.Zonk.Type import GHC.Tc.Utils.TcType import GHC.Tc.Zonk.TcType import GHC.Tc.Types.Origin import GHC.Tc.Types.Evidence import GHC.Tc.Instance.Family import GHC.Tc.Utils.Instantiate import {-# SOURCE #-} GHC.Tc.Errors.Hole ( findValidHoleFits, getHoleFitDispConfig ) import GHC.Types.Name import GHC.Types.Name.Reader import GHC.Types.Id import GHC.Types.Var import GHC.Types.Var.Set import GHC.Types.Var.Env import GHC.Types.Name.Env import GHC.Types.SrcLoc import GHC.Types.Basic import GHC.Types.Error import qualified GHC.Types.Unique.Map as UM import GHC.Unit.Module import qualified GHC.LanguageExtensions as LangExt import GHC.Core.Predicate import GHC.Core.Type import GHC.Core.Coercion import GHC.Core.TyCo.Ppr ( pprTyVars ) import GHC.Core.TyCo.Tidy import GHC.Core.InstEnv import GHC.Core.TyCon import GHC.Core.DataCon import GHC.Utils.Error (diagReasonSeverity, pprLocMsgEnvelope ) import GHC.Utils.Misc import GHC.Utils.Outputable as O import GHC.Utils.Panic import GHC.Utils.FV ( fvVarList, unionFV ) import GHC.Data.Bag import GHC.Data.List.SetOps ( equivClasses, nubOrdBy ) import GHC.Data.Maybe import qualified GHC.Data.Strict as Strict import Control.Monad ( unless, when, foldM, forM_ ) import Data.Foldable ( toList ) import Data.Function ( on ) import Data.List ( partition, union, sort, sortBy ) import Data.List.NonEmpty ( NonEmpty(..), nonEmpty ) import qualified Data.List.NonEmpty as NE import Data.Ord ( comparing ) {- ************************************************************************ * * \section{Errors and contexts} * * ************************************************************************ ToDo: for these error messages, should we note the location as coming from the insts, or just whatever seems to be around in the monad just now? Note [Deferring coercion errors to runtime] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ While developing, sometimes it is desirable to allow compilation to succeed even if there are type errors in the code. Consider the following case: module Main where a :: Int a = 'a' main = print "b" Even though `a` is ill-typed, it is not used in the end, so if all that we're interested in is `main` it is handy to be able to ignore the problems in `a`. Since we treat type equalities as evidence, this is relatively simple. Whenever we run into a type mismatch in GHC.Tc.Utils.Unify, we normally just emit an error. But it is always safe to defer the mismatch to the main constraint solver. If we do that, `a` will get transformed into co :: Int ~ Char co = ... a :: Int a = 'a' `cast` co The constraint solver would realize that `co` is an insoluble constraint, and emit an error with `reportUnsolved`. But we can also replace the right-hand side of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program to compile, and it will run fine unless we evaluate `a`. This is what `deferErrorsToRuntime` does. It does this by keeping track of which errors correspond to which coercion in GHC.Tc.Errors. GHC.Tc.Errors.reportTidyWanteds does not print the errors and does not fail if -fdefer-type-errors is on, so that we can continue compilation. The errors are turned into warnings in `reportUnsolved`. -} -- | Report unsolved goals as errors or warnings. We may also turn some into -- deferred run-time errors if `-fdefer-type-errors` is on. reportUnsolved :: WantedConstraints -> TcM (Bag EvBind) reportUnsolved wanted = do { binds_var <- newTcEvBinds ; defer_errors <- goptM Opt_DeferTypeErrors ; let type_errors | not defer_errors = ErrorWithoutFlag | otherwise = WarningWithFlag Opt_WarnDeferredTypeErrors ; defer_holes <- goptM Opt_DeferTypedHoles ; let expr_holes | not defer_holes = ErrorWithoutFlag | otherwise = WarningWithFlag Opt_WarnTypedHoles ; partial_sigs <- xoptM LangExt.PartialTypeSignatures ; let type_holes | not partial_sigs = ErrorWithoutFlag | otherwise = WarningWithFlag Opt_WarnPartialTypeSignatures ; defer_out_of_scope <- goptM Opt_DeferOutOfScopeVariables ; let out_of_scope_holes | not defer_out_of_scope = ErrorWithoutFlag | otherwise = WarningWithFlag Opt_WarnDeferredOutOfScopeVariables ; report_unsolved type_errors expr_holes type_holes out_of_scope_holes binds_var wanted ; ev_binds <- getTcEvBindsMap binds_var ; return (evBindMapBinds ev_binds)} -- | Report *all* unsolved goals as errors, even if -fdefer-type-errors is on -- However, do not make any evidence bindings, because we don't -- have any convenient place to put them. -- NB: Type-level holes are OK, because there are no bindings. -- See Note [Deferring coercion errors to runtime] -- Used by solveEqualities for kind equalities -- (see Note [Failure in local type signatures] in GHC.Tc.Solver) reportAllUnsolved :: WantedConstraints -> TcM () reportAllUnsolved wanted = do { ev_binds <- newNoTcEvBinds ; partial_sigs <- xoptM LangExt.PartialTypeSignatures ; let type_holes | not partial_sigs = ErrorWithoutFlag | otherwise = WarningWithFlag Opt_WarnPartialTypeSignatures ; report_unsolved ErrorWithoutFlag ErrorWithoutFlag type_holes ErrorWithoutFlag ev_binds wanted } -- | Report all unsolved goals as warnings (but without deferring any errors to -- run-time). See Note [Safe Haskell Overlapping Instances Implementation] in -- "GHC.Tc.Solver" warnAllUnsolved :: WantedConstraints -> TcM () warnAllUnsolved wanted = do { ev_binds <- newTcEvBinds ; report_unsolved WarningWithoutFlag WarningWithoutFlag WarningWithoutFlag WarningWithoutFlag ev_binds wanted } -- | Report unsolved goals as errors or warnings. report_unsolved :: DiagnosticReason -- Deferred type errors -> DiagnosticReason -- Expression holes -> DiagnosticReason -- Type holes -> DiagnosticReason -- Out of scope holes -> EvBindsVar -- cec_binds -> WantedConstraints -> TcM () report_unsolved type_errors expr_holes type_holes out_of_scope_holes binds_var wanted | isEmptyWC wanted = return () | otherwise = do { traceTc "reportUnsolved {" $ vcat [ text "type errors:" <+> ppr type_errors , text "expr holes:" <+> ppr expr_holes , text "type holes:" <+> ppr type_holes , text "scope holes:" <+> ppr out_of_scope_holes ] ; traceTc "reportUnsolved (before zonking and tidying)" (ppr wanted) ; wanted <- liftZonkM $ zonkWC wanted -- Zonk to reveal all information ; let tidy_env = tidyAvoiding bound_occs tidyFreeTyCoVars free_tvs -- See Note [tidyAvoiding] in GHC.Core.TyCo.Tidy free_tvs = filterOut isCoVar $ tyCoVarsOfWCList wanted -- tyCoVarsOfWC returns free coercion *holes*, even though -- they are "bound" by other wanted constraints. They in -- turn may mention variables bound further in, which makes -- no sense. Really we should not return those holes at all; -- for now we just filter them out. bound_occs :: [OccName] bound_occs = boundOccNamesOfWC wanted ; traceTc "reportUnsolved (after zonking):" $ vcat [ text "Free tyvars:" <+> pprTyVars free_tvs , text "Bound occs:" <+> ppr bound_occs , text "Tidy env:" <+> ppr tidy_env , text "Wanted:" <+> ppr wanted ] ; warn_redundant <- woptM Opt_WarnRedundantConstraints ; exp_syns <- goptM Opt_PrintExpandedSynonyms ; let err_ctxt = CEC { cec_encl = [] , cec_tidy = tidy_env , cec_defer_type_errors = type_errors , cec_expr_holes = expr_holes , cec_type_holes = type_holes , cec_out_of_scope_holes = out_of_scope_holes , cec_suppress = insolubleWC wanted -- See Note [Suppressing error messages] -- Suppress low-priority errors if there -- are insoluble errors anywhere; -- See #15539 and c.f. setting ic_status -- in GHC.Tc.Solver.setImplicationStatus , cec_warn_redundant = warn_redundant , cec_expand_syns = exp_syns , cec_binds = binds_var } ; tc_lvl <- getTcLevel ; reportWanteds err_ctxt tc_lvl wanted ; traceTc "reportUnsolved }" empty } -------------------------------------------- -- Internal functions -------------------------------------------- -- | Make a report from a single 'TcSolverReportMsg'. important :: SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport important ctxt doc = SolverReport { sr_important_msg = SolverReportWithCtxt ctxt doc , sr_supplementary = [] , sr_hints = noHints } add_relevant_bindings :: RelevantBindings -> SolverReport -> SolverReport add_relevant_bindings binds report@(SolverReport { sr_supplementary = supp }) = report { sr_supplementary = SupplementaryBindings binds : supp } -- | Returns True <=> the SolverReportErrCtxt indicates that something is deferred deferringAnyBindings :: SolverReportErrCtxt -> Bool -- Don't check cec_type_holes, as these don't cause bindings to be deferred deferringAnyBindings (CEC { cec_defer_type_errors = ErrorWithoutFlag , cec_expr_holes = ErrorWithoutFlag , cec_out_of_scope_holes = ErrorWithoutFlag }) = False deferringAnyBindings _ = True maybeSwitchOffDefer :: EvBindsVar -> SolverReportErrCtxt -> SolverReportErrCtxt -- Switch off defer-type-errors inside CoEvBindsVar -- See Note [Failing equalities with no evidence bindings] maybeSwitchOffDefer evb ctxt | CoEvBindsVar{} <- evb = ctxt { cec_defer_type_errors = ErrorWithoutFlag , cec_expr_holes = ErrorWithoutFlag , cec_out_of_scope_holes = ErrorWithoutFlag } | otherwise = ctxt {- Note [Failing equalities with no evidence bindings] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If we go inside an implication that has no term evidence (e.g. unifying under a forall), we can't defer type errors. You could imagine using the /enclosing/ bindings (in cec_binds), but that may not have enough stuff in scope for the bindings to be well typed. So we just switch off deferred type errors altogether. See #14605. This is done by maybeSwitchOffDefer. It's also useful in one other place: see Note [Wrapping failing kind equalities] in GHC.Tc.Solver. Note [Suppressing error messages] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The cec_suppress flag says "don't report any errors". Instead, just create evidence bindings (as usual). It's used when more important errors have occurred. Specifically (see reportWanteds) * If there are insoluble Givens, then we are in unreachable code and all bets are off. So don't report any further errors. * If there are any insolubles (eg Int~Bool), here or in a nested implication, then suppress errors from the simple constraints here. Sometimes the simple-constraint errors are a knock-on effect of the insolubles. This suppression behaviour is controlled by the Bool flag in ReportErrorSpec, as used in reportWanteds. But we need to take care: flags can turn errors into warnings, and we don't want those warnings to suppress subsequent errors (including suppressing the essential addTcEvBind for them: #15152). So in tryReporter we use askNoErrs to see if any error messages were /actually/ produced; if not, we don't switch on suppression. A consequence is that warnings never suppress warnings, so turning an error into a warning may allow subsequent warnings to appear that were previously suppressed. (e.g. partial-sigs/should_fail/T14584) -} reportImplic :: SolverReportErrCtxt -> Implication -> TcM () reportImplic ctxt implic@(Implic { ic_skols = tvs , ic_given = given , ic_wanted = wanted, ic_binds = evb , ic_status = status, ic_info = info , ic_env = ct_loc_env , ic_tclvl = tc_lvl }) | BracketSkol <- info , not insoluble = return () -- For Template Haskell brackets report only -- definite errors. The whole thing will be re-checked -- later when we plug it in, and meanwhile there may -- certainly be un-satisfied constraints | otherwise = do { traceTc "reportImplic" $ vcat [ text "tidy env:" <+> ppr (cec_tidy ctxt) , text "skols: " <+> pprTyVars tvs , text "tidy skols:" <+> pprTyVars tvs' ] ; when bad_telescope $ reportBadTelescope ctxt ct_loc_env info tvs -- Do /not/ use the tidied tvs because then are in the -- wrong order, so tidying will rename things wrongly ; reportWanteds ctxt' tc_lvl wanted -- Report redundant (unused) constraints ; warnRedundantConstraints ctxt' ct_loc_env info' dead_givens } where insoluble = isInsolubleStatus status (env1, tvs') = tidyVarBndrs (cec_tidy ctxt) $ scopedSort tvs -- scopedSort: the ic_skols may not be in dependency order -- (see Note [Skolems in an implication] in GHC.Tc.Types.Constraint) -- but tidying goes wrong on out-of-order constraints; -- so we sort them here before tidying info' = tidySkolemInfoAnon env1 info implic' = implic { ic_skols = tvs' , ic_given = map (tidyEvVar env1) given , ic_info = info' } ctxt1 = maybeSwitchOffDefer evb ctxt ctxt' = ctxt1 { cec_tidy = env1 , cec_encl = implic' : cec_encl ctxt , cec_suppress = insoluble || cec_suppress ctxt -- Suppress inessential errors if there -- are insolubles anywhere in the -- tree rooted here, or we've come across -- a suppress-worthy constraint higher up (#11541) , cec_binds = evb } dead_givens = case status of IC_Solved { ics_dead = dead } -> dead _ -> [] bad_telescope = case status of IC_BadTelescope -> True _ -> False warnRedundantConstraints :: SolverReportErrCtxt -> CtLocEnv -> SkolemInfoAnon -> [EvVar] -> TcM () -- See Note [Tracking redundant constraints] in GHC.Tc.Solver warnRedundantConstraints ctxt env info redundant_evs | not (cec_warn_redundant ctxt) = return () | null redundant_evs = return () | SigSkol user_ctxt _ _ <- info -- When dealing with a user-written type signature, -- we want to add "In the type signature for f". = report_redundant_msg True (setCtLocEnvLoc env (redundantConstraintsSpan user_ctxt)) -- ^^^^ add "In the type signature..." | otherwise -- But for InstSkol there already *is* a surrounding -- "In the instance declaration for Eq [a]" context -- and we don't want to say it twice. Seems a bit ad-hoc = report_redundant_msg False env -- ^^^^^ don't add "In the type signature..." where report_redundant_msg :: Bool -- whether to add "In the type signature..." to the diagnostic -> CtLocEnv -> TcRn () report_redundant_msg show_info lcl_env = do { msg <- mkErrorReport lcl_env (TcRnRedundantConstraints redundant_evs (info, show_info)) (Just ctxt) [] [] ; reportDiagnostic msg } reportBadTelescope :: SolverReportErrCtxt -> CtLocEnv -> SkolemInfoAnon -> [TcTyVar] -> TcM () reportBadTelescope ctxt env (ForAllSkol telescope) skols = do { msg <- mkErrorReport env (TcRnSolverReport report ErrorWithoutFlag) (Just ctxt) [] [] ; reportDiagnostic msg } where report = SolverReportWithCtxt ctxt $ BadTelescope telescope skols reportBadTelescope _ _ skol_info skols = pprPanic "reportBadTelescope" (ppr skol_info $$ ppr skols) -- | Should we completely ignore this constraint in error reporting? -- It *must* be the case that any constraint for which this returns True -- somehow causes an error to be reported elsewhere. -- See Note [Constraints to ignore]. ignoreConstraint :: Ct -> Bool ignoreConstraint ct = case ctOrigin ct of AssocFamPatOrigin -> True -- See (CIG1) _ -> False -- | Makes an error item from a constraint, calculating whether or not -- the item should be suppressed. See Note [Wanteds rewrite Wanteds] -- in GHC.Tc.Types.Constraint. Returns Nothing if we should just ignore -- a constraint. See Note [Constraints to ignore]. mkErrorItem :: Ct -> TcM (Maybe ErrorItem) mkErrorItem ct | ignoreConstraint ct = do { traceTc "Ignoring constraint:" (ppr ct) ; return Nothing } -- See Note [Constraints to ignore] | otherwise = do { let loc = ctLoc ct flav = ctFlavour ct (suppress, m_evdest) = case ctEvidence ct of -- For this `suppress` stuff -- see Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint CtGiven {} -> (False, Nothing) CtWanted (WantedCt { ctev_rewriters = rws, ctev_dest = dest }) -> (not (isEmptyRewriterSet rws), Just dest) ; let m_reason = case ct of CIrredCan (IrredCt { ir_reason = reason }) -> Just reason _ -> Nothing ; return $ Just $ EI { ei_pred = ctPred ct , ei_evdest = m_evdest , ei_flavour = flav , ei_loc = loc , ei_m_reason = m_reason , ei_suppress = suppress }} -- | Actually report this 'ErrorItem'. unsuppressErrorItem :: ErrorItem -> ErrorItem unsuppressErrorItem ei = ei { ei_suppress = False } ---------------------------------------------------------------- reportWanteds :: SolverReportErrCtxt -> TcLevel -> WantedConstraints -> TcM () reportWanteds ctxt tc_lvl wc@(WC { wc_simple = simples, wc_impl = implics , wc_errors = errs }) | isEmptyWC wc = traceTc "reportWanteds empty WC" empty | otherwise = do { tidy_items1 <- mapMaybeM mkErrorItem tidy_cts ; traceTc "reportWanteds 1" (vcat [ text "Simples =" <+> ppr simples , text "Suppress =" <+> ppr (cec_suppress ctxt) , text "tidy_cts =" <+> ppr tidy_cts , text "tidy_items1 =" <+> ppr tidy_items1 , text "tidy_errs =" <+> ppr tidy_errs ]) -- Catch an awkward (and probably rare) case in which /all/ errors are -- suppressed: see Wrinkle (PER2) in Note [Prioritise Wanteds with empty -- RewriterSet] in GHC.Tc.Types.Constraint. -- -- Unless we are sure that an error will be reported some other way -- (details in the defn of tidy_items) un-suppress the lot. This makes -- sure we don't forget to report an error at all, which is -- catastrophic: GHC proceeds to desguar and optimise the program, even -- though it is full of type errors (#22702, #22793) ; errs_already <- ifErrsM (return True) (return False) ; let tidy_items | not errs_already -- Have not already reported an error (perhaps -- from an outer implication); see #21405 , not (any ignoreConstraint simples) -- No error is ignorable (is reported elsewhere) , all ei_suppress tidy_items1 -- All errors are suppressed = map unsuppressErrorItem tidy_items1 | otherwise = tidy_items1 -- First, deal with any out-of-scope errors: ; let (out_of_scope, other_holes, not_conc_errs, mult_co_errs) = partition_errors tidy_errs -- don't suppress out-of-scope errors ctxt_for_scope_errs = ctxt { cec_suppress = False } ; (_, no_out_of_scope) <- askNoErrs $ reportHoles tidy_items ctxt_for_scope_errs out_of_scope -- Next, deal with things that are utterly wrong -- Like Int ~ Bool (incl nullary TyCons) -- or Int ~ t a (AppTy on one side) -- These /ones/ are not suppressed by the incoming context -- (but will be by out-of-scope errors) ; let ctxt_for_insols = ctxt { cec_suppress = not no_out_of_scope } ; reportHoles tidy_items ctxt_for_insols other_holes -- holes never suppress ; reportNotConcreteErrs ctxt_for_insols not_conc_errs -- We only want to report multiplicity coercion errors for multiplicity -- constraints which are /solved/ with a non-reflexivity coercion. We -- over approximate here: we only report multiplicity coercion errors -- when /all/ constraints are solved. -- See wrinkle (DME1) in Note [Coercion errors in tcSubMult] in GHC.Tc.Utils.Unify. ; when (null simples) $ reportMultiplicityCoercionErrs ctxt_for_insols mult_co_errs -- See Note [Suppressing confusing errors] ; let (suppressed_items, reportable_items) = partition suppressItem tidy_items ; traceTc "reportWanteds suppressed:" (ppr suppressed_items) ; (ctxt1, items1) <- tryReporters ctxt_for_insols report1 reportable_items -- Now all the other constraints. We suppress errors here if -- any of the first batch failed, or if the enclosing context -- says to suppress ; let ctxt2 = ctxt1 { cec_suppress = cec_suppress ctxt || cec_suppress ctxt1 } ; (_, leftovers) <- tryReporters ctxt2 report2 items1 ; massertPpr (null leftovers) (text "The following unsolved Wanted constraints \ \have not been reported to the user:" $$ ppr leftovers) ; mapBagM_ (reportImplic ctxt2) implics -- NB ctxt2: don't suppress inner insolubles if there's only a -- wanted insoluble here; but do suppress inner insolubles -- if there's a *given* insoluble here (= inaccessible code) -- If there are no other errors to report, report suppressed errors. -- See Note [Suppressing confusing errors]. NB: with -fdefer-type-errors -- we might have reported warnings only from `reportable_items`, but we -- still want to suppress the `suppressed_items`. ; when (null reportable_items) $ do { (_, more_leftovers) <- tryReporters ctxt_for_insols (report1++report2) suppressed_items -- ctxt_for_insols: the suppressed errors can be Int~Bool, which -- will have made the incoming `ctxt` be True; don't make that -- suppress the Int~Bool error! ; massertPpr (null more_leftovers) (ppr more_leftovers) } } where env = cec_tidy ctxt tidy_cts = bagToList (mapBag (tidyCt env) simples) tidy_errs = bagToList (mapBag (tidyDelayedError env) errs) partition_errors :: [DelayedError] -> ([Hole], [Hole], [NotConcreteError], [(TcCoercion, CtLoc)]) partition_errors [] = ([], [], [], []) partition_errors (err:errs) | (es1, es2, es3, es4) <- partition_errors errs = case err of DE_Hole hole | isOutOfScopeHole hole -> (hole : es1, es2, es3, es4) | otherwise -> (es1, hole : es2, es3, es4) DE_NotConcrete err -> (es1, es2, err : es3, es4) DE_Multiplicity mult_co loc -> (es1, es2, es3, (mult_co, loc):es4) -- report1: ones that should *not* be suppressed by -- an insoluble somewhere else in the tree -- It's crucial that anything that is considered insoluble -- (see GHC.Tc.Utils.insolublWantedCt) is caught here, otherwise -- we might suppress its error message, and proceed on past -- type checking to get a Lint error later report1 = [ -- We put implicit lifting errors first, because are solid errors -- See "Implicit lifting" in GHC.Tc.Gen.Splice -- Note [Lifecycle of an untyped splice, and PendingRnSplice] ("implicit lifting", is_implicit_lifting, True, mkImplicitLiftingReporter) -- Next, solid equality errors , given_eq_spec , ("insoluble2", utterly_wrong, True, mkGroupReporter mkEqErr) , ("skolem eq1", very_wrong, True, mkSkolReporter) , ("FixedRuntimeRep", is_FRR, True, mkGroupReporter mkFRRErr) , ("skolem eq2", skolem_eq, True, mkSkolReporter) -- Next, custom type errors -- See Note [Custom type errors in constraints] in GHC.Tc.Types.Constraint -- -- Put custom type errors /after/ solid equality errors. In #26255 we -- had a custom error (T <= F alpha) which was suppressing a far more -- informative (K Int ~ [K alpha]). That mismatch between K and [] is -- definitely wrong; and if it was fixed we'd know alpha:=Int, and hence -- perhaps be able to solve T <= F alpha, by reducing F Int. -- -- But put custom type errors /before/ "non-tv eq", because if we have -- () ~ TypeError blah -- we want to report it as a custom error, /not/ as a mis-match -- between TypeError and ()! Also see the Assert example -- in Note [Custom type errors in constraints] , ("custom_error", is_user_type_error, True, mkUserTypeErrorReporter) -- (Handles TypeError and Unsatisfiable) -- "non-tv-eq": equalities (ty1 ~ ty2) where ty1 is not a tyvar , ("non-tv eq", non_tv_eq, True, mkSkolReporter) -- The only remaining equalities are alpha ~ ty, -- where alpha is untouchable; and representational equalities -- Prefer homogeneous equalities over hetero, because the -- former might be holding up the latter. -- See Note [Equalities with heterogeneous kinds] in GHC.Tc.Solver.Equality , ("Homo eqs", is_homo_equality, True, mkGroupReporter mkEqErr) , ("Other eqs", is_equality, True, mkGroupReporter mkEqErr) ] -- report2: we suppress these if there are insolubles elsewhere in the tree report2 = [ ("Implicit params", is_ip, False, mkGroupReporter mkIPErr) , ("Irreds", is_irred, False, mkGroupReporter mkIrredErr) , ("Dicts", is_dict, False, mkGroupReporter mkDictErr) , ("Quantified", is_qc, False, mkGroupReporter mkQCErr) ] -- rigid_nom_eq, rigid_nom_tv_eq, is_dict, is_equality, is_ip, is_FRR, is_irred :: ErrorItem -> Pred -> Bool is_given_eq item pred | Given <- ei_flavour item , EqPred {} <- pred = True | otherwise = False -- I think all given residuals are equalities -- Things like (Int ~N Bool) utterly_wrong _ (EqPred NomEq ty1 ty2) = isRigidTy ty1 && isRigidTy ty2 utterly_wrong _ _ = False -- Things like (a ~N Int) very_wrong _ (EqPred NomEq ty1 ty2) = isSkolemTy tc_lvl ty1 && isRigidTy ty2 very_wrong _ _ = False -- Representation-polymorphism errors, to be reported using mkFRRErr. is_FRR item _ = isJust $ fixedRuntimeRepOrigin_maybe item -- Things like (a ~N b) or (a ~N F Bool) skolem_eq _ (EqPred NomEq ty1 _) = isSkolemTy tc_lvl ty1 skolem_eq _ _ = False -- Things like (F a ~N Int) non_tv_eq _ (EqPred NomEq ty1 _) = not (isTyVarTy ty1) non_tv_eq _ _ = False -- Catch TypeError and Unsatisfiable. -- Here, we want any nested TypeErrors to bubble up, so we use -- 'containsUserTypeError' and not 'isTopLevelUserTypeError'. -- -- See also Note [Implementation of Unsatisfiable constraints], point (F). is_user_type_error item _ = containsUserTypeError (errorItemPred item) is_implicit_lifting item _ = case (errorItemOrigin item) of ImplicitLiftOrigin {} -> True _ -> False is_homo_equality _ (EqPred _ ty1 ty2) = typeKind ty1 `tcEqType` typeKind ty2 is_homo_equality _ _ = False is_equality _(EqPred {}) = True is_equality _ _ = False is_dict _ (ClassPred {}) = True is_dict _ _ = False is_ip _ (ClassPred cls _) = isIPClass cls is_ip _ _ = False is_irred _ (IrredPred {}) = True is_irred _ _ = False is_qc _ (ForAllPred {}) = True is_qc _ _ = False given_eq_spec -- See Note [Given errors] | has_gadt_match_here = ("insoluble1a", is_given_eq, True, mkGivenErrorReporter) | otherwise = ("insoluble1b", is_given_eq, False, ignoreErrorReporter) -- False means don't suppress subsequent errors -- Reason: we don't report all given errors -- (see mkGivenErrorReporter), and we should only suppress -- subsequent errors if we actually report this one! -- #13446 is an example -- See Note [Given errors] has_gadt_match_here = has_gadt_match (cec_encl ctxt) has_gadt_match [] = False has_gadt_match (implic : implics) | PatSkol {} <- ic_info implic , ic_given_eqs implic /= NoGivenEqs , ic_warn_inaccessible implic -- Don't bother doing this if -Winaccessible-code isn't enabled. -- See Note [Avoid -Winaccessible-code when deriving] in GHC.Tc.TyCl.Instance. = True | otherwise = has_gadt_match implics --------------- suppressItem :: ErrorItem -> Bool -- See Note [Suppressing confusing errors] suppressItem item | Wanted <- ei_flavour item , let orig = errorItemOrigin item = isWantedSuperclassOrigin orig -- See (SCE1) || isWantedWantedFunDepOrigin orig -- See (SCE2) | otherwise = False isSkolemTy :: TcLevel -> Type -> Bool -- The type is a skolem tyvar isSkolemTy tc_lvl ty | Just tv <- getTyVar_maybe ty = isSkolemTyVar tv || (isTyVarTyVar tv && isTouchableMetaTyVar tc_lvl tv) -- The last case is for touchable TyVarTvs -- we postpone untouchables to a latter test (too obscure) | otherwise = False isTyFun_maybe :: Type -> Maybe TyCon isTyFun_maybe ty = case tcSplitTyConApp_maybe ty of Just (tc,_) | isTypeFamilyTyCon tc -> Just tc _ -> Nothing {- Note [Suppressing confusing errors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Certain errors we might encounter are potentially confusing to users. If there are any other errors to report, at all, we want to suppress these. Which errors are suppressed? (SCE1) Superclasses of Wanteds. These are generated only in case they trigger functional dependencies. If such a constraint is unsolved, then its "parent" constraint must also be unsolved, and is much more informative to the user. Example (#26255): class (MinVersion <= F era) => Era era where { ... } f :: forall era. EraFamily era -> IO () f = ..blah... -- [W] Era era Here we have simply omitted "Era era =>" from f's type. But we'll end up with /two/ Wanted constraints: [W] d1 : Era era [W] d2 : MinVersion <= F era -- Superclass of d1 We definitely want to report d1 and not d2! Happily it's easy to filter out those superclass-Wanteds, becuase their Origin betrays them. See test T18851 for an example of how it is (just, barely) possible for the /only/ errors to be superclass-of-Wanted constraints. (SCE2) Errors which arise from the interaction of two Wanted fun-dep constraints. Example: class C a b | a -> b where op :: a -> b -> b foo _ = op True Nothing bar _ = op False [] Here, we could infer foo :: C Bool (Maybe a) => p -> Maybe a bar :: C Bool [a] => p -> [a] (The unused arguments suppress the monomorphism restriction.) The problem is that these types can't both be correct, as they violate the functional dependency. Yet reporting an error here is awkward: we must non-deterministically choose either foo or bar to reject. We thus want to report this problem only when there is nothing else to report. See typecheck/should_fail/T13506 for an example of when to suppress the error. The case above is actually accepted, because foo and bar are checked separately, and thus the two fundep constraints never encounter each other. It is test case typecheck/should_compile/FunDepOrigin1. This case applies only when both fundeps are *Wanted* fundeps; when both are givens, the error represents unreachable code. For a Given/Wanted case, see #9612. Mechanism: We use the `suppress` function within reportWanteds to filter out these two cases, then report all other errors. Lastly, we return to these suppressed ones and report them only if there have been no errors so far. Note [Constraints to ignore] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some constraints are meant only to aid the solver by unification; a failure to solve them is not necessarily an error to report to the user. It is critical that compilation is aborted elsewhere if there are any ignored constraints here; they will remain unfilled, and might have been used to rewrite another constraint. Currently, the constraints to ignore are: (CIG1) Constraints generated in order to unify associated type instance parameters with class parameters. Here are two illustrative examples: class C (a :: k) where type F (b :: k) instance C True where type F a = Int instance C Left where type F (Left :: a -> Either a b) = Bool In the first instance, we want to infer that `a` has type Bool. So we emit a constraint unifying kappa (the guessed type of `a`) with Bool. All is well. In the second instance, we process the associated type instance only after fixing the quantified type variables of the class instance. We thus have skolems a1 and b1 such that the class instance is for (Left :: a1 -> Either a1 b1). Unifying a1 and b1 with a and b in the type instance will fail, but harmlessly so. checkConsistentFamInst checks for this, and will fail if anything has gone awry. Really the equality constraints emitted are just meant as an aid, not a requirement. This is test case T13972. We detect this case by looking for an origin of AssocFamPatOrigin; constraints with this origin are dropped entirely during error message reporting. If there is any trouble, checkValidFamInst bleats, aborting compilation. (Note: Aug 25: this seems a rather tricky corner; c.f. Note [Suppressing confusing errors]) Note [Implementation of Unsatisfiable constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Unsatisfiable constraint was introduced in GHC proposal #433 (https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0433-unsatisfiable.rst). See Note [The Unsatisfiable constraint] in GHC.TypeError. Its implementation consists of the following: A. The definitions. The Unsatisfiable class is defined in GHC.TypeError, in base. It consists of the following definitions: type Unsatisfiable :: ErrorMessage -> Constraint class Unsatisfiable msg where unsatisfiableLifted :: a unsatisfiable :: forall {rep} (msg :: ErrorMessage) (a :: TYPE rep). Unsatisfiable msg => a unsatisfiable = unsatisfiableLifted @msg @((##) -> a) (##) The class TyCon as well as the unsatisfiable Id have known-key Names in GHC; they are not wired-in. B. Unsatisfiable instances. The Unsatisfiable typeclass has no instances (see GHC.Tc.Instance.Class.matchGlobalInst). Users are prevented from writing instances in GHC.Tc.Validity.check_special_inst_head. This is done using the same mechanism as for, say, Coercible or WithDict. C. Using [G] Unsatisfiable msg to solve any Wanted. In GHC.Tc.Solver.simplifyTopWanteds, after defaulting happens, when an implication contains Givens of the form [G] Unsatisfiable msg, and the implication supports term-level evidence (as per Note [Coercion evidence only] in GHC.Tc.Types.Evidence), we use any such Given to solve all the Wanteds in that implication. See GHC.Tc.Solver.useUnsatisfiableGivens. The way we construct the evidence terms is slightly complicated by Type vs Constraint considerations; see Note [Evidence terms from Unsatisfiable Givens] in GHC.Tc.Solver. The proposal explains why this happens after defaulting: if there are other ways to solve the Wanteds, we would prefer to use that, as that will make user programs "as defined as possible". Wrinkle [Ambiguity] We also use an Unsatisfiable Given to solve Wanteds when performing an ambiguity check. See the call to "useUnsatisfiableGivens" in GHC.Tc.Solver.simplifyAmbiguityCheck. This is, for example, required to typecheck the definition of "unsatisfiable" itself: unsatisfiable :: forall {rep} (msg :: ErrorMessage) (a :: TYPE rep). Unsatisfiable msg => a The ambiguity check on this type signature will produce [G] Unsatisfiable msg1, [W] Unsatisfiable msg2 and we want to ensure the Given solves the Wanted, to accept the definition. NB: An alternative would be to add a functional dependency on Unsatisfiable: class Unsatisfiable msg | -> msg Then we would unify msg1 and msg2 in the above constraint solving problem, and would be able to solve the Wanted using the Given in the normal way. However, adding such a functional dependency solely for this purpose could have undesirable consequences. For example, one might have [W] Unsatisfiable (Text "msg1"), [W] Unsatisfiable (Text "msg2") and W-W fundep interaction would produce the insoluble constraint [W] "msg1" ~ "msg2" which we definitely wouldn't want to report to the user. D. Adding "meth = unsatisfiable @msg" method bindings. When a class instance has an "Unsatisfiable msg" constraint in its context, and the user has omitted methods, we add method bindings of the form "meth = unsatisfiable @msg". See GHC.Tc.TyCl.Instance.tcMethods, in particular "tc_default". Example: class C a where { op :: a -> a } instance Unsatisfiable Msg => C [a] where {} elaborates to instance Unsatisfiable Msg => C [a] where { op = unsatisfiable @Msg } due to the (Unsatisfiable Msg) constraint in the instance context. We also switch off the "missing methods" warning in this situation. See "checkMinimalDefinition" in GHC.Tc.TyCl.Instance.tcMethods. Note that we do this even when there is a default method available. This ensures we run into the unsatisfiable error message when deferring type errors; otherwise we could end up with a runtime loop as seen in #23816. E. Switching off functional dependency coverage checks when there is an "Unsatisfiable msg" context. This is because we want to allow users to rule out certain instances with an "unsatisfiable" error, even when that would violate a functional dependency. For example: class C a b | a -> b instance Unsatisfiable (Text "No") => C a b See GHC.Tc.Instance.FunDeps.checkInstCoverage. F. Error reporting of "Unsatisfiable msg" constraints. This is done in GHC.Tc.Errors.reportWanteds: we detect when a constraint is of the form "Unsatisfiable msg" and just emit the custom message as an error to the user. This is the only way that "Unsatisfiable msg" constraints are reported, which makes their behaviour much more predictable than TypeError. -} -------------------------------------------- -- Reporters -------------------------------------------- type Reporter = SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM () type ReporterSpec = ( String -- Name , ErrorItem -> Pred -> Bool -- Pick these ones , Bool -- True <=> suppress subsequent reporters , Reporter) -- The reporter itself mkSkolReporter :: Reporter -- Suppress duplicates with either the same LHS, or same location -- Pre-condition: all items are equalities mkSkolReporter ctxt items = mapM_ (reportGroup (mkEqErr ctxt) ctxt) (group (toList items)) where group [] = [] group (item:items) = (item :| yeses) : group noes where (yeses, noes) = partition (group_with item) items group_with item1 item2 | EQ <- cmp_loc item1 item2 = True | eq_lhs_type item1 item2 = True | otherwise = False reportHoles :: [ErrorItem] -- other (tidied) constraints -> SolverReportErrCtxt -> [Hole] -> TcM () reportHoles tidy_items ctxt holes = do diag_opts <- initDiagOpts <$> getDynFlags let severity = diagReasonSeverity diag_opts (cec_type_holes ctxt) holes' = filter (keepThisHole severity) holes -- Zonk and tidy all the TcLclEnvs before calling `mkHoleError` -- because otherwise types will be zonked and tidied many times over. (tidy_env', lcl_name_cache) <- liftZonkM $ zonkTidyTcLclEnvs (cec_tidy ctxt) (map (ctl_env . hole_loc) holes') let ctxt' = ctxt { cec_tidy = tidy_env' } forM_ holes' $ \hole -> do { msg <- mkHoleError lcl_name_cache tidy_items ctxt' hole ; reportDiagnostic msg } keepThisHole :: Severity -> Hole -> Bool -- See Note [Skip type holes rapidly] keepThisHole sev hole = case hole_sort hole of ExprHole {} -> True TypeHole -> keep_type_hole ConstraintHole -> keep_type_hole where keep_type_hole = case sev of SevIgnore -> False _ -> True -- | zonkTidyTcLclEnvs takes a bunch of 'CtLocEnv's, each from a Hole. -- It returns a ('Name' :-> 'Type') mapping which gives the zonked, tidied -- type for each Id in any of the binder stacks in the 'CtLocEnv's. -- Since there is a huge overlap between these stacks, is is much, -- much faster to do them all at once, avoiding duplication. zonkTidyTcLclEnvs :: TidyEnv -> [CtLocEnv] -> ZonkM (TidyEnv, NameEnv Type) zonkTidyTcLclEnvs tidy_env lcls = foldM go (tidy_env, emptyNameEnv) (concatMap ctl_bndrs lcls) where go envs tc_bndr = case tc_bndr of TcTvBndr {} -> return envs TcIdBndr id _top_lvl -> go_one (idName id) (idType id) envs TcIdBndr_ExpType name et _top_lvl -> do { mb_ty <- liftIO $ readExpType_maybe et -- et really should be filled in by now. But there's a chance -- it hasn't, if, say, we're reporting a kind error en route to -- checking a term. See test indexed-types/should_fail/T8129 -- Or we are reporting errors from the ambiguity check on -- a local type signature ; case mb_ty of Just ty -> go_one name ty envs Nothing -> return envs } go_one name ty (tidy_env, name_env) = do if name `elemNameEnv` name_env then return (tidy_env, name_env) else do (tidy_env', tidy_ty) <- zonkTidyTcType tidy_env ty return (tidy_env', extendNameEnv name_env name tidy_ty) reportNotConcreteErrs :: SolverReportErrCtxt -> [NotConcreteError] -> TcM () reportNotConcreteErrs _ [] = return () reportNotConcreteErrs ctxt errs@(err0:_) = do { msg <- mkErrorReport (ctLocEnv (nce_loc err0)) diag (Just ctxt) [] [] ; reportDiagnostic msg } where frr_origins = acc_errors errs diag = TcRnSolverReport (SolverReportWithCtxt ctxt (FixedRuntimeRepError frr_origins)) ErrorWithoutFlag -- Accumulate the different kind of errors arising from syntactic equality. -- (Only SynEq_FRR origin for the moment.) acc_errors = go [] where go frr_errs [] = frr_errs go frr_errs (err:errs) | frr_errs <- go frr_errs errs = case err of NCE_FRR { nce_frr_origin = frr_orig } -> FRR_Info { frr_info_origin = frr_orig , frr_info_not_concrete = Nothing , frr_info_other_origin = Nothing } : frr_errs reportMultiplicityCoercionErrs :: SolverReportErrCtxt -> [(TcCoercion, CtLoc)] -> TcM () reportMultiplicityCoercionErrs ctxt errs = mapM_ reportOne errs where reportOne :: (TcCoercion, CtLoc) -> TcM () reportOne (_co, loc) = do { msg <- mkErrorReport (ctLocEnv loc) diag (Just ctxt) [] [] ; reportDiagnostic msg } diag = TcRnSolverReport (SolverReportWithCtxt ctxt MultiplicityCoercionsNotSupported) ErrorWithoutFlag {- Note [Skip type holes rapidly] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we have module with a /lot/ of partial type signatures, and we compile it while suppressing partial-type-signature warnings. Then we don't want to spend ages constructing error messages and lists of relevant bindings that we never display! This happened in #14766, in which partial type signatures in a Happy-generated parser cause a huge increase in compile time. The function ignoreThisHole short-circuits the error/warning generation machinery, in cases where it is definitely going to be a no-op. -} mkUserTypeErrorReporter :: Reporter mkUserTypeErrorReporter ctxt = mapM_ $ \item -> do { let err = important ctxt $ mkUserTypeError item ; maybeReportError ctxt (item :| []) err ; addSolverDeferredBinding err item } mkUserTypeError :: ErrorItem -> TcSolverReportMsg mkUserTypeError item | Just msg <- getUserTypeErrorMsg pty = UserTypeError msg | Just msg <- isUnsatisfiableCt_maybe pty = UnsatisfiableError msg | otherwise = pprPanic "mkUserTypeError" (ppr item) where pty = errorItemPred item mkImplicitLiftingReporter :: Reporter mkImplicitLiftingReporter ctxt = mapM_ $ \item -> do { let err = mkImplicitLiftingError item ; msg <- mkErrorReport (ctLocEnv (errorItemCtLoc item)) err (Just ctxt) [] [] ; reportDiagnostic msg ; addDeferredBinding ctxt [] [] err item } where mkImplicitLiftingError :: ErrorItem -> TcRnMessage mkImplicitLiftingError item = case errorItemOrigin item of ImplicitLiftOrigin (HsImplicitLiftSplice bound used gre name) -> TcRnBadlyLevelled (LevelCheckSplice (getName name) gre) bound used (Just item) (cec_defer_type_errors ctxt) _ -> pprPanic "mkImplicitLiftingError" (ppr item) mkGivenErrorReporter :: Reporter -- See Note [Given errors] mkGivenErrorReporter ctxt (item:|_) = do { (ctxt, relevant_binds, item) <- relevantBindings True ctxt item ; let implic = case cec_encl ctxt of -- cec_encl is always non-empty when mkGivenErrorReporter is called outer_implic:_ -> outer_implic _ -> pprPanic "mkGivenErrorReporter" (ppr item) loc' = setCtLocEnv (ei_loc item) (ic_env implic) item' = item { ei_loc = loc' } -- For given constraints we overwrite the env (and hence src-loc) -- with one from the immediately-enclosing implication. -- See Note [Inaccessible code] ; eq_err_msg <- mkEqErr_help ctxt item' ty1 ty2 ; let msg = TcRnInaccessibleCode implic (SolverReportWithCtxt ctxt eq_err_msg) ; msg <- mkErrorReport (ctLocEnv loc') msg (Just ctxt) [SupplementaryBindings relevant_binds] [] ; reportDiagnostic msg } where (ty1, ty2) = getEqPredTys (errorItemPred item) ignoreErrorReporter :: Reporter -- Discard Given errors that don't come from -- a pattern match; maybe we should warn instead? ignoreErrorReporter ctxt items = do { traceTc "mkGivenErrorReporter no" (ppr items $$ ppr (cec_encl ctxt)) ; return () } {- Note [Given errors] ~~~~~~~~~~~~~~~~~~~~~~ Given constraints represent things for which we have (or will have) evidence, so they aren't errors. But if a Given constraint is insoluble, this code is inaccessible, and we might want to at least warn about that. A classic case is data T a where T1 :: T Int T2 :: T a T3 :: T Bool f :: T Int -> Bool f T1 = ... f T2 = ... f T3 = ... -- We want to report this case as inaccessible We'd like to point out that the T3 match is inaccessible. It will have a Given constraint [G] Int ~ Bool. But we don't want to report ALL insoluble Given constraints. See Trac #12466 for a long discussion. For example, if we aren't careful we'll complain about f :: ((Int ~ Bool) => a -> a) -> Int which arguably is OK. It's more debatable for g :: (Int ~ Bool) => Int -> Int but it's tricky to distinguish these cases so we don't report either. The bottom line is this: has_gadt_match looks for an enclosing pattern match which binds some equality constraints. If we find one, we report the insoluble Given. -} mkGroupReporter :: (SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport) -- Make error message for a group -> Reporter -- Deal with lots of constraints -- Group together errors from same location, -- and report only the first (to avoid a cascade) mkGroupReporter mk_err ctxt items = mapM_ (reportGroup (mk_err ctxt) ctxt) (equivClasses cmp_loc (toList items)) eq_lhs_type :: ErrorItem -> ErrorItem -> Bool eq_lhs_type item1 item2 = case (classifyPredType (errorItemPred item1), classifyPredType (errorItemPred item2)) of (EqPred eq_rel1 ty1 _, EqPred eq_rel2 ty2 _) -> (eq_rel1 == eq_rel2) && (ty1 `eqType` ty2) _ -> pprPanic "mkSkolReporter" (ppr item1 $$ ppr item2) cmp_loc :: ErrorItem -> ErrorItem -> Ordering cmp_loc item1 item2 = get item1 `compare` get item2 where get ei = realSrcSpanStart (ctLocSpan (errorItemCtLoc ei)) -- Reduce duplication by reporting only one error from each -- /starting/ location even if the end location differs reportGroup :: (NonEmpty ErrorItem -> TcM SolverReport) -> Reporter reportGroup mk_err ctxt items = do { err <- mk_err items ; traceTc "About to maybeReportErr" $ vcat [ text "Constraint:" <+> ppr items , text "cec_suppress =" <+> ppr (cec_suppress ctxt) , text "cec_defer_type_errors =" <+> ppr (cec_defer_type_errors ctxt) ] ; maybeReportError ctxt items err -- But see Note [Always warn with -fdefer-type-errors] ; traceTc "reportGroup" (ppr items) ; mapM_ (addSolverDeferredBinding err) items } -- Add deferred bindings for all -- Redundant if we are going to abort compilation, -- but that's hard to know for sure, and if we don't -- abort, we need bindings for all (e.g. #12156) -- See Note [No deferring for multiplicity errors] nonDeferrableOrigin :: CtOrigin -> Bool nonDeferrableOrigin (NonLinearPatternOrigin {}) = True nonDeferrableOrigin (OmittedFieldOrigin {}) = True nonDeferrableOrigin (UsageEnvironmentOf {}) = True nonDeferrableOrigin (FRROrigin {}) = True nonDeferrableOrigin _ = False maybeReportError :: SolverReportErrCtxt -> NonEmpty ErrorItem -- items covered by the Report -> SolverReport -> TcM () maybeReportError ctxt items@(item1:|_) (SolverReport { sr_important_msg = important , sr_supplementary = supp , sr_hints = hints }) = unless (cec_suppress ctxt -- Some worse error has occurred, so suppress this diagnostic || all ei_suppress items) $ -- if they're all to be suppressed, report nothing -- if at least one is not suppressed, do report: -- the function that generates the error message -- should look for an unsuppressed error item do let reason | any (nonDeferrableOrigin . errorItemOrigin) items = ErrorWithoutFlag | otherwise = cec_defer_type_errors ctxt -- See Note [No deferring for multiplicity errors] diag = TcRnSolverReport important reason msg <- mkErrorReport (ctLocEnv (errorItemCtLoc item1)) diag (Just ctxt) supp hints reportDiagnostic msg addSolverDeferredBinding :: SolverReport -> ErrorItem -> TcM () addSolverDeferredBinding err item = let ctxt = reportContext . sr_important_msg $ err supp = sr_supplementary err hints = sr_hints err important = sr_important_msg err in addDeferredBinding ctxt supp hints (TcRnSolverReport important ErrorWithoutFlag) item addDeferredBinding :: SolverReportErrCtxt -> [SupplementaryInfo] -> [GhcHint] -> TcRnMessage -> ErrorItem -> TcM () -- See Note [Deferring coercion errors to runtime] addDeferredBinding ctxt supp hints msg (EI { ei_evdest = Just dest , ei_pred = item_ty , ei_loc = loc }) -- if evdest is Just, then the constraint was from a wanted | deferringAnyBindings ctxt = do { err_tm <- mkErrorTerm loc item_ty ctxt msg supp hints ; let ev_binds_var = cec_binds ctxt ; case dest of EvVarDest evar -> addTcEvBind ev_binds_var $ mkWantedEvBind evar EvNonCanonical err_tm HoleDest hole -> do { -- See Note [Deferred errors for coercion holes] let co_var = coHoleCoVar hole ; addTcEvBind ev_binds_var $ mkWantedEvBind co_var EvNonCanonical err_tm ; fillCoercionHole hole (mkCoVarCo co_var) } } addDeferredBinding _ _ _ _ _ = return () -- Do not set any evidence for Given mkSolverErrorTerm :: CtLoc -> Type -- of the error term -> SolverReport -> TcM EvTerm mkSolverErrorTerm ct_loc ty err = mkErrorTerm ct_loc ty (reportContext . sr_important_msg $ err) (TcRnSolverReport (sr_important_msg err) ErrorWithoutFlag) (sr_supplementary err) (sr_hints err) mkErrorTerm :: CtLoc -> Type -- of the error term -> SolverReportErrCtxt -> TcRnMessage -> [SupplementaryInfo] -> [GhcHint] -> TcM EvTerm mkErrorTerm ct_loc ty ctxt msg supp hints = do { msg <- mkErrorReport (ctLocEnv ct_loc) msg (Just $ ctxt) supp hints -- This will be reported at runtime, so we always want "error:" in the report, never "warning:" ; dflags <- getDynFlags ; let err_msg = pprLocMsgEnvelope (initTcMessageOpts dflags) msg