----------------------------------------------------------------------------- -- -- Code generation for foreign calls. -- -- (c) The University of Glasgow 2004-2006 -- ----------------------------------------------------------------------------- module GHC.StgToCmm.Foreign ( cgForeignCall, emitPrimCall, emitCCall, emitForeignCall, emitSaveThreadState, saveThreadState, emitLoadThreadState, emitSaveRegs, emitRestoreRegs, emitPushTupleRegs, emitPopTupleRegs, loadThreadState, emitOpenNursery, emitCloseNursery, ) where import GHC.Prelude hiding( succ, (<*>) ) import GHC.Platform import GHC.Platform.Profile import GHC.Stg.Syntax import GHC.StgToCmm.Prof (storeCurCCS, ccsType) import GHC.StgToCmm.Env import GHC.StgToCmm.Monad import GHC.StgToCmm.Utils import GHC.StgToCmm.Closure import GHC.StgToCmm.Layout import GHC.Cmm.BlockId (newBlockId) import GHC.Cmm import GHC.Cmm.Utils import GHC.Cmm.Graph import GHC.Cmm.CallConv import GHC.Core.Type import GHC.Types.RepType import GHC.Cmm.CLabel import GHC.Runtime.Heap.Layout import GHC.Types.ForeignCall import GHC.Data.Maybe import GHC.Utils.Panic import GHC.Types.Unique.Supply import GHC.Types.Basic import GHC.Unit.Types import GHC.Core.TyCo.Rep import GHC.Builtin.Types.Prim import GHC.Utils.Misc (zipEqual) import Control.Monad ----------------------------------------------------------------------------- -- Code generation for Foreign Calls ----------------------------------------------------------------------------- -- | Emit code for a foreign call, and return the results to the sequel. -- Precondition: the length of the arguments list is the same as the -- arity of the foreign function. cgForeignCall :: ForeignCall -- the op -> Type -- type of foreign function -> [StgArg] -- x,y arguments -> Type -- result type -> FCode ReturnKind cgForeignCall (CCall (CCallSpec target cconv safety)) typ stg_args res_ty = do { platform <- getPlatform ; let -- in the stdcall calling convention, the symbol needs @size appended -- to it, where size is the total number of bytes of arguments. We -- attach this info to the CLabel here, and the CLabel pretty printer -- will generate the suffix when the label is printed. call_size args | StdCallConv <- cconv = Just (sum (map arg_size args)) | otherwise = Nothing -- ToDo: this might not be correct for 64-bit API -- This is correct for the PowerPC ELF ABI version 1 and 2. arg_size (arg, _) = max (widthInBytes $ typeWidth $ cmmExprType platform arg) (platformWordSizeInBytes platform) ; cmm_args <- getFCallArgs stg_args typ -- ; traceM $ show cmm_args ; (res_regs, res_hints) <- newUnboxedTupleRegs res_ty ; let ((call_args, arg_hints), cmm_target) = case target of StaticTarget _ _ _ False -> panic "cgForeignCall: unexpected FFI value import" StaticTarget _ lbl mPkgId True -> let labelSource = case mPkgId of Nothing -> ForeignLabelInThisPackage Just pkgId -> ForeignLabelInPackage (toUnitId pkgId) size = call_size cmm_args in ( unzip cmm_args , CmmLit (CmmLabel (mkForeignLabel lbl size labelSource IsFunction))) DynamicTarget -> case cmm_args of (fn,_):rest -> (unzip rest, fn) [] -> panic "cgForeignCall []" fc = ForeignConvention cconv arg_hints res_hints CmmMayReturn call_target = ForeignTarget cmm_target fc -- we want to emit code for the call, and then emitReturn. -- However, if the sequel is AssignTo, we shortcut a little -- and generate a foreign call that assigns the results -- directly. Otherwise we end up generating a bunch of -- useless "r = r" assignments, which are not merely annoying: -- they prevent the common block elimination from working correctly -- in the case of a safe foreign call. -- See Note [safe foreign call convention] -- ; sequel <- getSequel ; case sequel of AssignTo assign_to_these _ -> emitForeignCall safety assign_to_these call_target call_args _something_else -> do { _ <- emitForeignCall safety res_regs call_target call_args ; emitReturn (map (CmmReg . CmmLocal) res_regs) } } {- Note [safe foreign call convention] The simple thing to do for a safe foreign call would be the same as an unsafe one: just emitForeignCall ... emitReturn ... but consider what happens in this case case foo x y z of (# s, r #) -> ... The sequel is AssignTo [r]. The call to newUnboxedTupleRegs picks [r] as the result reg, and we generate r = foo(x,y,z) returns to L1 -- emitForeignCall L1: r = r -- emitReturn goto L2 L2: ... Now L1 is a proc point (by definition, it is the continuation of the safe foreign call). If L2 does a heap check, then L2 will also be a proc point. Furthermore, the stack layout algorithm has to arrange to save r somewhere between the call and the jump to L1, which is annoying: we would have to treat r differently from the other live variables, which have to be saved *before* the call. So we adopt a special convention for safe foreign calls: the results are copied out according to the NativeReturn convention by the call, and the continuation of the call should copyIn the results. (The copyOut code is actually inserted when the safe foreign call is lowered later). The result regs attached to the safe foreign call are only used temporarily to hold the results before they are copied out. We will now generate this: r = foo(x,y,z) returns to L1 L1: r = R1 -- copyIn, inserted by mkSafeCall goto L2 L2: ... r ... And when the safe foreign call is lowered later (see Note [lower safe foreign calls]) we get this: suspendThread() r = foo(x,y,z) resumeThread() R1 = r -- copyOut, inserted by lowerSafeForeignCall jump L1 L1: r = R1 -- copyIn, inserted by mkSafeCall goto L2 L2: ... r ... Now consider what happens if L2 does a heap check: the Adams optimisation kicks in and commons up L1 with the heap-check continuation, resulting in just one proc point instead of two. Yay! -} emitCCall :: [(CmmFormal,ForeignHint)] -> CmmExpr -> [(CmmActual,ForeignHint)] -> FCode () emitCCall hinted_results fn hinted_args = void $ emitForeignCall PlayRisky results target args where (args, arg_hints) = unzip hinted_args (results, result_hints) = unzip hinted_results target = ForeignTarget fn fc fc = ForeignConvention CCallConv arg_hints result_hints CmmMayReturn emitPrimCall :: [CmmFormal] -> CallishMachOp -> [CmmActual] -> FCode () emitPrimCall res op args = void $ emitForeignCall PlayRisky res (PrimTarget op) args -- alternative entry point, used by GHC.Cmm.Parser emitForeignCall :: Safety -> [CmmFormal] -- where to put the results -> ForeignTarget -- the op -> [CmmActual] -- arguments -> FCode ReturnKind emitForeignCall safety results target args | not (playSafe safety) = do platform <- getPlatform let (caller_save, caller_load) = callerSaveVolatileRegs platform emit caller_save target' <- load_target_into_temp target args' <- mapM maybe_assign_temp args emit $ mkUnsafeCall target' results args' emit caller_load return AssignedDirectly | otherwise = do profile <- getProfile platform <- getPlatform updfr_off <- getUpdFrameOff target' <- load_target_into_temp target args' <- mapM maybe_assign_temp args k <- newBlockId let (off, _, copyout) = copyInOflow profile NativeReturn (Young k) results [] -- see Note [safe foreign call convention] tscope <- getTickScope emit $ ( mkStore (CmmStackSlot (Young k) (widthInBytes (wordWidth platform))) (CmmLit (CmmBlock k)) <*> mkLast (CmmForeignCall { tgt = target' , res = results , args = args' , succ = k , ret_args = off , ret_off = updfr_off , intrbl = playInterruptible safety }) <*> mkLabel k tscope <*> copyout ) return (ReturnedTo k off) load_target_into_temp :: ForeignTarget -> FCode ForeignTarget load_target_into_temp (ForeignTarget expr conv) = do tmp <- maybe_assign_temp expr return (ForeignTarget tmp conv) load_target_into_temp other_target@(PrimTarget _) = return other_target -- What we want to do here is create a new temporary for the foreign -- call argument if it is not safe to use the expression