{-# LANGUAGE CPP #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {-# OPTIONS_GHC -Wno-incomplete-record-updates #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Desugaring expressions. -} module GHC.HsToCore.Expr ( dsExpr, dsLExpr, dsLExprNoLP, dsLocalBinds , dsValBinds, dsLit, dsSyntaxExpr ) where #include "HsVersions.h" import GHC.Prelude import GHC.HsToCore.Match import GHC.HsToCore.Match.Literal import GHC.HsToCore.Binds import GHC.HsToCore.GuardedRHSs import GHC.HsToCore.ListComp import GHC.HsToCore.Utils import GHC.HsToCore.Arrows import GHC.HsToCore.Monad import GHC.HsToCore.Pmc ( addTyCs, pmcGRHSs ) import GHC.Types.SourceText import GHC.Types.Name import GHC.Types.Name.Env import GHC.Core.FamInstEnv( topNormaliseType ) import GHC.HsToCore.Quote import GHC.Hs -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types import GHC.Tc.Utils.TcType import GHC.Tc.Types.Evidence import GHC.Tc.Utils.Monad import GHC.Core.Type import GHC.Core.Multiplicity import GHC.Core.Coercion( Coercion ) import GHC.Core import GHC.Core.Utils import GHC.Core.Make import GHC.Driver.Session import GHC.Types.CostCentre import GHC.Types.Id import GHC.Types.Id.Make import GHC.Types.Var.Env import GHC.Unit.Module import GHC.Core.ConLike import GHC.Core.DataCon import GHC.Core.TyCo.Ppr( pprWithTYPE ) import GHC.Builtin.Types import GHC.Builtin.Names import GHC.Types.Basic import GHC.Data.Maybe import GHC.Types.SrcLoc import GHC.Types.Tickish import GHC.Utils.Misc import GHC.Data.Bag import GHC.Utils.Outputable as Outputable import GHC.Utils.Panic import GHC.Core.PatSyn import Control.Monad import Data.Void( absurd ) {- ************************************************************************ * * dsLocalBinds, dsValBinds * * ************************************************************************ -} dsLocalBinds :: HsLocalBinds GhcTc -> CoreExpr -> DsM CoreExpr dsLocalBinds (EmptyLocalBinds _) body = return body dsLocalBinds b@(HsValBinds _ binds) body = putSrcSpanDs (spanHsLocaLBinds b) $ dsValBinds binds body dsLocalBinds (HsIPBinds _ binds) body = dsIPBinds binds body ------------------------- -- caller sets location dsValBinds :: HsValBinds GhcTc -> CoreExpr -> DsM CoreExpr dsValBinds (XValBindsLR (NValBinds binds _)) body = foldrM ds_val_bind body binds dsValBinds (ValBinds {}) _ = panic "dsValBinds ValBindsIn" ------------------------- dsIPBinds :: HsIPBinds GhcTc -> CoreExpr -> DsM CoreExpr dsIPBinds (IPBinds ev_binds ip_binds) body = do { ds_binds <- dsTcEvBinds ev_binds ; let inner = mkCoreLets ds_binds body -- The dict bindings may not be in -- dependency order; hence Rec ; foldrM ds_ip_bind inner ip_binds } where ds_ip_bind :: LIPBind GhcTc -> CoreExpr -> DsM CoreExpr ds_ip_bind (L _ (IPBind _ ~(Right n) e)) body = do e' <- dsLExpr e return (Let (NonRec n e') body) ------------------------- -- caller sets location ds_val_bind :: (RecFlag, LHsBinds GhcTc) -> CoreExpr -> DsM CoreExpr -- Special case for bindings which bind unlifted variables -- We need to do a case right away, rather than building -- a tuple and doing selections. -- Silently ignore INLINE and SPECIALISE pragmas... ds_val_bind (NonRecursive, hsbinds) body | [L loc bind] <- bagToList hsbinds -- Non-recursive, non-overloaded bindings only come in ones -- ToDo: in some bizarre case it's conceivable that there -- could be dict binds in the 'binds'. (See the notes -- below. Then pattern-match would fail. Urk.) , isUnliftedHsBind bind = putSrcSpanDs (locA loc) $ -- see Note [Strict binds checks] in GHC.HsToCore.Binds if is_polymorphic bind then errDsCoreExpr (poly_bind_err bind) -- data Ptr a = Ptr Addr# -- f x = let p@(Ptr y) = ... in ... -- Here the binding for 'p' is polymorphic, but does -- not mix with an unlifted binding for 'y'. You should -- use a bang pattern. #6078. else do { when (looksLazyPatBind bind) $ warnIfSetDs Opt_WarnUnbangedStrictPatterns (unlifted_must_be_bang bind) -- Complain about a binding that looks lazy -- e.g. let I# y = x in ... -- Remember, in checkStrictBinds we are going to do strict -- matching, so (for software engineering reasons) we insist -- that the strictness is manifest on each binding -- However, lone (unboxed) variables are ok ; dsUnliftedBind bind body } where is_polymorphic (AbsBinds { abs_tvs = tvs, abs_ev_vars = evs }) = not (null tvs && null evs) is_polymorphic _ = False unlifted_must_be_bang bind = hang (text "Pattern bindings containing unlifted types should use" $$ text "an outermost bang pattern:") 2 (ppr bind) poly_bind_err bind = hang (text "You can't mix polymorphic and unlifted bindings:") 2 (ppr bind) $$ text "Probable fix: add a type signature" ds_val_bind (is_rec, binds) _body | anyBag (isUnliftedHsBind . unLoc) binds -- see Note [Strict binds checks] in GHC.HsToCore.Binds = ASSERT( isRec is_rec ) errDsCoreExpr $ hang (text "Recursive bindings for unlifted types aren't allowed:") 2 (vcat (map ppr (bagToList binds))) -- Ordinary case for bindings; none should be unlifted ds_val_bind (is_rec, binds) body = do { MASSERT( isRec is_rec || isSingletonBag binds ) -- we should never produce a