{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE ScopedTypeVariables #-} {- Types for the .hie file format are defined here. For more information see https://gitlab.haskell.org/ghc/ghc/wikis/hie-files -} module GHC.Iface.Ext.Types where import GHC.Prelude import GHC.Settings.Config import GHC.Utils.Binary import GHC.Data.FastString import GHC.Builtin.Utils import GHC.Iface.Type import GHC.Unit.Module ( ModuleName, Module ) import GHC.Types.Name import GHC.Utils.Outputable hiding ( (<>) ) import GHC.Types.SrcLoc import GHC.Types.Avail import GHC.Types.Unique import qualified GHC.Utils.Outputable as O ( (<>) ) import GHC.Utils.Misc import GHC.Utils.Panic import qualified Data.Array as A import qualified Data.Map as M import qualified Data.Set as S import Data.ByteString ( ByteString ) import Data.Data ( Typeable, Data ) import Data.Semigroup ( Semigroup(..) ) import Data.Word ( Word8 ) import Control.Applicative ( (<|>) ) import Data.Coerce ( coerce ) import Data.Function ( on ) type Span = RealSrcSpan -- | Current version of @.hie@ files hieVersion :: Integer hieVersion = read (cProjectVersionInt ++ cProjectPatchLevel) :: Integer {- | GHC builds up a wealth of information about Haskell source as it compiles it. @.hie@ files are a way of persisting some of this information to disk so that external tools that need to work with haskell source don't need to parse, typecheck, and rename all over again. These files contain: * a simplified AST * nodes are annotated with source positions and types * identifiers are annotated with scope information * the raw bytes of the initial Haskell source Besides saving compilation cycles, @.hie@ files also offer a more stable interface than the GHC API. -} data HieFile = HieFile { hie_hs_file :: FilePath -- ^ Initial Haskell source file path , hie_module :: Module -- ^ The module this HIE file is for , hie_types :: A.Array TypeIndex HieTypeFlat -- ^ Types referenced in the 'hie_asts'. -- -- See Note [Efficient serialization of redundant type info] , hie_asts :: HieASTs TypeIndex -- ^ Type-annotated abstract syntax trees , hie_exports :: [AvailInfo] -- ^ The names that this module exports , hie_hs_src :: ByteString -- ^ Raw bytes of the initial Haskell source } instance Binary HieFile where put_ bh hf = do put_ bh $ hie_hs_file hf put_ bh $ hie_module hf put_ bh $ hie_types hf put_ bh $ hie_asts hf put_ bh $ hie_exports hf put_ bh $ hie_hs_src hf get bh = HieFile <$> get bh <*> get bh <*> get bh <*> get bh <*> get bh <*> get bh {- Note [Efficient serialization of redundant type info] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The type information in .hie files is highly repetitive and redundant. For example, consider the expression const True 'a' There is a lot of shared structure between the types of subterms: * const True 'a' :: Bool * const True :: Char -> Bool * const :: Bool -> Char -> Bool Since all 3 of these types need to be stored in the .hie file, it is worth making an effort to deduplicate this shared structure. The trick is to define a new data type that is a flattened version of 'Type': data HieType a = HAppTy a a -- data Type = AppTy Type Type | HFunTy a a -- | FunTy Type Type | ... type TypeIndex = Int Types in the final AST are stored in an 'A.Array TypeIndex (HieType TypeIndex)', where the 'TypeIndex's in the 'HieType' are references to other elements of the array. Types recovered from GHC are deduplicated and stored in this compressed form with sharing of subtrees. -} type TypeIndex = Int -- | A flattened version of 'Type'. -- -- See Note [Efficient serialization of redundant type info] data HieType a = HTyVarTy Name | HAppTy a (HieArgs a) | HTyConApp IfaceTyCon (HieArgs a) | HForAllTy ((Name, a),ArgFlag) a | HFunTy a a a | HQualTy a a -- ^ type with constraint: @t1 => t2@ (see 'IfaceDFunTy') | HLitTy IfaceTyLit | HCastTy a | HCoercionTy deriving (Functor, Foldable, Traversable, Eq) type HieTypeFlat = HieType TypeIndex -- | Roughly isomorphic to the original core 'Type'. newtype HieTypeFix = Roll (HieType (HieTypeFix)) instance Binary (HieType TypeIndex) where put_ bh (HTyVarTy n) = do putByte bh 0 put_ bh n put_ bh (HAppTy a b) = do putByte bh 1 put_ bh a put_ bh b put_ bh (HTyConApp n xs) = do putByte bh 2 put_ bh n put_ bh xs put_ bh (HForAllTy bndr a) = do putByte bh 3 put_ bh bndr put_ bh a put_ bh (HFunTy w a b) = do putByte bh 4 put_ bh w put_ bh a put_ bh b put_ bh (HQualTy a b) = do putByte bh 5 put_ bh a put_ bh b put_ bh (HLitTy l) = do putByte bh 6 put_ bh l put_ bh (HCastTy a) = do putByte bh 7 put_ bh a put_ bh (HCoercionTy) = putByte bh 8 get bh = do (t :: Word8) <- get bh case t of 0 -> HTyVarTy <$> get bh 1 -> HAppTy <$> get bh <*> get bh 2 -> HTyConApp <$> get bh <*> get bh 3 -> HForAllTy <$> get bh <*> get bh 4 -> HFunTy <$> get bh <*> get bh <*> get bh 5 -> HQualTy <$> get bh <*> get bh 6 -> HLitTy <$> get bh 7 -> HCastTy <$> get bh 8 -> return HCoercionTy _ -> panic "Binary (HieArgs Int): invalid tag" -- | A list of type arguments along with their respective visibilities (ie. is -- this an argument that would return 'True' for 'isVisibleArgFlag'?). newtype HieArgs a = HieArgs [(Bool,a)] deriving (Functor, Foldable, Traversable, Eq) instance Binary (HieArgs TypeIndex) where put_ bh (HieArgs xs) = put_ bh xs get bh = HieArgs <$> get bh -- A HiePath is just a lexical FastString. We use a lexical FastString to avoid -- non-determinism when printing or storing HieASTs which are sorted by their -- HiePath. type HiePath = LexicalFastString {-# COMPLETE HiePath #-} pattern HiePath :: FastString -> HiePath pattern HiePath fs = LexicalFastString fs -- | Mapping from filepaths to the corresponding AST newtype HieASTs a = HieASTs { getAsts :: M.Map HiePath (HieAST a) } deriving (Functor, Foldable, Traversable) instance Binary (HieASTs TypeIndex) where put_ bh asts = put_ bh $ M.toAscList $ getAsts asts get bh = HieASTs <$> fmap M.fromDistinctAscList (get bh) instance Outputable a => Outputable (HieASTs a) where ppr (HieASTs asts) = M.foldrWithKey go "" asts where go k a rest = vcat $ [ "File: " O.<> ppr k , ppr a , rest ] data HieAST a = Node { sourcedNodeInfo :: SourcedNodeInfo a , nodeSpan :: Span , nodeChildren :: [HieAST a] } deriving (Functor, Foldable, Traversable) instance Binary (HieAST TypeIndex) where put_ bh ast = do put_ bh $ sourcedNodeInfo ast put_ bh $ nodeSpan ast put_ bh $ nodeChildren ast get bh = Node <$> get bh <*> get bh <*> get bh instance Outputable a => Outputable (HieAST a) where ppr (Node ni sp ch) = hang header 2 rest where header = text "Node@" O.<> ppr sp O.<> ":" <+> ppr ni rest = vcat (map ppr ch) -- | NodeInfos grouped by source newtype SourcedNodeInfo a = SourcedNodeInfo { getSourcedNodeInfo :: (M.Map NodeOrigin (NodeInfo a)) } deriving (Functor, Foldable, Traversable) instance Binary (SourcedNodeInfo TypeIndex) where put_ bh asts = put_ bh $ M.toAscList $ getSourcedNodeInfo asts get bh = SourcedNodeInfo <$> fmap M.fromDistinctAscList (get bh) instance Outputable a => Outputable (SourcedNodeInfo a) where ppr (SourcedNodeInfo asts) = M.foldrWithKey go "" asts where go k a rest = vcat $ [ "Source: " O.