err_str = showSDoc dflags $ err_msg $$ text "(deferred type error)" ; return $ evDelayedError ty err_str } tryReporters :: SolverReportErrCtxt -> [ReporterSpec] -> [ErrorItem] -> TcM (SolverReportErrCtxt, [ErrorItem]) -- Use the first reporter in the list whose predicate says True tryReporters ctxt reporters items = do { let (vis_items, invis_items) = partition (isVisibleOrigin . errorItemOrigin) items ; traceTc "tryReporters {" (ppr vis_items $$ ppr invis_items) ; (ctxt', items') <- go ctxt reporters vis_items invis_items ; traceTc "tryReporters }" (ppr items') ; return (ctxt', items') } where go ctxt [] vis_items invis_items = return (ctxt, vis_items ++ invis_items) go ctxt (r : rs) vis_items invis_items -- always look at *visible* Origins before invisible ones -- this is the whole point of isVisibleOrigin = do { (ctxt', vis_items') <- tryReporter ctxt r vis_items ; (ctxt'', invis_items') <- tryReporter ctxt' r invis_items ; go ctxt'' rs vis_items' invis_items' } -- Carry on with the rest, because we must make -- deferred bindings for them if we have -fdefer-type-errors -- But suppress their error messages tryReporter :: SolverReportErrCtxt -> ReporterSpec -> [ErrorItem] -> TcM (SolverReportErrCtxt, [ErrorItem]) tryReporter ctxt (str, keep_me, suppress_after, reporter) items = case nonEmpty yeses of Nothing -> pure (ctxt, items) Just yeses -> do { traceTc "tryReporter{ " (text str <+> ppr yeses) ; (_, no_errs) <- askNoErrs (reporter ctxt yeses) ; let suppress_now = not no_errs && suppress_after -- See Note [Suppressing error messages] ctxt' = ctxt { cec_suppress = suppress_now || cec_suppress ctxt } ; traceTc "tryReporter end }" (text str <+> ppr (cec_suppress ctxt) <+> ppr suppress_after) ; return (ctxt', nos) } where (yeses, nos) = partition keep items keep item = keep_me item (classifyPredType (errorItemPred item)) -- | Wrap an input 'TcRnMessage' with additional contextual information, -- such as relevant bindings or valid hole fits. mkErrorReport :: CtLocEnv -> TcRnMessage -- ^ The main payload of the message. -> Maybe SolverReportErrCtxt -- ^ The context to add, after the main diagnostic -- but before the supplementary information. -- Nothing <=> don't add any context. -> [SupplementaryInfo] -- ^ Supplementary information, to be added at the end of the message. -> [GhcHint] -- ^ Suggested fixes -> TcM (MsgEnvelope TcRnMessage) mkErrorReport tcl_env msg mb_ctxt supp hints = do { mb_context <- traverse (\ ctxt -> mkErrCtxt (cec_tidy ctxt) (ctl_ctxt tcl_env)) mb_ctxt ; unit_state <- hsc_units <$> getTopEnv ; hfdc <- getHoleFitDispConfig ; let err_info = ErrInfo (fromMaybe [] mb_context) (Just (hfdc, supp)) hints detailed_msg = mkDetailedMessage err_info msg ; mkTcRnMessage (RealSrcSpan (ctl_loc tcl_env) Strict.Nothing) (TcRnMessageWithInfo unit_state $ detailed_msg) } {- Note [Always warn with -fdefer-type-errors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When -fdefer-type-errors is on we warn about *all* type errors, even if cec_suppress is on. This can lead to a lot more warnings than you would get errors without -fdefer-type-errors, but if we suppress any of them you might get a runtime error that wasn't warned about at compile time. To be consistent, we should also report multiple warnings from a single location in mkGroupReporter, when -fdefer-type-errors is on. But that is perhaps a bit *over*-consistent! With #10283, you can now opt out of deferred type error warnings. Note [No deferring for multiplicity errors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As explained in Note [Coercion errors in tcSubMult] in GHC.Tc.Utils.Unify, linear types do not support casts and any nontrivial coercion will raise an error at the end of typechecking (a delayed error). This means that even if we defer a multiplicity mismatch during typechecking, the desugarer will refuse to compile anyway. Worse: the delayed error would shadow the type mismatch warnings (#20083). As a solution, we refuse to defer submultiplicity constraints. Test: T20083. To determine whether a constraint arose from a submultiplicity check, we look at the CtOrigin. All calls to tcSubMult use origins which are not used outside of linear types. In the future, we should compile unsolved multiplicity constraints to a runtime error with -fdefer-type-errors, but there's currently no good way to insert this type error in the desugared program. Especially in a way that would pass the linter. This plan is tracked in #20083. Note [Deferred errors for coercion holes] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we need to defer a type error where the destination for the evidence is a coercion hole. We can't just put the error in the hole, because we can't make an erroneous coercion. (Remember that coercions are erased for runtime.) Instead, we invent a new EvVar, bind it to an error and then make a coercion from that EvVar, filling the hole with that coercion. Because coercions' types are unlifted, the error is guaranteed to be hit before we get to the coercion. ************************************************************************ * * Irreducible predicate errors * * ************************************************************************ -} mkIrredErr :: SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport mkIrredErr ctxt items = do { (ctxt, binds, item1) <- relevantBindings True ctxt item1 ; let msg = important ctxt $ mkPlainMismatchMsg $ CouldNotDeduce (getUserGivens ctxt) (item1 :| others) Nothing ; return $ add_relevant_bindings binds msg } where item1:|others = tryFilter (not . ei_suppress) items {- Note [Constructing Hole Errors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Whether or not 'mkHoleError' returns an error is not influenced by cec_suppress. In other terms, these "hole" errors are /not/ suppressed by cec_suppress. We want to see them! There are two cases to consider: 1. For out-of-scope variables we always report an error, unless -fdefer-out-of-scope-variables is on, in which case the messages are discarded. See also #12170 and #12406. If deferring, report a warning only if -Wout-of-scope-variables is on. 2. For the general case, when -XPartialTypeSignatures is on, warnings (instead of errors) are generated for holes in partial type signatures, unless -Wpartial-type-signatures is not on, in which case the messages are discarded. If deferring, report a warning only if -Wtyped-holes is on. The above can be summarised into the following table: | Hole Type | Active Flags | Outcome | |--------------|----------------------------------------------------------|------------------| | out-of-scope | None | Error | | out-of-scope | -fdefer-out-of-scope-variables, -Wout-of-scope-variables | Warning | | out-of-scope | -fdefer-out-of-scope-variables | Ignore (discard) | | type | None | Error | | type | -XPartialTypeSignatures, -Wpartial-type-signatures | Warning | | type | -XPartialTypeSignatures | Ignore (discard) | | expression | None | Error | | expression | -Wdefer-typed-holes, -Wtyped-holes | Warning | | expression | -Wdefer-typed-holes | Ignore (discard) | See also 'reportUnsolved'. -} ---------------- -- | Constructs a new hole error, unless this is deferred. See Note [Constructing Hole Errors]. mkHoleError :: NameEnv Type -> [ErrorItem] -> SolverReportErrCtxt -> Hole -> TcM (MsgEnvelope TcRnMessage) mkHoleError _ _tidy_simples ctxt hole@(Hole { hole_sort = sort, hole_occ = occ, hole_loc = ct_loc }) | isOutOfScopeHole hole = do { (imp_errs, hints) <- unknownNameSuggestions (ctl_rdr lcl_env) what_look occ ; let err = SolverReportWithCtxt ctxt $ ReportHoleError hole OutOfScopeHole supp = [ SupplementaryImportErrors imps | imps <- maybeToList (NE.nonEmpty imp_errs) ] ; maybeAddDeferredBindings hole $ SolverReport err supp hints ; mkErrorReport lcl_env ( TcRnSolverReport err (cec_out_of_scope_holes ctxt) ) Nothing supp hints -- Pass the value 'Nothing' for the context, as it's generally not helpful -- to include the context here. } where what_look = case sort of ExprHole {} -> WL_Term TypeHole {} -> WL_Type ConstraintHole {} -> WL_Type lcl_env = ctLocEnv ct_loc -- general case: not an out-of-scope error mkHoleError lcl_name_cache tidy_simples ctxt hole@(Hole { hole_ty = hole_ty , hole_sort = sort , hole_loc = ct_loc }) = do { rel_binds <- relevant_bindings False lcl_env lcl_name_cache (tyCoVarsOfType hole_ty) -- The 'False' means "don't filter the bindings"; see #8191 ; show_hole_constraints <- goptM Opt_ShowHoleConstraints ; let relevant_cts | ExprHole _ <- sort, show_hole_constraints = givenConstraints ctxt | otherwise = [] ; show_valid_hole_fits <- goptM Opt_ShowValidHoleFits ; (ctxt, hole_fits) <- if show_valid_hole_fits then validHoleFits ctxt tidy_simples hole else return (ctxt, noValidHoleFits) ; (grouped_skvs, other_tvs) <- liftZonkM $ zonkAndGroupSkolTvs hole_ty ; let reason | ExprHole _ <- sort = cec_expr_holes ctxt | otherwise = cec_type_holes ctxt err = SolverReportWithCtxt ctxt $ ReportHoleError hole $ HoleError sort other_tvs grouped_skvs supp = [ SupplementaryBindings rel_binds ] ++ [ SupplementaryCts cts | cts <- maybeToList (NE.nonEmpty relevant_cts) ] ++ [ SupplementaryHoleFits hole_fits ] ; maybeAddDeferredBindings hole (SolverReport err supp noHints) ; let msg = TcRnSolverReport err reason ; mkErrorReport lcl_env msg (Just ctxt) supp noHints } where lcl_env = ctLocEnv ct_loc -- | For all the skolem type variables in a type, zonk the skolem info and group together -- all the type variables with the same origin. zonkAndGroupSkolTvs :: Type -> ZonkM ([(SkolemInfoAnon, [TcTyVar])], [TcTyVar]) zonkAndGroupSkolTvs hole_ty = do zonked_info <- mapM zonk_skolem_info skolem_list return (zonked_info, other_tvs) where zonk_skolem_info (sk, tv) = do { sk <- zonkSkolemInfoAnon $ getSkolemInfo sk ; return (sk, fst <$> tv) } tvs = tyCoVarsOfTypeList hole_ty (skol_tvs, other_tvs) = partition (isTcTyVar <&&> isSkolemTyVar) tvs group_skolems :: UM.UniqMap SkolemInfo ([(TcTyVar, Int)]) group_skolems = bagToList <$> UM.listToUniqMap_C unionBags [(skolemSkolInfo tv, unitBag (tv, n)) | tv <- skol_tvs | n <- [0..]] skolem_list = sortBy (comparing (sort . map snd . snd)) $ UM.nonDetUniqMapToList group_skolems {- Note [Adding deferred bindings] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When working with typed holes we have to deal with the case where we want holes to be reported as warnings to users during compile time but as errors during runtime. Therefore, we have to call 'maybeAddDeferredBindings' so that the correct 'Severity' can be computed out of that later on. -} -- | Adds deferred bindings (as errors). -- See Note [Adding deferred bindings]. maybeAddDeferredBindings :: Hole -> SolverReport -> TcM () maybeAddDeferredBindings hole report = do case hole_sort hole of ExprHole (HER ref ref_ty _) -> do -- Only add bindings for holes in expressions -- not for holes in partial type signatures -- cf. addDeferredBinding when (deferringAnyBindings ctxt) $ do err_tm <- mkSolverErrorTerm (hole_loc hole) ref_ty report -- NB: ref_ty, not hole_ty. hole_ty might be rewritten. -- See Note [Holes in expressions] in GHC.Hs.Expr writeMutVar ref err_tm _ -> pure () where ctxt = reportContext $ sr_important_msg $ report -- We unwrap the SolverReportErrCtxt here, to avoid introducing a loop in module -- imports validHoleFits :: SolverReportErrCtxt -- ^ The context we're in, i.e. the -- implications and the tidy environment -> [ErrorItem] -- ^ Unsolved simple constraints -> Hole -- ^ The hole -> TcM (SolverReportErrCtxt, ValidHoleFits) -- ^ We return the new context -- with a possibly updated -- tidy environment, and -- the valid hole fits. validHoleFits ctxt@(CEC { cec_encl = implics , cec_tidy = lcl_env}) simps hole = do { (tidy_env, fits) <- findValidHoleFits lcl_env implics (mapMaybe mk_wanted simps) hole ; return (ctxt {cec_tidy = tidy_env}, fits) } where mk_wanted :: ErrorItem -> Maybe CtEvidence mk_wanted (EI { ei_pred = pred, ei_evdest = m_dest, ei_loc = loc }) | Just