non-recursive list of multiple binds ; (force_vars,prs) <- dsLHsBinds binds ; let body' = foldr seqVar body force_vars ; ASSERT2( not (any (isUnliftedType . idType . fst) prs), ppr is_rec $$ ppr binds ) case prs of [] -> return body _ -> return (Let (Rec prs) body') } -- Use a Rec regardless of is_rec. -- Why? Because it allows the binds to be all -- mixed up, which is what happens in one rare case -- Namely, for an AbsBind with no tyvars and no dicts, -- but which does have dictionary bindings. -- See notes with GHC.Tc.Solver.inferLoop [NO TYVARS] -- It turned out that wrapping a Rec here was the easiest solution -- -- NB The previous case dealt with unlifted bindings, so we -- only have to deal with lifted ones now; so Rec is ok ------------------ dsUnliftedBind :: HsBind GhcTc -> CoreExpr -> DsM CoreExpr dsUnliftedBind (AbsBinds { abs_tvs = [], abs_ev_vars = [] , abs_exports = exports , abs_ev_binds = ev_binds , abs_binds = lbinds }) body = do { let body1 = foldr bind_export body exports bind_export export b = bindNonRec (abe_poly export) (Var (abe_mono export)) b ; body2 <- foldlM (\body lbind -> dsUnliftedBind (unLoc lbind) body) body1 lbinds ; ds_binds <- dsTcEvBinds_s ev_binds ; return (mkCoreLets ds_binds body2) } dsUnliftedBind (FunBind { fun_id = L l fun , fun_matches = matches , fun_ext = co_fn , fun_tick = tick }) body -- Can't be a bang pattern (that looks like a PatBind) -- so must be simply unboxed = do { (args, rhs) <- matchWrapper (mkPrefixFunRhs (L l $ idName fun)) Nothing matches ; MASSERT( null args ) -- Functions aren't lifted ; core_wrap <- dsHsWrapper co_fn -- Can be non-identity (#21516) ; let rhs' = core_wrap (mkOptTickBox tick rhs) ; return (bindNonRec fun rhs' body) } dsUnliftedBind (PatBind {pat_lhs = pat, pat_rhs = grhss , pat_ext = ty }) body = -- let C x# y# = rhs in body -- ==> case rhs of C x# y# -> body do { match_nablas <- pmcGRHSs PatBindGuards grhss ; rhs <- dsGuarded grhss ty match_nablas ; let upat = unLoc pat eqn = EqnInfo { eqn_pats = [upat], eqn_orig = FromSource, eqn_rhs = cantFailMatchResult body } ; var <- selectMatchVar Many upat -- `var` will end up in a let binder, so the multiplicity -- doesn't matter. ; result <- matchEquations PatBindRhs [var] [eqn] (exprType body) ; return (bindNonRec var rhs result) } dsUnliftedBind bind body = pprPanic "dsLet: unlifted" (ppr bind $$ ppr body) {- ************************************************************************ * * * Variables, constructors, literals * * * ************************************************************************ -} -- | Replace the body of the function with this block to test the hsExprType -- function in GHC.Tc.Utils.Zonk: -- putSrcSpanDs loc $ do -- { core_expr <- dsExpr e -- ; MASSERT2( exprType core_expr `eqType` hsExprType e -- , ppr e <+> dcolon <+> ppr (hsExprType e) $$ -- ppr core_expr <+> dcolon <+> ppr (exprType core_expr) ) -- ; return core_expr } dsLExpr :: LHsExpr GhcTc -> DsM CoreExpr dsLExpr (L loc e) = putSrcSpanDsA loc $ dsExpr e -- | Variant of 'dsLExpr' that ensures that the result is not levity -- polymorphic. This should be used when the resulting expression will -- be an argument to some other function. -- See Note [Levity polymorphism checking] in "GHC.HsToCore.Monad" -- See Note [Levity polymorphism invariants] in "GHC.Core" dsLExprNoLP :: LHsExpr GhcTc -> DsM CoreExpr dsLExprNoLP (L loc e) = putSrcSpanDsA loc $ do { e' <- dsExpr e ; dsNoLevPolyExpr e' (text "In the type of expression:" <+> ppr e) ; return e' } dsExpr :: HsExpr GhcTc -> DsM CoreExpr dsExpr (HsVar _ (L _ id)) = dsHsVar id dsExpr (HsRecFld _ (Unambiguous id _)) = dsHsVar id dsExpr (HsRecFld _ (Ambiguous id _)) = dsHsVar id dsExpr (HsUnboundVar (HER ref _ _) _) = dsEvTerm =<< readMutVar ref -- See Note [Holes] in GHC.Tc.Types.Constraint dsExpr (HsPar _ e) = dsLExpr e dsExpr (ExprWithTySig _ e _) = dsLExpr e dsExpr (HsConLikeOut _ con) = dsConLike con dsExpr (HsIPVar {}) = panic "dsExpr: HsIPVar" dsExpr (HsGetField x _ _) = absurd x dsExpr (HsProjection x _) = absurd x dsExpr (HsLit _ lit) = do { warnAboutOverflowedLit lit ; dsLit (convertLit lit) } dsExpr (HsOverLit _ lit) = do { warnAboutOverflowedOverLit lit ; dsOverLit lit } dsExpr e@(XExpr expansion) = case expansion of ExpansionExpr (HsExpanded _ b) -> dsExpr b WrapExpr {} -> dsHsWrapped e dsExpr (NegApp _ (L loc (HsOverLit _ lit@(OverLit { ol_val = HsIntegral i}))) neg_expr) = do { expr' <- putSrcSpanDsA loc $ do { warnAboutOverflowedOverLit (lit { ol_val = HsIntegral (negateIntegralLit i) }) ; dsOverLit lit } ; dsSyntaxExpr neg_expr [expr'] } dsExpr (NegApp _ expr neg_expr) = do { expr' <- dsLExpr expr ; dsSyntaxExpr neg_expr [expr'] } dsExpr (HsLam _ a_Match) = uncurry mkLams <$> matchWrapper LambdaExpr Nothing a_Match dsExpr (HsLamCase _ matches) = do { ([discrim_var], matching_code) <- matchWrapper CaseAlt Nothing matches ; return $ Lam discrim_var matching_code } dsExpr e@(HsApp _ fun arg) = do { fun' <- dsLExpr fun ; dsWhenNoErrs (dsLExprNoLP arg) (\arg' -> mkCoreAppDs (text "HsApp" <+> ppr e) fun' arg') } dsExpr e@(HsAppType {}) = dsHsWrapped e {- Note [Desugaring vars] ~~~~~~~~~~~~~~~~~~~~~~ In one situation we can get a *coercion* variable in a HsVar, namely the support method for an equality superclass: class (a~b) => C a b where ... instance (blah) => C (T a) (T b) where .. Then we get $dfCT :: forall ab. blah => C (T a) (T b) $dfCT ab blah = MkC ($c$p1C a blah) ($cop a blah) $c$p1C :: forall ab. blah => (T a ~ T b) $c$p1C ab blah = let ...; g :: T a ~ T b = ... } in g That 'g' in the 'in' part is an evidence variable, and when converting to core it must become a CO. -} dsExpr (ExplicitTuple _ tup_args boxity) = do { let go (lam_vars, args) (Missing (Scaled mult ty)) -- For every missing expression, we need -- another lambda in the desugaring. = do { lam_var <- newSysLocalDsNoLP mult ty ; return (lam_var : lam_vars, Var lam_var : args) } go (lam_vars, args) (Present _ expr) -- Expressions that are present don't generate -- lambdas, just arguments. = do { core_expr <- dsLExprNoLP expr ; return (lam_vars, core_expr : args) } ; dsWhenNoErrs (foldM go ([], []) (reverse tup_args)) -- The reverse is because foldM goes left-to-right (\(lam_vars, args) -> mkCoreLams lam_vars $ mkCoreTupBoxity boxity args) } -- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make dsExpr (ExplicitSum types alt arity expr) = dsWhenNoErrs (dsLExprNoLP expr) (mkCoreUbxSum arity alt types) dsExpr (HsPragE _ prag expr) = ds_prag_expr prag expr dsExpr (HsCase _ discrim matches) = do { core_discrim <- dsLExpr discrim ; ([discrim_var], matching_code) <- matchWrapper CaseAlt (Just discrim) matches ; return (bindNonRec discrim_var core_discrim matching_code) } -- Pepe: The binds are in scope in the body but NOT in the binding group -- This is to avoid silliness in breakpoints dsExpr (HsLet _ binds body) = do body' <- dsLExpr body dsLocalBinds binds body' -- We need the `ListComp' form to use `deListComp' (rather than the "do" form) -- because the interpretation of `stmts' depends on what sort of thing it is. -- dsExpr (HsDo res_ty ListComp (L _ stmts)) = dsListComp stmts res_ty dsExpr (HsDo _ ctx@DoExpr{} (L _ stmts)) = dsDo ctx stmts dsExpr (HsDo _ ctx@GhciStmtCtxt (L _ stmts)) = dsDo ctx stmts dsExpr (HsDo _ ctx@MDoExpr{} (L _ stmts)) = dsDo ctx stmts dsExpr (HsDo _ MonadComp (L _ stmts)) = dsMonadComp stmts dsExpr (HsIf _ guard_expr then_expr else_expr) = do { pred <- dsLExpr guard_expr ; b1 <- dsLExpr then_expr ; b2 <- dsLExpr else_expr ; return $ mkIfThenElse pred b1 b2 } dsExpr (HsMultiIf res_ty alts) | null alts = mkErrorExpr | otherwise = do { let grhss = GRHSs emptyComments alts emptyLocalBinds ; rhss_nablas <- pmcGRHSs IfAlt grhss ; match_result <- dsGRHSs IfAlt grhss res_ty rhss_nablas ; error_expr <- mkErrorExpr ; extractMatchResult match_result error_expr } where mkErrorExpr = mkErrorAppDs nON_EXHAUSTIVE_GUARDS_ERROR_ID res_ty (text "multi-way if") {- \noindent \underline{\bf Various data construction things} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -} dsExpr (ExplicitList elt_ty xs) = dsExplicitList elt_ty xs dsExpr (ArithSeq expr witness seq) = case witness of Nothing -> dsArithSeq expr seq Just fl -> do { newArithSeq <- dsArithSeq expr seq ; dsSyntaxExpr fl [newArithSeq] } {- Static Pointers ~~~~~~~~~~~~~~~ See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview. g = ... static f ... ==> g = ... makeStatic loc f ... -} dsExpr (HsStatic _ expr@(L loc _)) = do expr_ds <- dsLExprNoLP expr let ty = exprType expr_ds makeStaticId <- dsLookupGlobalId makeStaticName dflags <- getDynFlags let platform = targetPlatform dflags let (line, col) = case locA loc of RealSrcSpan r _ -> ( srcLocLine $ realSrcSpanStart r , srcLocCol $ realSrcSpanStart r ) _ -> (0, 0) srcLoc = mkCoreConApps (tupleDataCon Boxed 2) [ Type intTy , Type intTy , mkIntExprInt platform line, mkIntExprInt platform col ] putSrcSpanDsA loc $ return $ mkCoreApps (Var makeStaticId) [ Type ty, srcLoc, expr_ds ] {- \noindent \underline{\bf Record construction and update} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For record construction we do this (assuming T has three arguments) \begin{verbatim} T { op2 = e } ==> let err = /\a -> recConErr a T (recConErr t1 "M.hs/230/op1") e (recConErr t1 "M.hs/230/op3") \end{verbatim} @recConErr@ then converts its argument string into a proper message before printing it as \begin{verbatim} M.hs, line 230: missing field op1 was evaluated \end{verbatim} We also handle @C{}@ as valid construction syntax for an unlabelled constructor @C@, setting all of @C@'s fields to bottom. -} dsExpr (RecordCon { rcon_con = L _ con_like , rcon_flds = rbinds , rcon_ext = con_expr }) = do { con_expr' <- dsExpr con_expr ; let (arg_tys, _) = tcSplitFunTys (exprType con_expr') -- A newtype in the corner should be opaque; -- hence TcType.tcSplitFunTys mk_arg (arg_ty, fl) = case findField (rec_flds rbinds) (flSelector fl) of (rhs:rhss) -> ASSERT( null rhss ) dsLExprNoLP rhs [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (ppr (flLabel fl)) unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty Outputable.empty labels = conLikeFieldLabels con_like ; con_args <- if