<> ppr k , ppr a , rest ] -- | Source of node info data NodeOrigin = SourceInfo | GeneratedInfo deriving (Eq, Enum, Ord) instance Outputable NodeOrigin where ppr SourceInfo = text "From source" ppr GeneratedInfo = text "generated by ghc" instance Binary NodeOrigin where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getByte bh; pure $! (toEnum (fromIntegral x)) -- | A node annotation data NodeAnnotation = NodeAnnotation { nodeAnnotConstr :: !FastString -- ^ name of the AST node constructor , nodeAnnotType :: !FastString -- ^ name of the AST node Type } deriving (Eq) instance Ord NodeAnnotation where compare (NodeAnnotation c0 t0) (NodeAnnotation c1 t1) = mconcat [uniqCompareFS c0 c1, uniqCompareFS t0 t1] instance Outputable NodeAnnotation where ppr (NodeAnnotation c t) = ppr (c,t) instance Binary NodeAnnotation where put_ bh (NodeAnnotation c t) = do put_ bh c put_ bh t get bh = NodeAnnotation <$> get bh <*> get bh -- | The information stored in one AST node. -- -- The type parameter exists to provide flexibility in representation of types -- (see Note [Efficient serialization of redundant type info]). data NodeInfo a = NodeInfo { nodeAnnotations :: S.Set NodeAnnotation -- ^ Annotations , nodeType :: [a] -- ^ The Haskell types of this node, if any. , nodeIdentifiers :: NodeIdentifiers a -- ^ All the identifiers and their details } deriving (Functor, Foldable, Traversable) instance Binary (NodeInfo TypeIndex) where put_ bh ni = do put_ bh $ S.toAscList $ nodeAnnotations ni put_ bh $ nodeType ni put_ bh $ M.toList $ nodeIdentifiers ni get bh = NodeInfo <$> fmap (S.fromDistinctAscList) (get bh) <*> get bh <*> fmap (M.fromList) (get bh) instance Outputable a => Outputable (NodeInfo a) where ppr (NodeInfo anns typs idents) = braces $ fsep $ punctuate ", " [ parens (text "annotations:" <+> ppr anns) , parens (text "types:" <+> ppr typs) , parens (text "identifier info:" <+> pprNodeIdents idents) ] pprNodeIdents :: Outputable a => NodeIdentifiers a -> SDoc pprNodeIdents ni = braces $ fsep $ punctuate ", " $ map go $ M.toList ni where go (i,id) = parens $ hsep $ punctuate ", " [pprIdentifier i, ppr id] pprIdentifier :: Identifier -> SDoc pprIdentifier (Left mod) = text "module" <+> ppr mod pprIdentifier (Right name) = text "name" <+> ppr name type Identifier = Either ModuleName Name type NodeIdentifiers a = M.Map Identifier (IdentifierDetails a) -- | Information associated with every identifier -- -- We need to include types with identifiers because sometimes multiple -- identifiers occur in the same span(Overloaded Record Fields and so on) data IdentifierDetails a = IdentifierDetails { identType :: Maybe a , identInfo :: S.Set ContextInfo } deriving (Eq, Functor, Foldable, Traversable) instance Outputable a => Outputable (IdentifierDetails a) where ppr x = text "Details: " <+> ppr (identType x) <+> ppr (identInfo x) instance Semigroup (IdentifierDetails a) where d1 <> d2 = IdentifierDetails (identType d1 <|> identType d2) (S.union (identInfo d1) (identInfo d2)) instance Monoid (IdentifierDetails a) where mempty = IdentifierDetails Nothing S.empty instance Binary (IdentifierDetails TypeIndex) where put_ bh dets = do put_ bh $ identType dets put_ bh $ S.toList $ identInfo dets get bh = IdentifierDetails <$> get bh <*> fmap S.fromDistinctAscList (get bh) -- | Different contexts under which identifiers exist data ContextInfo = Use -- ^ regular variable | MatchBind | IEThing IEType -- ^ import/export | TyDecl -- | Value binding | ValBind BindType -- ^ whether or not the binding is in an instance Scope -- ^ scope over which the value is bound (Maybe Span) -- ^ span of entire binding -- | Pattern binding -- -- This case is tricky because the bound identifier can be used in two -- distinct scopes. Consider the following example (with @-XViewPatterns@) -- -- @ -- do (b, a, (a -> True)) <- bar -- foo a -- @ -- -- The identifier @a@ has two scopes: in the view pattern @(a -> True)@ and -- in the rest of the @do@-block in @foo a@. | PatternBind Scope -- ^ scope /in the pattern/ (the variable bound can be used -- further in the pattern) Scope -- ^ rest of the scope outside the pattern (Maybe Span) -- ^ span of entire binding | ClassTyDecl (Maybe Span) -- | Declaration | Decl DeclType -- ^ type of declaration (Maybe Span) -- ^ span of entire binding -- | Type variable | TyVarBind Scope TyVarScope -- | Record field | RecField RecFieldContext (Maybe Span) -- | Constraint/Dictionary evidence variable binding | EvidenceVarBind EvVarSource -- ^ how did this bind come into being Scope -- ^ scope over which the value is bound (Maybe Span) -- ^ span of the binding site -- | Usage of evidence variable | EvidenceVarUse deriving (Eq, Ord) instance Outputable ContextInfo where ppr (Use) = text "usage" ppr (MatchBind) = text "LHS of a match group" ppr (IEThing x) = ppr x ppr (TyDecl) = text "bound in a type signature declaration" ppr (ValBind t sc sp) = ppr t <+> text "value bound with scope:" <+> ppr sc <+> pprBindSpan sp ppr (PatternBind sc1 sc2 sp) = text "bound in a pattern with scope:" <+> ppr sc1 <+> "," <+> ppr sc2 <+> pprBindSpan sp ppr (ClassTyDecl sp) = text "bound in a class type declaration" <+> pprBindSpan sp ppr (Decl d sp) = text "declaration of" <+> ppr d <+> pprBindSpan sp ppr (TyVarBind sc1 sc2) = text "type variable binding with scope:" <+> ppr sc1 <+> "," <+> ppr sc2 ppr (RecField ctx sp) = text "record field" <+> ppr ctx <+> pprBindSpan sp ppr (EvidenceVarBind ctx sc sp) = text "evidence variable" <+> ppr ctx $$ "with scope:" <+> ppr sc $$ pprBindSpan sp ppr (EvidenceVarUse) = text "usage of evidence variable" pprBindSpan :: Maybe Span -> SDoc pprBindSpan Nothing = text "" pprBindSpan (Just sp) = text "bound at:" <+> ppr sp instance Binary ContextInfo where put_ bh Use = putByte bh 0 put_ bh (IEThing t) = do putByte bh 1 put_ bh t put_ bh TyDecl = putByte bh 2 put_ bh (ValBind bt sc msp) = do putByte bh 3 put_ bh bt put_ bh sc put_ bh msp put_ bh (PatternBind a b c) = do putByte bh 4 put_ bh a put_ bh b put_ bh c put_ bh (ClassTyDecl sp) = do putByte bh 5 put_ bh sp put_ bh (Decl a b) = do putByte bh 6 put_ bh a put_ bh b put_ bh (TyVarBind a b) = do putByte bh 7 put_ bh a put_ bh b put_ bh (RecField a b) = do putByte bh 8 put_ bh a put_ bh b put_ bh MatchBind = putByte bh 9 put_ bh (EvidenceVarBind a b c) = do putByte bh 10 put_ bh a put_ bh b put_ bh c put_ bh EvidenceVarUse = putByte bh 11 get bh = do (t :: Word8) <- get bh case t of 0 -> return Use 1 -> IEThing <$> get bh 2 -> return TyDecl 3 -> ValBind <$> get bh <*> get bh <*> get bh 4 -> PatternBind <$> get bh <*> get bh <*> get bh 5 -> ClassTyDecl <$> get bh 6 -> Decl <$> get bh <*> get bh 7 -> TyVarBind <$> get bh <*> get bh 8 -> RecField <$> get bh <*> get bh 9 -> return MatchBind 10 -> EvidenceVarBind <$> get bh <*> get bh <*> get bh 11 -> return EvidenceVarUse _ -> panic "Binary ContextInfo: invalid tag" data EvVarSource = EvPatternBind -- ^ bound by a pattern match | EvSigBind -- ^ bound by a type signature | EvWrapperBind -- ^ bound by a hswrapper | EvImplicitBind -- ^ bound by an implicit variable | EvInstBind { isSuperInst :: Bool, cls :: Name } -- ^ Bound by some instance of given class | EvLetBind EvBindDeps -- ^ A direct let binding deriving (Eq,Ord) instance Binary EvVarSource where put_ bh EvPatternBind = putByte bh 0 put_ bh EvSigBind = putByte bh 1 put_ bh EvWrapperBind = putByte bh 2 put_ bh EvImplicitBind = putByte bh 3 put_ bh (EvInstBind b cls) = do putByte bh 4 put_ bh b put_ bh cls put_ bh (EvLetBind deps) = do putByte bh 5 put_ bh deps get bh = do (t :: Word8) <- get bh case t of 0 -> pure EvPatternBind 1 -> pure EvSigBind 2 -> pure EvWrapperBind 3 -> pure EvImplicitBind 4 -> EvInstBind <$> get bh <*> get bh 5 -> EvLetBind <$> get bh _ -> panic "Binary EvVarSource: invalid tag" instance Outputable EvVarSource where ppr EvPatternBind = text "bound by a pattern" ppr EvSigBind = text "bound by a type signature" ppr EvWrapperBind = text "bound by a HsWrapper" ppr EvImplicitBind = text "bound by an implicit variable binding" ppr (EvInstBind False cls) = text "bound by an instance of class" <+> ppr cls ppr (EvInstBind True cls) = text "bound due to a superclass of " <+> ppr cls ppr (EvLetBind deps) = text "bound by a let, depending on:" <+> ppr deps -- | Eq/Ord instances compare on the converted HieName, -- as non-exported names may have different uniques after -- a roundtrip newtype EvBindDeps = EvBindDeps { getEvBindDeps :: [Name] } deriving Outputable instance Eq EvBindDeps where (==) = coerce ((==) `on` map toHieName) instance Ord EvBindDeps where compare = coerce (compare `on` map toHieName) instance Binary EvBindDeps where put_ bh (EvBindDeps xs) = put_ bh xs get bh = EvBindDeps <$> get bh -- | Types of imports and exports data IEType = Import | ImportAs | ImportHiding | Export deriving (Eq, Enum, Ord) instance Outputable IEType where ppr Import = text "import" ppr ImportAs = text "import as" ppr ImportHiding = text "import hiding" ppr Export = text "export" instance Binary IEType where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getByte bh; pure $! (toEnum (fromIntegral x)) data RecFieldContext = RecFieldDecl | RecFieldAssign | RecFieldMatch | RecFieldOcc deriving (Eq, Enum, Ord) instance Outputable RecFieldContext where ppr RecFieldDecl = text "declaration" ppr RecFieldAssign = text "assignment" ppr RecFieldMatch = text "pattern match" ppr RecFieldOcc = text "occurence" instance Binary RecFieldContext where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getByte bh; pure $! (toEnum (fromIntegral x)) data BindType = RegularBind | InstanceBind deriving (Eq, Ord, Enum) instance Outputable BindType where ppr RegularBind = "regular" ppr InstanceBind = "instance" instance Binary BindType where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getByte bh; pure $! (toEnum (fromIntegral x)) data DeclType = FamDec -- ^ type or data family | SynDec -- ^ type synonym | DataDec -- ^ data declaration | ConDec -- ^ constructor declaration | PatSynDec -- ^ pattern synonym | ClassDec -- ^ class declaration | InstDec -- ^ instance declaration deriving (Eq, Ord, Enum) instance Outputable DeclType where ppr FamDec = text "type or data family" ppr SynDec = text "type synonym" ppr DataDec = text "data" ppr ConDec = text "constructor" ppr PatSynDec = text "pattern synonym" ppr ClassDec = text "class" ppr InstDec = text "instance" instance Binary DeclType where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getByte bh; pure $! (toEnum (fromIntegral x)) data Scope = NoScope | LocalScope Span | ModuleScope deriving (Eq, Ord, Typeable, Data) instance Outputable Scope where ppr NoScope = text "NoScope" ppr (LocalScope