dest <- m_dest = Just $ CtWanted $ WantedCt { ctev_pred = pred , ctev_dest = dest , ctev_loc = loc , ctev_rewriters = emptyRewriterSet } | otherwise = Nothing -- The ErrorItem was a Given -- See Note [Constraints include ...] givenConstraints :: SolverReportErrCtxt -> [(Type, RealSrcSpan)] givenConstraints ctxt = do { implic@Implic{ ic_given = given } <- cec_encl ctxt ; constraint <- given ; return (varType constraint, getCtLocEnvLoc (ic_env implic)) } ---------------- mkIPErr :: SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport -- What would happen if an item is suppressed because of -- Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint? Very unclear -- what's best. Let's not worry about this. mkIPErr ctxt (item1:|others) = do { (ctxt, binds, item1) <- relevantBindings True ctxt item1 ; let msg = important ctxt $ UnboundImplicitParams (item1 :| others) ; return $ add_relevant_bindings binds msg } ---------------- -- | Report a representation-polymorphism error to the user: -- a type is required to have a fixed runtime representation, -- but doesn't. -- -- See Note [Reporting representation-polymorphism errors] in GHC.Tc.Types.Origin. mkFRRErr :: HasDebugCallStack => SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport mkFRRErr ctxt items = do { -- Process the error items. ; (_tidy_env, frr_infos) <- liftZonkM $ zonkTidyFRRInfos (cec_tidy ctxt) $ -- Zonk/tidy to show useful variable names. nubOrdBy (nonDetCmpType `on` (frr_type . frr_info_origin)) $ -- Remove duplicates: only one representation-polymorphism error per type. map (expectJust . fixedRuntimeRepOrigin_maybe) $ toList items ; return $ important ctxt $ FixedRuntimeRepError frr_infos } -- | Whether to report something using the @FixedRuntimeRep@ mechanism. fixedRuntimeRepOrigin_maybe :: HasDebugCallStack => ErrorItem -> Maybe FixedRuntimeRepErrorInfo fixedRuntimeRepOrigin_maybe item -- An error that arose directly from a representation-polymorphism check. | FRROrigin frr_orig <- orig = Just $ FRR_Info { frr_info_origin = frr_orig , frr_info_not_concrete = Nothing , frr_info_other_origin = Nothing } -- A nominal equality involving a concrete type variable, -- such as @alpha[conc] ~# rr[sk]@ or @beta[conc] ~# RR@ for a -- type family application @RR@. | EqPred NomEq ty1 ty2 <- classifyPredType (errorItemPred item) = if | Just (tv1, ConcreteFRR frr1) <- isConcreteTyVarTy_maybe ty1 -> Just $ FRR_Info frr1 (Just (tv1, ty2)) (Just orig) | Just (tv2, ConcreteFRR frr2) <- isConcreteTyVarTy_maybe ty2 -> Just $ FRR_Info frr2 (Just (tv2, ty1)) (Just orig) | otherwise -> Nothing | otherwise = Nothing where orig = errorItemOrigin item {- Note [Constraints include ...] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 'givenConstraintsMsg' returns the "Constraints include ..." message enabled by -fshow-hole-constraints. For example, the following hole: foo :: (Eq a, Show a) => a -> String foo x = _ would generate the message: Constraints include Eq a (from foo.hs:1:1-36) Show a (from foo.hs:1:1-36) Constraints are displayed in order from innermost (closest to the hole) to outermost. There's currently no filtering or elimination of duplicates. ************************************************************************ * * Equality errors * * ************************************************************************ Note [Inaccessible code] ~~~~~~~~~~~~~~~~~~~~~~~~ Consider data T a where T1 :: T a T2 :: T Bool f :: (a ~ Int) => T a -> Int f T1 = 3 f T2 = 4 -- Unreachable code Here the second equation is unreachable. The original constraint (a~Int) from the signature gets rewritten by the pattern-match to (Bool~Int), so the danger is that we report the error as coming from the *signature* (#7293). So, for Given errors we replace the env (and hence src-loc) on its CtLoc with that from the immediately enclosing implication. Note [Error messages for untouchables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (#9109) data G a where { GBool :: G Bool } foo x = case x of GBool -> True Here we can't solve (t ~ Bool), where t is the untouchable result meta-var 't', because of the (a ~ Bool) from the pattern match. So we infer the type f :: forall a t. G a -> t making the meta-var 't' into a skolem. So when we come to report the unsolved (t ~ Bool), t won't look like an untouchable meta-var any more. So we don't assert that it is. -} -- Don't have multiple equality errors from the same location -- E.g. (Int,Bool) ~ (Bool,Int) one error will do! mkEqErr :: SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport mkEqErr ctxt items | item1 :| _ <- tryFilter (not . ei_suppress) items = mkEqErr1 ctxt item1 mkEqErr1 :: SolverReportErrCtxt -> ErrorItem -> TcM SolverReport mkEqErr1 ctxt item -- Wanted only -- givens handled in mkGivenErrorReporter = do { (ctxt, binds, item) <- relevantBindings True ctxt item ; traceTc "mkEqErr1" (ppr item $$ pprCtOrigin (errorItemOrigin item)) ; err_msg <- mkEqErr_help ctxt item ty1 ty2 ; let report = add_relevant_bindings binds $ important ctxt err_msg ; return report } where (ty1, ty2) = getEqPredTys (errorItemPred item) -- | This function tries to reconstruct why a "Coercible ty1 ty2" constraint -- is left over. mkCoercibleExplanation :: GlobalRdrEnv -> FamInstEnvs -> TcType -> TcType -> Maybe CoercibleMsg mkCoercibleExplanation rdr_env fam_envs ty1 ty2 | Just (tc, tys) <- tcSplitTyConApp_maybe ty1 , (rep_tc, _, _) <- tcLookupDataFamInst fam_envs tc tys , Just msg <- coercible_msg_for_tycon rep_tc = Just msg | Just (tc, tys) <- splitTyConApp_maybe ty2 , (rep_tc, _, _) <- tcLookupDataFamInst fam_envs tc tys , Just msg <- coercible_msg_for_tycon rep_tc = Just msg | Just (s1, _) <- tcSplitAppTy_maybe ty1 , Just (s2, _) <- tcSplitAppTy_maybe ty2 , s1 `eqType` s2 , has_unknown_roles s1 = Just $ UnknownRoles s1 | otherwise = Nothing where coercible_msg_for_tycon tc | isAbstractTyCon tc = Just $ TyConIsAbstract tc | isNewTyCon tc , [data_con] <- tyConDataCons tc , let dc_name = dataConName data_con , isNothing (lookupGRE_Name rdr_env dc_name) = Just $ OutOfScopeNewtypeConstructor tc data_con | otherwise = Nothing has_unknown_roles ty | Just (tc, tys) <- tcSplitTyConApp_maybe ty = tys `lengthAtLeast` tyConArity tc -- oversaturated tycon | Just (s, _) <- tcSplitAppTy_maybe ty = has_unknown_roles s | isTyVarTy ty = True | otherwise = False mkEqErr_help :: SolverReportErrCtxt -> ErrorItem -> TcType -> TcType -> TcM TcSolverReportMsg mkEqErr_help ctxt item ty1 ty2 | Just (tv1, _co) <- getCastedTyVar_maybe ty1 = mkTyVarEqErr ctxt item tv1 ty2 -- ToDo: explain.. Cf T2627b Dual (Dual a) ~ a | Just (tv2, _co) <- getCastedTyVar_maybe ty2 = mkTyVarEqErr ctxt item tv2 ty1 | otherwise = reportEqErr ctxt item ty1 ty2 reportEqErr :: SolverReportErrCtxt -> ErrorItem -> TcType -> TcType -> TcM TcSolverReportMsg reportEqErr ctxt item ty1 ty2 = do mb_coercible_info <- if errorItemEqRel item == ReprEq then coercible_msg ty1 ty2 else return Nothing tv_info <- case getTyVar_maybe ty2 of Nothing -> return Nothing Just tv2 -> Just <$> extraTyVarEqInfo (tv2, Nothing) ty1 return $ Mismatch { mismatchMsg = mismatch , mismatchTyVarInfo = tv_info , mismatchAmbiguityInfo = eqInfos , mismatchCoercibleInfo = mb_coercible_info } where mismatch = misMatchOrCND ctxt item ty1 ty2 eqInfos = eqInfoMsgs ty1 ty2 coercible_msg :: TcType -> TcType -> TcM (Maybe CoercibleMsg) coercible_msg ty1 ty2 = do rdr_env <- getGlobalRdrEnv fam_envs <- tcGetFamInstEnvs return $ mkCoercibleExplanation rdr_env fam_envs ty1 ty2 mkTyVarEqErr :: SolverReportErrCtxt -> ErrorItem -> TcTyVar -> TcType -> TcM TcSolverReportMsg -- tv1 and ty2 are already tidied mkTyVarEqErr ctxt item tv1 ty2 = do { traceTc "mkTyVarEqErr" (ppr item $$ ppr tv1 $$ ppr ty2) ; mkTyVarEqErr' ctxt item tv1 ty2 } mkTyVarEqErr' :: SolverReportErrCtxt -> ErrorItem -> TcTyVar -> TcType -> TcM TcSolverReportMsg mkTyVarEqErr' ctxt item tv1 ty2 -- Is this a representation-polymorphism error, e.g. -- alpha[conc] ~# rr[sk] ? If so, handle that first. | Just frr_info <- mb_concrete_reason = do (_, infos) <- liftZonkM $ zonkTidyFRRInfos (cec_tidy ctxt) [frr_info] return $ FixedRuntimeRepError infos -- Impredicativity is a simple error to understand; -- try it before anything more complicated. | check_eq_result `cterHasProblem` cteImpredicative = do tyvar_eq_info <- extraTyVarEqInfo (tv1, Nothing) ty2 let poly_msg = CannotUnifyWithPolytype item tv1 ty2 mb_tv_info mb_tv_info | isSkolemTyVar tv1 = Just tyvar_eq_info | otherwise = Nothing main_msg = CannotUnifyVariable { mismatchMsg = headline_msg , cannotUnifyReason = poly_msg } -- Unlike the other reports, this discards the old 'report_important' -- instead of augmenting it. This is because the details are not likely -- to be helpful since this is just an unimplemented feature. return main_msg | isSkolemTyVar tv1 -- ty2 won't be a meta-tyvar; we would have -- swapped in Solver.Equality.canEqTyVarHomo || isTyVarTyVar tv1 && not (isTyVarTy ty2) || errorItemEqRel item == ReprEq -- The cases below don't really apply to ReprEq (except occurs check) = do tv_extra <- extraTyVarEqInfo (tv1, Nothing) ty2 reason <- if errorItemEqRel item == ReprEq then RepresentationalEq tv_extra <$> coercible_msg ty1 ty2 else return $ DifferentTyVars tv_extra let main_msg = CannotUnifyVariable { mismatchMsg = headline_msg , cannotUnifyReason = reason } return main_msg | tv1 `elemVarSet` tyCoVarsOfType ty2 -- We report an "occurs check" even for a ~ F t a, where F is a type -- function; it's not insoluble (because in principle F could reduce) -- but we have certainly been unable to solve it -- -- Use tyCoVarsOfType because it might have begun as the canonical -- constraint (Dual (Dual a)) ~ a, and been swizzled by mkEqnErr_help = let ambiguity_infos = eqInfoMsgs ty1 ty2 interesting_tyvars = filter (not . noFreeVarsOfType . tyVarKind) $ filter isTyVar $ fvVarList $ tyCoFVsOfType ty1 `unionFV` tyCoFVsOfType ty2 occurs_err = OccursCheck { occursCheckInterestingTyVars = interesting_tyvars , occursCheckAmbiguityInfos = ambiguity_infos } main_msg = CannotUnifyVariable { mismatchMsg = headline_msg , cannotUnifyReason = occurs_err } in return main_msg -- If the immediately-enclosing implication has 'tv' a skolem, and -- we know by now its an InferSkol kind of skolem, then presumably -- it started life as a TyVarTv, else it'd have been unified, given -- that there's no occurs-check or forall problem | (implic:_) <- cec_encl ctxt , Implic { ic_skols = skols } <- implic , tv1 `elem` skols = do tv_extra <- extraTyVarEqInfo (tv1, Nothing) ty2 let msg = Mismatch { mismatchMsg = mismatch_msg , mismatchTyVarInfo = Just tv_extra , mismatchAmbiguityInfo = [] , mismatchCoercibleInfo = Nothing } return msg -- Check for skolem escape | (implic:_) <- cec_encl ctxt -- Get the innermost context , Implic { ic_skols = skols } <- implic , let esc_skols = filter (`elemVarSet` (tyCoVarsOfType ty2)) skols , not (null esc_skols) = let main_msg = CannotUnifyVariable { mismatchMsg = mismatch_msg , cannotUnifyReason = SkolemEscape item implic esc_skols } in return main_msg -- Nastiest case: attempt to unify an untouchable variable -- So tv is a meta tyvar (or started that way before we -- generalised it). So presumably it is an *untouchable* -- meta tyvar or a TyVarTv, else it'd have been unified -- See Note [Error messages for untouchables] | (implic:_) <- cec_encl ctxt -- Get the innermost context , Implic { ic_tclvl = lvl } <- implic = assertPpr (not (isTouchableMetaTyVar lvl tv1) || hasCoercionHole ty2) (ppr tv1 $$ ppr lvl) $ do -- See Note [Error messages for untouchables] -- We can still get touchable meta-tyvars on the LHS if there is an -- unsolved coercion hole, e.g. (alpha::Type) ~ Int# |> co_hole tv_extra <- extraTyVarEqInfo (tv1, Just implic) ty2 let tv_extra' = tv_extra { thisTyVarIsUntouchable = Just implic } msg = Mismatch { mismatchMsg = mismatch_msg , mismatchTyVarInfo = Just tv_extra' , mismatchAmbiguityInfo = [] , mismatchCoercibleInfo = Nothing } return msg | otherwise = reportEqErr ctxt item (mkTyVarTy tv1) ty2 -- This *can* happen (#6123) -- Consider an ambiguous top-level constraint (a ~ F a) -- Not an occurs check, because F is a type function. where headline_msg = misMatchOrCND ctxt item ty1 ty2 mismatch_msg = mkMismatchMsg item ty1 ty2 -- The following doesn't use the cterHasProblem mechanism because -- we need to retrieve the ConcreteTvOrigin. Just knowing whether -- there is an error is not sufficient. See #21430. mb_concrete_reason | Just frr_orig <- isConcreteTyVar_maybe tv1 , not (isConcreteType ty2) = Just $ frr_reason frr_orig tv1 ty2 | Just (tv2, frr_orig) <- isConcreteTyVarTy_maybe ty2 , not (isConcreteTyVar tv1) = Just $ frr_reason frr_orig tv2 ty1 -- NB: if it's an unsolved equality in which both sides are concrete -- (e.g. a concrete type variable on both sides), then it's not a -- representation-polymorphism problem. | otherwise = Nothing frr_reason (ConcreteFRR frr_orig) conc_tv not_conc = FRR_Info { frr_info_origin = frr_orig , frr_info_not_concrete = Just (conc_tv, not_conc) , frr_info_other_origin = Just (errorItemOrigin item) } ty1 = mkTyVarTy tv1 check_eq_result = case ei_m_reason item of Just (NonCanonicalReason result) -> result _ -> cteOK eqInfoMsgs :: TcType -> TcType -> [AmbiguityInfo] -- Report (a) ambiguity if either side is a type function application -- e.g. F a0 ~ Int -- (b) warning about injectivity if both sides are the same -- type function application F a ~ F b -- See Note [Non-injective type functions] eqInfoMsgs ty1 ty2 = catMaybes [tyfun_msg, ambig_msg] where mb_fun1 = isTyFun_maybe ty1 mb_fun2 = isTyFun_maybe ty2 ambig_tkvs1@(kvs1, tvs1) = ambigTkvsOfTy ty1 ambig_tkvs2@(kvs2, tvs2) = ambigTkvsOfTy ty2 -- If a type isn't headed by a type function, then any ambiguous -- variables need not be reported as such. e.g.: F a ~ t0 -> t0, where a is a skolem ambig_tkvs@(ambig_kvs, ambig_tvs) = case (mb_fun1, mb_fun2) of (Nothing, Nothing) -> ([], []) (Just {}, Nothing) -> ambig_tkvs1 (Nothing, Just {}) -> ambig_tkvs2 (Just{},Just{}) -> (kvs1 `union` kvs2, tvs1 `union` tvs2) -- Avoid dups ambig_msg | isJust mb_fun1 || isJust mb_fun2 , not (null ambig_kvs && null ambig_tvs) = Just $ Ambiguity False ambig_tkvs | otherwise = Nothing tyfun_msg | Just tc1 <- mb_fun1 , Just tc2 <- mb_fun2 , tc1 == tc2 , not (isInjectiveTyCon tc1 Nominal) = Just $ NonInjectiveTyFam tc1 | otherwise = Nothing misMatchOrCND :: SolverReportErrCtxt -> ErrorItem -> TcType -> TcType -> MismatchMsg -- If oriented then ty1 is actual, ty2 is expected misMatchOrCND ctxt item ty1 ty2 | insoluble_item -- See Note [Insoluble mis-match] || (isRigidTy ty1 && isRigidTy ty2) || (ei_flavour item == Given) || null givens = -- If the equality is unconditionally insoluble -- or there is no context, don't report the context mkMismatchMsg item ty1 ty2 | otherwise = CouldNotDeduce givens (item :| []) (Just $ CND_Extra level ty1 ty2) where insoluble_item = case ei_m_reason item of Nothing -> False Just r -> isInsolubleReason r level = ctLocTypeOrKind_maybe (errorItemCtLoc item) `orElse` TypeLevel givens = [ given | given <- getUserGivens ctxt, ic_given_eqs given /= NoGivenEqs ] -- Keep only UserGivens that have some equalities. -- See Note [Suppress redundant givens during error reporting] {- Note [Suppress redundant givens during error reporting] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When GHC is unable to solve a constraint and prints out an error message, it will print out what given constraints are in scope to provide some context to the programmer. But we shouldn't print out /every/ given, since some of them are not terribly helpful to diagnose type errors. Consider this example: foo :: Int :~: Int -> a :~: b -> a :~: c foo Refl Refl = Refl When reporting that GHC can't solve (a ~ c), there are two givens in scope: (Int ~ Int) and (a ~ b). But (Int ~ Int) is trivially soluble (i.e., redundant), so it's not terribly useful to report it in an error message. To accomplish this, we discard any Implications that do not bind any equalities by filtering the `givens` selected in `misMatchOrCND` (based on the `ic_given_eqs` field of the Implication). Note that we discard givens that have no equalities whatsoever, but we want to keep ones with only *local* equalities, as these may be helpful to the user in understanding what went wrong. But this is not enough to avoid all redundant givens! Consider this example, from #15361: goo :: forall (a :: Type) (b :: Type) (c :: Type). a :~~: b -> a :~~: c goo HRefl = HRefl Matching on HRefl brings the /single/ given (* ~ *, a ~ b) into scope. The (* ~ *) part arises due the kinds of (:~~:) being unified. More importantly, (* ~ *) is redundant, so we'd like not to report it. However, the Implication (* ~ *, a ~ b) /does/ bind an equality (as reported by its ic_given_eqs field), so the test above will keep it wholesale. To refine this given, we apply mkMinimalBySCs on it to extract just the (a ~ b) part. This works because mkMinimalBySCs eliminates reflexive equalities in addition to superclasses (see Note [Remove redundant provided dicts] in GHC.Tc.TyCl.PatSyn). -} extraTyVarEqInfo :: (TcTyVar, Maybe Implication) -> TcType -> TcM TyVarInfo -- Add on extra info about skolem constants -- NB: The types themselves are already tidied extraTyVarEqInfo (tv1, mb_implic) ty2 = do tv1_info <- extraTyVarInfo tv1 ty2_info <- ty_extra ty2 return $ TyVarInfo { thisTyVar = tv1_info , thisTyVarIsUntouchable = mb_implic , otherTy = ty2_info } where ty_extra ty = case getCastedTyVar_maybe ty of Just (tv, _) -> Just <$> extraTyVarInfo tv Nothing -> return Nothing extraTyVarInfo :: TcTyVar -> TcM TyVar extraTyVarInfo tv = assertPpr (isTyVar tv) (ppr tv) $ case tcTyVarDetails tv of SkolemTv skol_info lvl overlaps -> do new_skol_info <- liftZonkM $ zonkSkolemInfo skol_info return $ mkTcTyVar (tyVarName tv) (tyVarKind tv) (SkolemTv new_skol_info lvl overlaps) _ -> return tv -------------------- mkMismatchMsg :: ErrorItem -> Type -> Type -> MismatchMsg mkMismatchMsg item ty1 ty2 = case orig of TypeEqOrigin { uo_actual, uo_expected, uo_thing = mb_thing } -> (TypeEqMismatch { teq_mismatch_item = item , teq_mismatch_ty1 = ty1 , teq_mismatch_ty2 = ty2 , teq_mismatch_actual = uo_actual , teq_mismatch_expected = uo_expected , teq_mismatch_what = mb_thing , teq_mb_same_occ = sameOccExtras ty2 ty1 }) KindEqOrigin cty1 cty2 sub_o mb_sub_t_or_k -> BasicMismatch { mismatch_ea = NoEA , mismatch_item = item , mismatch_ty1 = ty1 , mismatch_ty2 = ty2 , mismatch_whenMatching = Just $ WhenMatching cty1 cty2 sub_o mb_sub_t_or_k , mismatch_mb_same_occ = mb_same_occ } _ -> BasicMismatch { mismatch_ea = NoEA , mismatch_item = item , mismatch_ty1 = ty1 , mismatch_ty2 = ty2 , mismatch_whenMatching = Nothing , mismatch_mb_same_occ = mb_same_occ } where orig = errorItemOrigin item mb_same_occ = sameOccExtras ty2 ty1 {- Note [Insoluble mis-match] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider [G] a ~ [a], [W] a ~ [a] (#13674). The Given is insoluble so we don't use it for rewriting. The Wanted is also insoluble, and we don't solve it from the Given. It's very confusing to say Cannot solve a ~ [a] from given constraints a ~ [a] And indeed even thinking about the Givens is silly; [W] a ~ [a] is just as insoluble as Int ~ Bool. Exactly the same is true if we have [G] Int ~ Bool, [W] Int ~ Bool. Conclusion: if there's an insoluble constraint (isInsolubleReason), then report it directly, not in the "cannot deduce X from Y" form. This is done in misMatchOrCND (via the insoluble_occurs_check arg) (NB: there are potentially-soluble ones, like (a ~ F a b), and we don't want to be as draconian with them.) -} sameOccExtras :: TcType -> TcType -> Maybe SameOccInfo -- See Note [Disambiguating (X ~ X) errors] sameOccExtras ty1 ty2 | Just (tc1, _) <- tcSplitTyConApp_maybe ty1 , Just (tc2, _) <- tcSplitTyConApp_maybe ty2 , let n1 = tyConName tc1 n2 = tyConName tc2 same_occ = nameOccName n1 == nameOccName n2 same_pkg = moduleUnit (nameModule n1) == moduleUnit (nameModule n2) , n1 /= n2 -- Different Names , same_occ -- but same OccName = Just $ SameOcc same_pkg n1 n2 | otherwise = Nothing {- Note [Disambiguating (X ~ X) errors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #8278 Note [Reporting occurs-check errors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Given (a ~ [a]), if 'a' is a rigid type variable bound by a user-supplied type signature, then the best thing is to report that we can't unify a with [a], because a is a skolem variable. That avoids the confusing "occur-check" error message. But nowadays when inferring the type of a function with no type signature, even if there are errors inside, we still generalise its signature and carry on. For example f x = x:x Here we will infer something like f :: forall a. a -> [a] with a deferred error of (a ~ [a]). So in the deferred unsolved constraint 'a' is now a skolem, but not one bound by the programmer in the context! Here we really should report an occurs check. So isUserSkolem distinguishes the two. Note [Non-injective type functions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's very confusing to get a message like Couldn't match expected type `Depend s' against inferred type `Depend s1' so mkTyFunInfoMsg adds: NB: `Depend' is type function, and hence may not be injective Warn of loopy local equalities that were dropped. ************************************************************************ * * Type-class errors * * ************************************************************************ -} mkQCErr :: HasDebugCallStack => SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport mkQCErr ctxt items | item1 :| _ <- tryFilter (not . ei_suppress) items -- Ignore multiple qc-errors on the same line = do { let msg = mkPlainMismatchMsg $ CouldNotDeduce (getUserGivens ctxt) (item1 :| []) Nothing ; return $ important ctxt msg } mkDictErr :: HasDebugCallStack => SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport mkDictErr ctxt orig_items = do { inst_envs <- tcGetInstEnvs ; let min_items = elim_superclasses items lookups = map (lookup_cls_inst inst_envs) min_items (no_inst_items, overlap_items) = partition is_no_inst lookups -- Report definite no-instance errors, -- or (iff there are none) overlap errors -- But we report only one of them (hence 'head') because they all -- have the same source-location origin, to try avoid a cascade -- of error from one location ; ( err, (imp_errs, hints) ) <- mk_dict_err ctxt (head (no_inst_items ++ overlap_items)) ; return $ SolverReport { sr_important_msg = SolverReportWithCtxt ctxt err , sr_supplementary = [ SupplementaryImportErrors imps | imps <- maybeToList (NE.nonEmpty imp_errs) ] , sr_hints = hints } } where items = tryFilter (not . ei_suppress) orig_items no_givens = null (getUserGivens ctxt) is_no_inst (item, (matches, unifiers, _)) = no_givens && null matches && (nullUnifiers unifiers || all (not . isAmbiguousTyVar) (tyCoVarsOfTypeList (errorItemPred item))) lookup_cls_inst inst_envs item = (item, lookupInstEnv True inst_envs clas tys) where (clas, tys) = getClassPredTys (errorItemPred item) -- When simplifying [W] Ord (Set a), we need -- [W] Eq a, [W] Ord a -- but we really only want to report the latter elim_superclasses = mkMinimalBySCs errorItemPred . toList -- Note [mk_dict_err] -- ~~~~~~~~~~~~~~~~~~~ -- Different dictionary error messages are reported depending on the number of -- matches and unifiers: -- -- - No matches, regardless of unifiers: report "No instance for ...". -- - Two or more matches, regardless of unifiers: report "Overlapping instances for ...", -- and show the matching and unifying instances. -- - One match, one or more unifiers: report "Overlapping instances for", show the -- matching and unifying instances, and say "The choice depends on the instantion of ..., -- and the result of evaluating ...". mk_dict_err :: HasCallStack => SolverReportErrCtxt -> (ErrorItem, ClsInstLookupResult) -> TcM ( TcSolverReportMsg, ([ImportError], [GhcHint]) ) mk_dict_err ctxt (item, (matches, pot_unifiers, unsafe_overlapped)) = case (NE.nonEmpty matches, NE.nonEmpty unsafe_overlapped) of (Nothing, _) -> do -- No matches but perhaps several unifiers { (_, rel_binds, item) <- relevantBindings True ctxt item ; candidate_insts <- get_candidate_instances ; (imp_errs, field_suggestions) <- record_field_suggestions item ; return (CannotResolveInstance item unifiers candidate_insts rel_binds, (imp_errs, field_suggestions)) } -- Some matches => overlap errors (Just matchesNE, Nothing) -> return $ ( OverlappingInstances item (NE.map fst matchesNE) unifiers, ([], [])) (Just (match :| []), Just unsafe_overlappedNE) -> return $ ( UnsafeOverlap item (fst match) (NE.map fst unsafe_overlappedNE), ([], [])) (Just matches@(_ :| _), Just overlaps) -> pprPanic "mk_dict_err: multiple matches with overlap" $ vcat [ text "matches:" <+> ppr matches , text "overlaps:" <+> ppr overlaps ] where orig = errorItemOrigin item pred = errorItemPred item (clas, tys) = getClassPredTys pred unifiers = getCoherentUnifiers pot_unifiers get_candidate_instances :: TcM [ClsInst] -- See Note [Report candidate instances] get_candidate_instances | [ty] <- tys -- Only try for single-parameter classes = do { instEnvs <- tcGetInstEnvs ; return (filter (is_candidate_inst ty) (classInstances instEnvs clas)) } | otherwise = return [] is_candidate_inst ty inst -- See Note [Report candidate instances] | [other_ty] <- is_tys inst , Just (tc1, _) <- tcSplitTyConApp_maybe ty , Just (tc2, _) <- tcSplitTyConApp_maybe other_ty = let n1 = tyConName tc1 n2 = tyConName tc2 different_names = n1 /= n2 same_occ_names = nameOccName n1 == nameOccName n2 in different_names && same_occ_names | otherwise = False -- See Note [Out-of-scope fields with -XOverloadedRecordDot] record_field_suggestions :: ErrorItem -> TcM ([ImportError], [GhcHint]) record_field_suggestions item = flip (maybe $ return ([], noHints)) record_field $ \name -> do { glb_env <- getGlobalRdrEnv ; lcl_env <- getLocalRdrEnv ; let field_name_hints = report_no_fieldnames item ; (errs, hints) <- if occ_name_in_scope glb_env lcl_env name then return ([], noHints) else unknownNameSuggestions emptyLocalRdrEnv WL_RecField (mkRdrUnqual name) ; pure (errs, hints ++ field_name_hints) } -- get type names from instance -- resolve the type - if it's in scope is it a record? -- if it's a record, report an error - the record name + the field that could not be found report_no_fieldnames :: ErrorItem -> [GhcHint] report_no_fieldnames item | Just (EvVarDest evvar) <- ei_evdest item -- we can assume that here we have a `HasField @Symbol x r a` instance -- because of GetFieldOrigin in record_field , Just (_, [_symbol, x, r, a]) <- tcSplitTyConApp_maybe (varType evvar) , Just (r_tycon, _) <- tcSplitTyConApp_maybe r , Just x_name <- isStrLitTy x -- we check that this is a record type by checking whether it has any -- fields (in scope) , not . null $ tyConFieldLabels r_tycon = [RemindRecordMissingField x_name r a] | otherwise = [] occ_name_in_scope glb_env lcl_env occ_name = not $ null (lookupGRE glb_env (LookupOccName occ_name (RelevantGREsFOS WantNormal))) && isNothing (lookupLocalRdrOcc lcl_env occ_name) record_field = case orig of GetFieldOrigin name -> Just (mkVarOccFS name) _ -> Nothing {- Note [Report candidate instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If we have an unsolved (Num Int), where `Int` is not the Prelude Int, but comes from some other module, then it may be helpful to point out that there are some similarly named instances elsewhere. So we get something like No instance for (Num Int) arising from the literal ‘3’ There are instances for similar types: instance Num GHC.Types.Int -- Defined in ‘GHC.Num’ Discussion in #9611. Note [Highlighting ambiguous type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we encounter ambiguous type variables (i.e. type variables that remain metavariables after type inference), we need a few more conditions before we can reason that *ambiguity* prevents constraints from being solved: - We can't have any givens, as encountering a typeclass error with given constraints just means we couldn't deduce a solution satisfying those constraints and as such couldn't bind the type variable to a known type. - If we don't have any unifiers, we don't even have potential instances from which an ambiguity could arise. - Lastly, I don't want to mess with error reporting for unknown runtime types so we just fall back to the old message there. Once these conditions are satisfied, we can safely say that ambiguity prevents the constraint from being solved. Note [Out-of-scope fields with -XOverloadedRecordDot] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ With -XOverloadedRecordDot, when a field isn't in scope, the error that appears is produces here, and it says No instance for (GHC.Record.HasField "" ...). Additionally, though, we want to suggest similar field names that are in scope or could be in scope with different import lists. However, we can still get an error about a missing HasField instance when a field is in scope (if the types are wrong), and so it's important that we don't suggest similar names here if the record field is in scope, either qualified or unqualified, since qualification doesn't matter for -XOverloadedRecordDot. Example: import Data.Monoid (Alt(..)) foo = undefined.getAll results in No instance for (GHC.Records.HasField "getAll" r0 a0) arising from selecting the field ‘getAll’ Perhaps you meant ‘getAlt’ (imported from Data.Monoid) Perhaps you want to add ‘getAll’ to the import list in the import of ‘Data.Monoid’ -} ----------------------- -- relevantBindings looks at the value environment and finds values whose -- types mention any of the offending type variables. It has to be -- careful to zonk the Id's type first, so it has to be in the monad. -- We must be careful to pass it a zonked type variable, too. -- -- We always remove closed top-level bindings, though, -- since they are never relevant (cf #8233) relevantBindings :: Bool -- True <=> filter by tyvar; False <=> no filtering -- See #8191 -> SolverReportErrCtxt -> ErrorItem -> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem) -- Also returns the zonked and tidied CtOrigin of the constraint relevantBindings want_filtering ctxt item = do { traceTc "relevantBindings" (ppr item) ; (env1, tidy_orig) <- liftZonkM $ zonkTidyOrigin (cec_tidy ctxt) (ctLocOrigin loc) -- For *kind* errors, report the relevant bindings of the -- enclosing *type* equality, because that's more useful for the programmer ; let extra_tvs = case tidy_orig of KindEqOrigin t1 t2 _ _ -> tyCoVarsOfTypes [t1,t2] _ -> emptyVarSet ct_fvs = tyCoVarsOfType (errorItemPred item) `unionVarSet` extra_tvs -- Put a zonked, tidied CtOrigin into the ErrorItem loc' = setCtLocOrigin loc tidy_orig item' = item { ei_loc = loc' } ; (env2, lcl_name_cache) <- liftZonkM $ zonkTidyTcLclEnvs env1 [lcl_env] ; relev_bds <- relevant_bindings want_filtering lcl_env lcl_name_cache ct_fvs ; let ctxt' = ctxt { cec_tidy = env2 } ; return (ctxt', relev_bds, item') } where loc = errorItemCtLoc item lcl_env = ctLocEnv loc -- slightly more general version, to work also with holes relevant_bindings :: Bool -> CtLocEnv -> NameEnv Type -- Cache of already zonked and tidied types -> TyCoVarSet -> TcM RelevantBindings relevant_bindings want_filtering lcl_env lcl_name_env ct_tvs = do { dflags <- getDynFlags ; traceTc "relevant_bindings" $ vcat [ ppr ct_tvs , pprWithCommas id [ ppr id <+> dcolon <+> ppr (idType id) | TcIdBndr id _ <- ctl_bndrs lcl_env ] , pprWithCommas id [ ppr id | TcIdBndr_ExpType id _ _ <- ctl_bndrs lcl_env ] ] ; go dflags (maxRelevantBinds dflags) emptyVarSet (RelevantBindings [] False) (removeBindingShadowing $ ctl_bndrs lcl_env) -- tcl_bndrs has the innermost bindings first, -- which are probably the most relevant ones } where run_out :: Maybe Int -> Bool run_out Nothing = False run_out (Just n) = n <= 0 dec_max :: Maybe Int -> Maybe Int dec_max = fmap (\n -> n - 1) go :: DynFlags -> Maybe Int -> TcTyVarSet -> RelevantBindings -> [TcBinder] -> TcM RelevantBindings go _ _ _ (RelevantBindings bds discards) [] = return $ RelevantBindings (reverse bds) discards go dflags n_left tvs_seen rels@(RelevantBindings bds discards) (tc_bndr : tc_bndrs) = case tc_bndr of TcTvBndr {} -> discard_it TcIdBndr id top_lvl -> go2 (idName id) top_lvl TcIdBndr_ExpType name et top_lvl -> do { mb_ty <- liftIO $ readExpType_maybe et -- et really should be filled in by now. But there's a chance -- it hasn't, if, say, we're reporting a kind error en route to -- checking a term. See test indexed-types/should_fail/T8129 -- Or we are reporting errors from the ambiguity check on -- a local type signature ; case mb_ty of Just _ty -> go2 name top_lvl Nothing -> discard_it -- No info; discard } where discard_it = go dflags n_left tvs_seen rels tc_bndrs go2 id_name top_lvl = do { let tidy_ty = case lookupNameEnv lcl_name_env id_name of Just tty -> tty Nothing -> pprPanic "relevant_bindings" (ppr id_name) ; traceTc "relevantBindings 1" (ppr id_name <+> dcolon <+> ppr tidy_ty) ; let id_tvs = tyCoVarsOfType tidy_ty bd = (id_name, tidy_ty) new_seen = tvs_seen `unionVarSet` id_tvs ; if (want_filtering && not (hasPprDebug dflags) && id_tvs `disjointVarSet` ct_tvs) -- We want to filter out this binding anyway -- so discard it silently then discard_it else if isTopLevel top_lvl && not (isNothing n_left) -- It's a top-level binding and we have not specified -- -fno-max-relevant-bindings, so discard it silently then discard_it else if run_out n_left && id_tvs `subVarSet` tvs_seen -- We've run out of n_left fuel and this binding only -- mentions already-seen type variables, so discard it then go dflags n_left tvs_seen (RelevantBindings bds True) -- Record that we have now discarded something tc_bndrs -- Keep this binding, decrement fuel else go dflags (dec_max n_left) new_seen (RelevantBindings (bd:bds) discards) tc_bndrs } ----------------------- warnDefaulting :: [Ct] -> TcTyVar -> Type -> TcM () warnDefaulting [] _ _ = panic "warnDefaulting: empty Wanteds" warnDefaulting wanteds@(ct:_) the_tv default_ty = do { warn_default <- woptM Opt_WarnTypeDefaults ; env0 <- liftZonkM $ tcInitTidyEnv -- don't want to report all the superclass constraints, which -- add unhelpful clutter ; let filtered = filter (not . isWantedSuperclassOrigin . ctOrigin) wanteds tidy_env = tidyFreeTyCoVars env0 $ tyCoVarsOfCtsList (listToBag filtered) tidy_wanteds = map (tidyCt tidy_env) filtered tidy_tv = lookupVarEnv (snd tidy_env) the_tv diag = TcRnWarnDefaulting tidy_wanteds tidy_tv default_ty loc = ctLoc ct ; setCtLocM loc $ diagnosticTc warn_default diag } {- Note [Runtime skolems] ~~~~~~~~~~~~~~~~~~~~~~ We want to give a reasonably helpful error message for ambiguity arising from *runtime* skolems in the debugger. These are created by in GHC.Runtime.Heap.Inspect.zonkRTTIType. -} {-********************************************************************** * * GHC API helper functions * * **********************************************************************-} -- | If the 'TcSolverReportMsg' is a type mismatch between -- an actual and an expected type, return the actual and expected types -- (in that order). -- -- Prefer using this over manually inspecting the 'TcSolverReportMsg' datatype -- if you just want this information, as the datatype itself is subject to change -- across GHC versions. solverReportMsg_ExpectedActuals :: TcSolverReportMsg -> Maybe (Type, Type) solverReportMsg_ExpectedActuals = \case Mismatch { mismatchMsg = mismatch_msg } -> mismatchMsg_ExpectedActuals mismatch_msg _ -> Nothing -- | Filter the list by the given predicate, but if that would be empty, -- just give back the original list. -- We use this as we must report something for fdefer-type-errors. tryFilter :: (a -> Bool) -> NonEmpty a -> NonEmpty a tryFilter f as = fromMaybe as $ nonEmpty (filter f (toList as))