null labels then mapM unlabelled_bottom (map scaledThing arg_tys) else mapM mk_arg (zipEqual "dsExpr:RecordCon" (map scaledThing arg_tys) labels) ; return (mkCoreApps con_expr' con_args) } {- Record update is a little harder. Suppose we have the decl: \begin{verbatim} data T = T1 {op1, op2, op3 :: Int} | T2 {op4, op2 :: Int} | T3 \end{verbatim} Then we translate as follows: \begin{verbatim} r { op2 = e } ===> let op2 = e in case r of T1 op1 _ op3 -> T1 op1 op2 op3 T2 op4 _ -> T2 op4 op2 other -> recUpdError "M.hs/230" \end{verbatim} It's important that we use the constructor Ids for @T1@, @T2@ etc on the RHSs, and do not generate a Core constructor application directly, because the constructor might do some argument-evaluation first; and may have to throw away some dictionaries. Note [Update for GADTs] ~~~~~~~~~~~~~~~~~~~~~~~ Consider data T a b where MkT :: { foo :: a } -> T a Int upd :: T s t -> s -> T s t upd z y = z { foo = y} We need to get this: $WMkT :: a -> T a Int MkT :: (b ~# Int) => a -> T a b upd = /\s t. \(z::T s t) (y::s) -> case z of MkT (co :: t ~# Int) _ -> $WMkT @s y |> T (Refl s) (Sym co) Note the final cast T (Refl s) (Sym co) :: T s Int ~ T s t which uses co, bound by the GADT match. This is the wrap_co coercion in wrapped_rhs. How do we produce it? * Start with raw materials tc, the tycon: T univ_tvs, the universally quantified tyvars of MkT: a,b NB: these are in 1-1 correspondence with the tyvars of tc * Form univ_cos, a coercion for each of tc's args: (Refl s) (Sym co) We replaced a by (Refl s) since 's' instantiates 'a' b by (Sym co) since 'b' is in the data-con's EqSpec * Then form the coercion T (Refl s) (Sym co) It gets more complicated when data families are involved (#18809). Consider data family F x data instance F (a,b) where MkF :: { foo :: Int } -> F (Int,b) bar :: F (s,t) -> Int -> F (s,t) bar z y = z { foo = y} We have data R:FPair a b where MkF :: { foo :: Int } -> R:FPair Int b $WMkF :: Int -> F (Int,b) MkF :: forall a b. (a ~# Int) => Int -> R:FPair a b bar :: F (s,t) -> Int -> F (s,t) bar = /\s t. \(z::F (s,t)) \(y::Int) -> case z |> co1 of MkF (co2::s ~# Int) _ -> $WMkF @t y |> co3 (Side note: here (z |> co1) is built by typechecking the scrutinee, so we ignore it here. In general the scrutinee is an arbitrary expression.) The question is: what is co3, the cast for the RHS? co3 :: F (Int,t) ~ F (s,t) Again, we can construct it using co2, bound by the GADT match. We do /exactly/ the same as the non-family case up to building univ_cos. But that gives us rep_tc: R:FPair univ_cos: (Sym co2) (Refl t) But then we use mkTcFamilyTyConAppCo to "lift" this to the coercion we want, namely F (Sym co2, Refl t) :: F (Int,t) ~ F (s,t) -} dsExpr RecordUpd { rupd_flds = Right _} = -- Not possible due to elimination in the renamer. See Note -- [Handling overloaded and rebindable constructs] panic "The impossible happened" dsExpr expr@(RecordUpd { rupd_expr = record_expr, rupd_flds = Left fields , rupd_ext = RecordUpdTc { rupd_cons = cons_to_upd , rupd_in_tys = in_inst_tys , rupd_out_tys = out_inst_tys , rupd_wrap = dict_req_wrap }} ) | null fields = dsLExpr record_expr | otherwise = ASSERT2( notNull cons_to_upd, ppr expr ) do { record_expr' <- dsLExpr record_expr ; field_binds' <- mapM ds_field fields ; let upd_fld_env :: NameEnv Id -- Maps field name to the LocalId of the field binding upd_fld_env = mkNameEnv [(f,l) | (f,l,_) <- field_binds'] -- It's important to generate the match with matchWrapper, -- and the right hand sides with applications of the wrapper Id -- so that everything works when we are doing fancy unboxing on the -- constructor arguments. ; alts <- mapM (mk_alt upd_fld_env) cons_to_upd ; ([discrim_var], matching_code) <- matchWrapper RecUpd (Just record_expr) -- See Note [Scrutinee in Record updates] (MG { mg_alts = noLocA alts , mg_ext = MatchGroupTc [unrestricted in_ty] out_ty , mg_origin = FromSource }) -- FromSource is not strictly right, but we -- want incomplete pattern-match warnings ; return (add_field_binds field_binds' $ bindNonRec discrim_var record_expr' matching_code) } where ds_field :: LHsRecUpdField GhcTc -> DsM (Name, Id, CoreExpr) -- Clone the Id in the HsRecField, because its Name is that -- of the record selector, and we must not make that a local binder -- else we shadow other uses of the record selector -- Hence 'lcl_id'. Cf #2735 ds_field (L _ rec_field) = do { rhs <- dsLExpr (hsRecFieldArg rec_field) ; let fld_id = unLoc (hsRecUpdFieldId rec_field) ; lcl_id <- newSysLocalDs (idMult fld_id) (idType fld_id) ; return (idName fld_id, lcl_id, rhs) } add_field_binds [] expr = expr add_field_binds ((_,b,r):bs) expr = bindNonRec b r (add_field_binds bs expr) -- Awkwardly, for families, the match goes -- from instance type to family type (in_ty, out_ty) = case (head cons_to_upd) of RealDataCon data_con -> let tycon = dataConTyCon data_con in (mkTyConApp tycon in_inst_tys, mkFamilyTyConApp tycon out_inst_tys) PatSynCon pat_syn -> ( patSynInstResTy pat_syn in_inst_tys , patSynInstResTy pat_syn out_inst_tys) mk_alt upd_fld_env con = do { let (univ_tvs, ex_tvs, eq_spec, prov_theta, _req_theta, arg_tys, _) = conLikeFullSig con arg_tys' = map (scaleScaled Many) arg_tys -- Record updates consume the source record with multiplicity -- Many. Therefore all the fields need to be scaled thus. user_tvs = binderVars $ conLikeUserTyVarBinders con in_subst :: TCvSubst in_subst = extendTCvInScopeList (zipTvSubst univ_tvs in_inst_tys) ex_tvs -- The in_subst clones the universally quantified type -- variables. It will be used to substitute into types that -- contain existentials, however, so make sure to extend the -- in-scope set with ex_tvs (#20278). out_tv_env :: TvSubstEnv out_tv_env = zipTyEnv univ_tvs out_inst_tys -- I'm not bothering to clone the ex_tvs ; eqs_vars <- mapM newPredVarDs (substTheta in_subst (eqSpecPreds eq_spec)) ; theta_vars <- mapM newPredVarDs (substTheta in_subst prov_theta) ; arg_ids <- newSysLocalsDs (substScaledTysUnchecked in_subst arg_tys') ; let field_labels = conLikeFieldLabels con val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg field_labels arg_ids mk_val_arg fl pat_arg_id = nlHsVar (lookupNameEnv upd_fld_env (flSelector fl) `orElse` pat_arg_id) inst_con = noLocA $ mkHsWrap wrap (HsConLikeOut noExtField con) -- Reconstruct with the WrapId so that unpacking happens wrap = mkWpEvVarApps theta_vars <.> dict_req_wrap <.> mkWpTyApps [ lookupVarEnv out_tv_env tv `orElse` mkTyVarTy tv | tv <- user_tvs ] -- Be sure to use user_tvs (which may be ordered -- differently than `univ_tvs ++ ex_tvs) above. -- See Note [DataCon user type variable binders] -- in GHC.Core.DataCon. rhs = foldl' (\a b -> nlHsApp a b) inst_con val_args -- Tediously wrap the application in a cast -- Note [Update for GADTs] wrapped_rhs = case con of RealDataCon data_con | null eq_spec -> rhs | otherwise -> mkLHsWrap (mkWpCastN wrap_co) rhs -- This wrap is the punchline: Note [Update for GADTs] where rep_tc = dataConTyCon data_con wrap_co = mkTcFamilyTyConAppCo rep_tc univ_cos univ_cos = zipWithEqual "dsExpr:upd" mk_univ_co univ_tvs out_inst_tys mk_univ_co :: TyVar -- Universal tyvar from the DataCon -> Type -- Corresponding instantiating type -> Coercion mk_univ_co univ_tv inst_ty = case lookupVarEnv eq_spec_env univ_tv of Just co -> co Nothing -> mkTcNomReflCo inst_ty eq_spec_env :: VarEnv Coercion eq_spec_env = mkVarEnv [ (eqSpecTyVar spec, mkTcSymCo (mkTcCoVarCo eqs_var)) | (spec,eqs_var) <- zipEqual "dsExpr:upd2" eq_spec eqs_vars ] -- eq_spec is always null for a PatSynCon PatSynCon _ -> rhs req_wrap = dict_req_wrap <.> mkWpTyApps in_inst_tys pat = noLocA $ ConPat { pat_con = noLocA con , pat_args = PrefixCon [] $ map nlVarPat arg_ids , pat_con_ext = ConPatTc { cpt_tvs = ex_tvs , cpt_dicts = eqs_vars ++ theta_vars , cpt_binds = emptyTcEvBinds , cpt_arg_tys = in_inst_tys , cpt_wrap = req_wrap } } ; return (mkSimpleMatch RecUpd [pat] wrapped_rhs) } {- Note [Scrutinee in Record updates] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider #17783: data PartialRec = No | Yes { a :: Int, b :: Bool } update No = No update r@(Yes {}) = r { b = False } In the context of pattern-match checking, the occurrence of @r@ in @r { b = False }@ is to be treated as if it was a scrutinee, as can be seen by the following desugaring: r { b = False } ==> case r of Yes a b -> Yes a False Thus, we pass @r@ as the scrutinee expression to @matchWrapper@ above. -} -- Here is where we desugar the Template Haskell brackets and escapes -- Template Haskell stuff dsExpr (HsRnBracketOut _ _ _) = panic "dsExpr HsRnBracketOut" dsExpr (HsTcBracketOut _ hs_wrapper x ps) = dsBracket hs_wrapper x ps dsExpr (HsSpliceE _ s) = pprPanic "dsExpr:splice" (ppr s) -- Arrow notation extension dsExpr (HsProc _ pat cmd) = dsProcExpr pat cmd -- Hpc Support dsExpr (HsTick _ tickish e) = do e' <- dsLExpr e return (Tick tickish e') -- There is a problem here. The then and else branches -- have no free variables, so they are open to lifting. -- We need someway of stopping this. -- This will make no difference to binary coverage -- (did you go here: YES or NO), but will effect accurate -- tick counting. dsExpr (HsBinTick _ ixT ixF e) = do e2 <- dsLExpr e do { ASSERT(exprType e2 `eqType` boolTy) mkBinaryTickBox ixT ixF e2 } -- HsSyn constructs that just shouldn't be here, because -- the renamer removed them. See GHC.Rename.Expr. -- Note [Handling overloaded and rebindable constructs] dsExpr (HsOverLabel x _) = absurd x dsExpr (OpApp x _ _ _) = absurd x dsExpr (SectionL x _ _) = absurd x dsExpr (SectionR x _ _) = absurd x -- HsSyn constructs that just shouldn't be here: dsExpr (HsBracket {}) = panic "dsExpr:HsBracket" dsExpr (HsDo {}) = panic "dsExpr:HsDo" ds_prag_expr :: HsPragE GhcTc -> LHsExpr GhcTc -> DsM CoreExpr ds_prag_expr (HsPragSCC _ _ cc) expr = do dflags <- getDynFlags if sccProfilingEnabled dflags then do mod_name <- getModule count <- goptM Opt_ProfCountEntries let nm = sl_fs cc flavour <- ExprCC <$> getCCIndexDsM nm Tick (ProfNote (mkUserCC nm mod_name (getLocA expr) flavour) count True) <$> dsLExpr expr else dsLExpr expr ------------------------------ dsSyntaxExpr :: SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr dsSyntaxExpr (SyntaxExprTc { syn_expr = expr , syn_arg_wraps = arg_wraps , syn_res_wrap = res_wrap }) arg_exprs = do { fun <- dsExpr expr ; core_arg_wraps <- mapM dsHsWrapper arg_wraps ; core_res_wrap <- dsHsWrapper res_wrap ; let wrapped_args = zipWithEqual "dsSyntaxExpr" ($) core_arg_wraps arg_exprs ; dsWhenNoErrs (zipWithM_ dsNoLevPolyExpr wrapped_args [ mk_doc n | n <- [1..] ]) (\_ -> core_res_wrap (mkCoreApps fun wrapped_args)) } -- Use mkCoreApps instead of mkApps: -- unboxed types are possible with RebindableSyntax (#19883) where mk_doc n = text "In the" <+> speakNth n <+> text "argument of" <+> quotes (ppr expr) dsSyntaxExpr NoSyntaxExprTc _ = panic "dsSyntaxExpr" findField :: [LHsRecField GhcTc arg] -> Name -> [arg] findField rbinds sel = [hsRecFieldArg fld | L _ fld <- rbinds , sel == idName (unLoc $ hsRecFieldId fld) ] {- %-------------------------------------------------------------------- Note [Desugaring explicit lists] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Explicit lists are desugared in a cleverer way to prevent some fruitless allocations. Essentially, whenever we see a list literal [x_1, ..., x_n] we generate the corresponding expression in terms of build: Explicit lists (literals) are desugared to allow build/foldr fusion when beneficial. This is a bit of a trade-off, * build/foldr fusion can generate far larger code than the corresponding cons-chain (e.g. see #11707) * even when it doesn't produce more code, build can still fail to fuse, requiring that the simplifier do more work to bring the expression back into cons-chain form; this costs compile time * when it works, fusion can be a significant win. Allocations are reduced by up to 25% in some nofib programs. Specifically, Program Size Allocs Runtime CompTime rewrite +0.0% -26.3% 0.02 -1.8% ansi -0.3% -13.8% 0.00 +0.0% lift +0.0% -8.7% 0.00 -2.3% At the moment we use a simple heuristic to determine whether build will be fruitful: for small lists we assume the benefits of fusion will be worthwhile; for long lists we assume that the benefits will be outweighted by the cost of code duplication. This magic length threshold is @maxBuildLength@. Also, fusion won't work at all if rewrite rules are disabled, so we don't use the build-based desugaring in this case. We used to have a more complex heuristic which would try to break the list into "static" and "dynamic" parts and only build-desugar the dynamic part. Unfortunately, determining "static-ness" reliably is a bit tricky and the heuristic at times produced surprising behavior (see #11710) so it was dropped. -} {- | The longest list length which we will desugar using @build@. This is essentially a magic number and its setting is unfortunate rather arbitrary. The idea here, as mentioned in Note [Desugaring explicit lists], is to avoid deforesting large static data into large(r) code. Ideally we'd want a smaller threshold with larger consumers and vice-versa, but we have no way of knowing what will be consuming our list in the desugaring impossible to set generally correctly. The effect of reducing this number will be that 'build' fusion is applied less often. From a runtime performance perspective, applying 'build' more liberally on "moderately" sized lists should rarely hurt and will often it can only expose further optimization opportunities; if no fusion is possible it will eventually get rule-rewritten back to a list). We do, however, pay in compile time. -} maxBuildLength :: Int maxBuildLength = 32 dsExplicitList :: Type -> [LHsExpr GhcTc] -> DsM CoreExpr -- See Note [Desugaring explicit lists] dsExplicitList elt_ty xs = do { dflags <- getDynFlags ; xs' <- mapM dsLExprNoLP xs ; if xs' `lengthExceeds` maxBuildLength -- Don't generate builds if the list is very long. || null xs' -- Don't generate builds when the [] constructor will do || not (gopt Opt_EnableRewriteRules dflags) -- Rewrite rules off -- Don't generate a build if there are no rules to eliminate it! -- See Note [Desugaring RULE left hand sides] in GHC.HsToCore then return $ mkListExpr elt_ty xs' else mkBuildExpr elt_ty (mk_build_list xs') } where mk_build_list xs' (cons, _) (nil, _) = return (foldr (App . App (Var cons)) (Var nil) xs') dsArithSeq :: PostTcExpr -> (ArithSeqInfo GhcTc) -> DsM CoreExpr dsArithSeq expr (From from) = App <$> dsExpr expr <*> dsLExprNoLP from dsArithSeq expr (FromTo from to) = do fam_envs <- dsGetFamInstEnvs dflags <- getDynFlags warnAboutEmptyEnumerations fam_envs dflags from Nothing to expr' <- dsExpr expr from' <- dsLExprNoLP from to' <- dsLExprNoLP to return $ mkApps expr' [from', to'] dsArithSeq expr (FromThen from thn) = mkApps <$> dsExpr expr <*> mapM dsLExprNoLP [from, thn] dsArithSeq expr (FromThenTo from thn to) = do fam_envs <- dsGetFamInstEnvs dflags <- getDynFlags warnAboutEmptyEnumerations fam_envs dflags from (Just thn) to expr' <- dsExpr expr from' <- dsLExprNoLP from thn' <- dsLExprNoLP thn to' <- dsLExprNoLP to return $ mkApps expr' [from', thn', to'] {- Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're handled in