sp) = text "LocalScope" <+> ppr sp ppr ModuleScope = text "ModuleScope" instance Binary Scope where put_ bh NoScope = putByte bh 0 put_ bh (LocalScope span) = do putByte bh 1 put_ bh span put_ bh ModuleScope = putByte bh 2 get bh = do (t :: Word8) <- get bh case t of 0 -> return NoScope 1 -> LocalScope <$> get bh 2 -> return ModuleScope _ -> panic "Binary Scope: invalid tag" -- | Scope of a type variable. -- -- This warrants a data type apart from 'Scope' because of complexities -- introduced by features like @-XScopedTypeVariables@ and @-XInstanceSigs@. For -- example, consider: -- -- @ -- foo, bar, baz :: forall a. a -> a -- @ -- -- Here @a@ is in scope in all the definitions of @foo@, @bar@, and @baz@, so we -- need a list of scopes to keep track of this. Furthermore, this list cannot be -- computed until we resolve the binding sites of @foo@, @bar@, and @baz@. -- -- Consequently, @a@ starts with an @'UnresolvedScope' [foo, bar, baz] Nothing@ -- which later gets resolved into a 'ResolvedScopes'. data TyVarScope = ResolvedScopes [Scope] -- | Unresolved scopes should never show up in the final @.hie@ file | UnresolvedScope [Name] -- ^ names of the definitions over which the scope spans (Maybe Span) -- ^ the location of the instance/class declaration for -- the case where the type variable is declared in a -- method type signature deriving (Eq, Ord) instance Outputable TyVarScope where ppr (ResolvedScopes xs) = text "type variable scopes:" <+> hsep (punctuate ", " $ map ppr xs) ppr (UnresolvedScope ns sp) = text "unresolved type variable scope for name" O.<> plural ns <+> pprBindSpan sp instance Binary TyVarScope where put_ bh (ResolvedScopes xs) = do putByte bh 0 put_ bh xs put_ bh (UnresolvedScope ns span) = do putByte bh 1 put_ bh ns put_ bh span get bh = do (t :: Word8) <- get bh case t of 0 -> ResolvedScopes <$> get bh 1 -> UnresolvedScope <$> get bh <*> get bh _ -> panic "Binary TyVarScope: invalid tag" -- | `Name`'s get converted into `HieName`'s before being written into @.hie@ -- files. See 'toHieName' and 'fromHieName' for logic on how to convert between -- these two types. data HieName = ExternalName !Module !OccName !SrcSpan | LocalName !OccName !SrcSpan | KnownKeyName !Unique deriving (Eq) instance Ord HieName where compare (ExternalName a b c) (ExternalName d e f) = compare (a,b) (d,e) `thenCmp` leftmost_smallest c f -- TODO (int-index): Perhaps use RealSrcSpan in HieName? compare (LocalName a b) (LocalName c d) = compare a c `thenCmp` leftmost_smallest b d -- TODO (int-index): Perhaps use RealSrcSpan in HieName? compare (KnownKeyName a) (KnownKeyName b) = nonDetCmpUnique a b -- Not actually non deterministic as it is a KnownKey compare ExternalName{} _ = LT compare LocalName{} ExternalName{} = GT compare LocalName{} _ = LT compare KnownKeyName{} _ = GT instance Outputable HieName where ppr (ExternalName m n sp) = text "ExternalName" <+> ppr m <+> ppr n <+> ppr sp ppr (LocalName n sp) = text "LocalName" <+> ppr n <+> ppr sp ppr (KnownKeyName u) = text "KnownKeyName" <+> ppr u hieNameOcc :: HieName -> OccName hieNameOcc (ExternalName _ occ _) = occ hieNameOcc (LocalName occ _) = occ hieNameOcc (KnownKeyName u) = case lookupKnownKeyName u of Just n -> nameOccName n Nothing -> pprPanic "hieNameOcc:unknown known-key unique" (ppr (unpkUnique u)) toHieName :: Name -> HieName toHieName name | isKnownKeyName name = KnownKeyName (nameUnique name) | isExternalName name = ExternalName (nameModule name) (nameOccName name) (nameSrcSpan name) | otherwise = LocalName (nameOccName name) (nameSrcSpan name)