directly, -- because the expression mentions caller-saves GlobalRegs (see -- Note [Register parameter passing]). -- -- However, we can't pattern-match on the expression here, because -- this is used in a loop by GHC.Cmm.Parser, and testing the expression -- results in a black hole. So we always create a temporary, and rely -- on GHC.Cmm.Sink to clean it up later. (Yuck, ToDo). The generated code -- ends up being the same, at least for the RTS .cmm code. -- maybe_assign_temp :: CmmExpr -> FCode CmmExpr maybe_assign_temp e = do platform <- getPlatform reg <- newTemp (cmmExprType platform e) emitAssign (CmmLocal reg) e return (CmmReg (CmmLocal reg)) -- ----------------------------------------------------------------------------- -- Save/restore the thread state in the TSO -- This stuff can't be done in suspendThread/resumeThread, because it -- refers to global registers which aren't available in the C world. emitSaveThreadState :: FCode () emitSaveThreadState = do profile <- getProfile code <- saveThreadState profile emit code -- | Produce code to save the current thread state to @CurrentTSO@ saveThreadState :: MonadUnique m => Profile -> m CmmAGraph saveThreadState profile = do let platform = profilePlatform profile tso <- newTemp (gcWord platform) close_nursery <- closeNursery profile tso pure $ catAGraphs [ -- tso = CurrentTSO; mkAssign (CmmLocal tso) currentTSOExpr , -- tso->stackobj->sp = Sp; mkStore (cmmOffset platform (cmmLoadBWord platform (cmmOffset platform (CmmReg (CmmLocal tso)) (tso_stackobj profile))) (stack_SP profile)) spExpr , close_nursery , -- and save the current cost centre stack in the TSO when profiling: if profileIsProfiling profile then mkStore (cmmOffset platform (CmmReg (CmmLocal tso)) (tso_CCCS profile)) cccsExpr else mkNop ] -- | Save STG registers -- -- STG registers must be saved around a C call, just in case the STG -- register is mapped to a caller-saves machine register. Normally we -- don't need to worry about this the code generator has already -- loaded any live STG registers into variables for us, but in -- hand-written low-level Cmm code where we don't know which registers -- are live, we might have to save them all. emitSaveRegs :: FCode () emitSaveRegs = do platform <- getPlatform let regs = realArgRegsCover platform save = catAGraphs (map (callerSaveGlobalReg platform) regs) emit save -- | Restore STG registers (see 'emitSaveRegs') emitRestoreRegs :: FCode () emitRestoreRegs = do platform <- getPlatform let regs = realArgRegsCover platform restore = catAGraphs (map (callerRestoreGlobalReg platform) regs) emit restore -- | Push a subset of STG registers onto the stack, specified by the bitmap -- -- Sometimes, a "live" subset of the STG registers needs to be saved on the -- stack, for example when storing an unboxed tuple to be used in the GHCi -- bytecode interpreter. -- -- The "live registers" bitmap corresponds to the list of registers given by -- 'tupleRegsCover', with the least significant bit indicating liveness of -- the first register in the list. -- -- Each register is saved to a stack slot of one or more machine words, even -- if the register size itself is smaller. -- -- The resulting Cmm code looks like this, with a line for each real or -- virtual register used for returning tuples: -- -- ... -- if((mask & 2) != 0) { Sp_adj(-1); Sp(0) = R2; } -- if((mask & 1) != 0) { Sp_adj(-1); Sp(0) = R1; } -- -- See Note [GHCi tuple layout] emitPushTupleRegs :: CmmExpr -> FCode () emitPushTupleRegs regs_live = do platform <- getPlatform let regs = zip (tupleRegsCover platform) [0..] save_arg (reg, n) = let mask = CmmLit (CmmInt (1 `shiftL` n) (wordWidth platform)) live = cmmAndWord platform regs_live mask cond = cmmNeWord platform live (zeroExpr platform) reg_ty = cmmRegType platform (CmmGlobal reg) width = roundUpToWords platform (widthInBytes $ typeWidth reg_ty) adj_sp = mkAssign spReg (cmmOffset platform