GHC.HsToCore.ListComp). Basically does the translation given in the Haskell 98 report: -} dsDo :: HsStmtContext GhcRn -> [ExprLStmt GhcTc] -> DsM CoreExpr dsDo ctx stmts = goL stmts where goL [] = panic "dsDo" goL ((L loc stmt):lstmts) = putSrcSpanDsA loc (go loc stmt lstmts) go _ (LastStmt _ body _ _) stmts = ASSERT( null stmts ) dsLExpr body -- The 'return' op isn't used for 'do' expressions go _ (BodyStmt _ rhs then_expr _) stmts = do { rhs2 <- dsLExpr rhs ; warnDiscardedDoBindings rhs (exprType rhs2) ; rest <- goL stmts ; dsSyntaxExpr then_expr [rhs2, rest] } go _ (LetStmt _ binds) stmts = do { rest <- goL stmts ; dsLocalBinds binds rest } go _ (BindStmt xbs pat rhs) stmts = do { body <- goL stmts ; rhs' <- dsLExpr rhs ; var <- selectSimpleMatchVarL (xbstc_boundResultMult xbs) pat ; match <- matchSinglePatVar var Nothing (StmtCtxt ctx) pat (xbstc_boundResultType xbs) (cantFailMatchResult body) ; match_code <- dsHandleMonadicFailure ctx pat match (xbstc_failOp xbs) ; dsSyntaxExpr (xbstc_bindOp xbs) [rhs', Lam var match_code] } go _ (ApplicativeStmt body_ty args mb_join) stmts = do { let (pats, rhss) = unzip (map (do_arg . snd) args) do_arg (ApplicativeArgOne fail_op pat expr _) = ((pat, fail_op), dsLExpr expr) do_arg (ApplicativeArgMany _ stmts ret pat _) = ((pat, Nothing), dsDo ctx (stmts ++ [noLocA $ mkLastStmt (noLocA ret)])) ; rhss' <- sequence rhss ; body' <- dsLExpr $ noLocA $ HsDo body_ty ctx (noLocA stmts) ; let match_args (pat, fail_op) (vs,body) = do { var <- selectSimpleMatchVarL Many pat ; match <- matchSinglePatVar var Nothing (StmtCtxt ctx) pat body_ty (cantFailMatchResult body) ; match_code <- dsHandleMonadicFailure ctx pat match fail_op ; return (var:vs, match_code) } ; (vars, body) <- foldrM match_args ([],body') pats ; let fun' = mkLams vars body ; let mk_ap_call l (op,r) = dsSyntaxExpr op [l,r] ; expr <- foldlM mk_ap_call fun' (zip (map fst args) rhss') ; case mb_join of Nothing -> return expr Just join_op -> dsSyntaxExpr join_op [expr] } go loc (RecStmt { recS_stmts = L _ rec_stmts, recS_later_ids = later_ids , recS_rec_ids = rec_ids, recS_ret_fn = return_op , recS_mfix_fn = mfix_op, recS_bind_fn = bind_op , recS_ext = RecStmtTc { recS_bind_ty = bind_ty , recS_rec_rets = rec_rets , recS_ret_ty = body_ty} }) stmts = goL (new_bind_stmt : stmts) -- rec_ids can be empty; eg rec { print 'x' } where new_bind_stmt = L loc $ BindStmt XBindStmtTc { xbstc_bindOp = bind_op , xbstc_boundResultType = bind_ty , xbstc_boundResultMult = Many , xbstc_failOp = Nothing -- Tuple cannot fail } (mkBigLHsPatTupId later_pats) mfix_app tup_ids = rec_ids ++ filterOut (`elem` rec_ids) later_ids tup_ty = mkBigCoreTupTy (map idType tup_ids) -- Deals with singleton case rec_tup_pats = map nlVarPat tup_ids later_pats = rec_tup_pats rets = map noLocA rec_rets mfix_app = nlHsSyntaxApps mfix_op [mfix_arg] mfix_arg = noLocA $ HsLam noExtField (MG { mg_alts = noLocA [mkSimpleMatch LambdaExpr [mfix_pat] body] , mg_ext = MatchGroupTc [unrestricted tup_ty] body_ty , mg_origin = Generated }) mfix_pat = noLocA $ LazyPat noExtField $ mkBigLHsPatTupId rec_tup_pats body = noLocA $ HsDo body_ty ctx (noLocA (rec_stmts ++ [ret_stmt])) ret_app = nlHsSyntaxApps return_op [mkBigLHsTupId rets] ret_stmt = noLocA $ mkLastStmt ret_app -- This LastStmt will be desugared with dsDo, -- which ignores the return_op in the LastStmt, -- so we must apply the return_op explicitly go _ (ParStmt {}) _ = panic "dsDo ParStmt" go _ (TransStmt {}) _ = panic "dsDo TransStmt" {- ************************************************************************ * * Desugaring Variables * * ************************************************************************ -} dsHsVar :: Id -> DsM CoreExpr dsHsVar var = do { checkLevPolyFunction (ppr var) var (idType var) ; return (varToCoreExpr var) } -- See Note [Desugaring vars] dsConLike :: ConLike -> DsM CoreExpr dsConLike (RealDataCon dc) = dsHsVar (dataConWrapId dc) dsConLike (PatSynCon ps) | Just (builder_name, _, add_void) <- patSynBuilder ps = do { builder_id <- dsLookupGlobalId builder_name ; return (if add_void then mkCoreApp (text "dsConLike" <+> ppr ps) (Var builder_id) (Var voidPrimId) else Var builder_id) } | otherwise = pprPanic "dsConLike" (ppr ps) {- ************************************************************************ * * \subsection{Errors and contexts} * * ************************************************************************ -} -- Warn about certain types of values discarded in monadic bindings (#3263) warnDiscardedDoBindings :: LHsExpr GhcTc -> Type -> DsM () warnDiscardedDoBindings rhs rhs_ty | Just (m_ty, elt_ty) <- tcSplitAppTy_maybe rhs_ty = do { warn_unused <- woptM Opt_WarnUnusedDoBind ; warn_wrong <- woptM Opt_WarnWrongDoBind ; when (warn_unused || warn_wrong) $ do { fam_inst_envs <- dsGetFamInstEnvs ; let norm_elt_ty = topNormaliseType fam_inst_envs elt_ty -- Warn about discarding non-() things in 'monadic' binding ; if warn_unused && not (isUnitTy norm_elt_ty) then warnDs (Reason Opt_WarnUnusedDoBind) (badMonadBind rhs elt_ty) else -- Warn about discarding m a things in 'monadic' binding of the same type, -- but only if we didn't already warn due to Opt_WarnUnusedDoBind when warn_wrong $ case tcSplitAppTy_maybe norm_elt_ty of Just (elt_m_ty, _) | m_ty `eqType` topNormaliseType fam_inst_envs elt_m_ty -> warnDs (Reason Opt_WarnWrongDoBind) (badMonadBind rhs elt_ty) _ -> return () } } | otherwise -- RHS does have type of form (m ty), which is weird = return () -- but at least this warning is irrelevant badMonadBind :: LHsExpr GhcTc -> Type -> SDoc badMonadBind rhs elt_ty = vcat [ hang (text "A do-notation statement discarded a result of type") 2 (quotes (ppr elt_ty)) , hang (text "Suppress this warning by saying") 2 (quotes $ text "_ <-" <+> ppr rhs) ] {- ************************************************************************ * * Levity polymorphism checks * * ************************************************************************ Note [Checking for levity-polymorphic functions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We cannot have levity polymorphic function arguments. See Note [Levity polymorphism invariants] in GHC.Core. That is checked by dsLExprNoLP. But what about const True (unsafeCoerce# :: forall r1 r2 (a :: TYPE r1) (b :: TYPE r2). a -> b) Since `unsafeCoerce#` has no binding, it has a compulsory unfolding. But that compulsory unfolding is a levity-polymorphic lambda, which is no good. So we want to reject this. On the other hand const True (unsafeCoerce# @LiftedRep @UnliftedRep) is absolutely fine. We have to collect all the type-instantiation and *then* check. That is what dsHsWrapped does. Because we might have an HsVar without a wrapper, we check in dsHsVar as well. typecheck/should_fail/T17021 triggers this case. Note that if `f :: forall r (a :: Type r). blah`, then const True f is absolutely fine. Here `f` is a function, represented by a pointer, and we can pass it to `const` (or anything else). (See #12708 for an example.) It's only the Id.hasNoBinding functions that are a problem. Interestingly, this approach does not look to see whether the Id in question will be eta expanded. The logic is this: * Either the Id in question is saturated or not. * If it is, then it surely can't have levity polymorphic arguments. If its wrapped type contains levity polymorphic arguments, reject. * If it's not, then it can't be eta expanded with levity polymorphic argument. If its wrapped type contains levity polymorphic arguments, reject. So, either way, we're good to reject. -} ------------------------------ dsHsWrapped :: HsExpr GhcTc -> DsM CoreExpr -- Looks for a function 'f' wrapped in type applications (HsAppType) -- or wrappers (HsWrap), and checks that any hasNoBinding function -- is not levity polymorphic, *after* instantiation with those wrappers dsHsWrapped orig_hs_expr = go id orig_hs_expr where go wrap (XExpr (WrapExpr (HsWrap co_fn hs_e))) = do { wrap' <- dsHsWrapper co_fn ; addTyCs FromSource (hsWrapDictBinders co_fn) $ go (wrap . wrap') hs_e } go wrap (HsConLikeOut _ (RealDataCon dc)) = go_head wrap (dataConWrapId dc) go wrap (HsAppType ty hs_e _) = go_l (wrap . (\e -> App e (Type ty))) hs_e go wrap (HsPar _ hs_e) = go_l wrap hs_e go wrap (HsVar _ (L _ var)) = go_head wrap var go wrap hs_e = do { e <- dsExpr hs_e; return (wrap e) } go_l wrap (L _ hs_e) = go wrap hs_e go_head wrap var = do { let wrapped_e = wrap (Var var) wrapped_ty = exprType wrapped_e ; checkLevPolyFunction (ppr orig_hs_expr) var wrapped_ty -- See Note [Checking for levity-polymorphic functions] -- Pass orig_hs_expr, so that the user can see entire -- expression with -fprint-typechecker-elaboration ; dflags <- getDynFlags ; warnAboutIdentities dflags var wrapped_ty ; return wrapped_e } -- | Takes a (pretty-printed) expression, a function, and its -- instantiated type. If the function is a hasNoBinding op, and the -- type has levity-polymorphic arguments, issue an error. -- Note [Checking for levity-polymorphic functions] checkLevPolyFunction :: SDoc -> Id -> Type -> DsM () checkLevPolyFunction pp_hs_expr var ty | let bad_tys = isBadLevPolyFunction var ty , not (null bad_tys) = errDs $ vcat [ hang (text "Cannot use function with levity-polymorphic arguments:") 2 (pp_hs_expr <+> dcolon <+> pprWithTYPE ty) , ppUnlessOption sdocPrintTypecheckerElaboration $ vcat [ text "(Note that levity-polymorphic primops such as 'coerce' and unboxed tuples" , text "are eta-expanded internally because they must occur fully saturated." , text "Use -fprint-typechecker-elaboration to display the full expression.)" ] , hang (text "Levity-polymorphic arguments:") 2 $ vcat $ map (\t -> pprWithTYPE t <+> dcolon <+> pprWithTYPE (typeKind t)) bad_tys ] checkLevPolyFunction _ _ _ = return () -- | Is this a hasNoBinding Id with a levity-polymorphic type? -- Returns the arguments that are levity polymorphic if they are bad; -- or an empty list otherwise -- Note [Checking for levity-polymorphic functions] isBadLevPolyFunction :: Id -> Type -> [Type] isBadLevPolyFunction id ty | hasNoBinding id = filter isTypeLevPoly arg_tys | otherwise = [] where (binders, _) = splitPiTys ty arg_tys = mapMaybe binderRelevantType_maybe binders