spExpr (negate width)) save_reg = mkStore spExpr (CmmReg $ CmmGlobal reg) in mkCmmIfThen cond $ catAGraphs [adj_sp, save_reg] emit . catAGraphs =<< mapM save_arg (reverse regs) -- | Pop a subset of STG registers from the stack (see 'emitPushTupleRegs') emitPopTupleRegs :: CmmExpr -> FCode () emitPopTupleRegs regs_live = do platform <- getPlatform let regs = zip (tupleRegsCover platform) [0..] save_arg (reg, n) = let mask = CmmLit (CmmInt (1 `shiftL` n) (wordWidth platform)) live = cmmAndWord platform regs_live mask cond = cmmNeWord platform live (zeroExpr platform) reg_ty = cmmRegType platform (CmmGlobal reg) width = roundUpToWords platform (widthInBytes $ typeWidth reg_ty) adj_sp = mkAssign spReg (cmmOffset platform spExpr width) restore_reg = mkAssign (CmmGlobal reg) (CmmLoad spExpr reg_ty NaturallyAligned) in mkCmmIfThen cond $ catAGraphs [restore_reg, adj_sp] emit . catAGraphs =<< mapM save_arg regs emitCloseNursery :: FCode () emitCloseNursery = do profile <- getProfile let platform = profilePlatform profile tso <- newTemp (bWord platform) code <- closeNursery profile tso emit $ mkAssign (CmmLocal tso) currentTSOExpr <*> code {- | @closeNursery dflags tso@ produces code to close the nursery. A local register holding the value of @CurrentTSO@ is expected for efficiency. Closing the nursery corresponds to the following code: @ tso = CurrentTSO; cn = CurrentNuresry; // Update the allocation limit for the current thread. We don't // check to see whether it has overflowed at this point, that check is // made when we run out of space in the current heap block (stg_gc_noregs) // and in the scheduler when context switching (schedulePostRunThread). tso->alloc_limit -= Hp + WDS(1) - cn->start; // Set cn->free to the next unoccupied word in the block cn->free = Hp + WDS(1); @ -} closeNursery :: MonadUnique m => Profile -> LocalReg -> m CmmAGraph closeNursery profile tso = do let tsoreg = CmmLocal tso platform = profilePlatform profile cnreg <- CmmLocal <$> newTemp (bWord platform) pure $ catAGraphs [ mkAssign cnreg currentNurseryExpr, -- CurrentNursery->free = Hp+1; mkStore (nursery_bdescr_free platform cnreg) (cmmOffsetW platform hpExpr 1), let alloc = CmmMachOp (mo_wordSub platform) [ cmmOffsetW platform hpExpr 1 , cmmLoadBWord platform (nursery_bdescr_start platform cnreg) ] alloc_limit = cmmOffset platform (CmmReg tsoreg) (tso_alloc_limit profile) in -- tso->alloc_limit += alloc mkStore alloc_limit (CmmMachOp (MO_Sub W64) [ CmmLoad alloc_limit b64 NaturallyAligned , CmmMachOp (mo_WordTo64 platform) [alloc] ]) ] emitLoadThreadState :: FCode () emitLoadThreadState = do profile <- getProfile code <- loadThreadState profile emit code -- | Produce code to load the current thread state from @CurrentTSO@ loadThreadState :: MonadUnique m => Profile -> m CmmAGraph loadThreadState profile = do let platform = profilePlatform profile tso <- newTemp (gcWord platform) stack <- newTemp (gcWord platform) open_nursery <- openNursery profile tso pure $ catAGraphs [ -- tso = CurrentTSO; mkAssign (CmmLocal tso) currentTSOExpr, -- stack = tso->stackobj; mkAssign (CmmLocal stack) (cmmLoadBWord platform (cmmOffset platform (CmmReg (CmmLocal tso)) (tso_stackobj profile))), -- Sp = stack->sp; mkAssign spReg (cmmLoadBWord platform (cmmOffset platform (CmmReg (CmmLocal stack)) (stack_SP profile))), -- SpLim = stack->stack + RESERVED_STACK_WORDS; mkAssign spLimReg (cmmOffsetW platform (cmmOffset platform (CmmReg (CmmLocal stack)) (stack_STACK profile)) (pc_RESERVED_STACK_WORDS (platformConstants platform))), -- HpAlloc = 0; -- HpAlloc is assumed to be set to non-zero only by a failed -- a heap check, see HeapStackCheck.cmm:GC_GENERIC mkAssign hpAllocReg (zeroExpr platform), open_nursery, -- and load the current cost centre stack from the TSO when profiling: if profileIsProfiling profile then let ccs_ptr = cmmOffset platform (CmmReg (CmmLocal tso)) (tso_CCCS profile) in storeCurCCS (CmmLoad ccs_ptr (ccsType platform) NaturallyAligned) else mkNop ] emitOpenNursery :: FCode () emitOpenNursery = do profile <- getProfile let platform = profilePlatform profile tso <- newTemp (bWord platform) code <- openNursery profile tso emit $ mkAssign (CmmLocal tso) currentTSOExpr <*> code {- | @openNursery profile tso@ produces code to open the nursery. A local register holding the value of @CurrentTSO@ is expected for efficiency. Opening the nursery corresponds to the following code: @ tso = CurrentTSO; cn = CurrentNursery; bdfree = CurrentNursery->free; bdstart = CurrentNursery->start; // We *add* the currently occupied portion of the nursery block to // the allocation limit, because we will subtract it again in // closeNursery. tso->alloc_limit += bdfree - bdstart; // Set Hp to the last occupied word of the heap block. Why not the // next unoccupied word? Doing it this way means that we get to use // an offset of zero more often, which might lead to slightly smaller // code on some architectures. Hp = bdfree - WDS(1); // Set HpLim to the end of the current nursery block (note that this block // might be a block group, consisting of several adjacent blocks. HpLim = bdstart + CurrentNursery->blocks*BLOCK_SIZE_W - 1; @ -} openNursery :: MonadUnique m => Profile -> LocalReg -> m CmmAGraph openNursery profile tso = do let tsoreg = CmmLocal tso platform = profilePlatform profile cnreg <- CmmLocal <$> newTemp (bWord platform) bdfreereg <- CmmLocal <$> newTemp (bWord platform) bdstartreg <- CmmLocal <$> newTemp (bWord platform) -- These assignments are carefully ordered to reduce register -- pressure and generate not completely awful code on x86. To see -- what code we generate, look at the assembly for -- stg_returnToStackTop in rts/StgStartup.cmm. pure $ catAGraphs [ mkAssign cnreg currentNurseryExpr, mkAssign bdfreereg (cmmLoadBWord platform (nursery_bdescr_free platform cnreg)), -- Hp = CurrentNursery->free - 1; mkAssign hpReg (cmmOffsetW platform (CmmReg bdfreereg) (-1)), mkAssign bdstartreg (cmmLoadBWord platform (nursery_bdescr_start platform cnreg)), -- HpLim = CurrentNursery->start + -- CurrentNursery->blocks*BLOCK_SIZE_W - 1; mkAssign hpLimReg (cmmOffsetExpr platform (CmmReg bdstartreg) (cmmOffset platform (CmmMachOp (mo_wordMul platform) [ CmmMachOp (MO_SS_Conv W32 (wordWidth platform)) [CmmLoad (nursery_bdescr_blocks platform cnreg) b32 NaturallyAligned] , mkIntExpr platform (pc_BLOCK_SIZE (platformConstants platform)) ]) (-1) ) ), -- alloc = bd->free - bd->start let alloc = CmmMachOp (mo_wordSub platform) [CmmReg bdfreereg, CmmReg bdstartreg] alloc_limit = cmmOffset platform (CmmReg tsoreg) (tso_alloc_limit profile) in -- tso->alloc_limit += alloc mkStore alloc_limit (CmmMachOp (MO_Add W64) [ CmmLoad alloc_limit b64 NaturallyAligned , CmmMachOp (mo_WordTo64 platform) [alloc] ]) ] nursery_bdescr_free, nursery_bdescr_start, nursery_bdescr_blocks :: Platform -> CmmReg -> CmmExpr nursery_bdescr_free platform cn = cmmOffset platform (CmmReg cn) (pc_OFFSET_bdescr_free (platformConstants platform)) nursery_bdescr_start platform cn = cmmOffset platform (CmmReg cn) (pc_OFFSET_bdescr_start (platformConstants platform)) nursery_bdescr_blocks platform cn = cmmOffset platform (CmmReg cn) (pc_OFFSET_bdescr_blocks (platformConstants platform)) tso_stackobj, tso_CCCS, tso_alloc_limit, stack_STACK, stack_SP :: Profile -> ByteOff tso_stackobj profile = closureField profile (pc_OFFSET_StgTSO_stackobj (profileConstants profile)) tso_alloc_limit profile = closureField profile (pc_OFFSET_StgTSO_alloc_limit (profileConstants profile)) tso_CCCS profile = closureField profile (pc_OFFSET_StgTSO_cccs (profileConstants profile)) stack_STACK profile = closureField profile (pc_OFFSET_StgStack_stack (profileConstants profile)) stack_SP profile = closureField profile (pc_OFFSET_StgStack_sp (profileConstants profile)) closureField :: Profile -> ByteOff -> ByteOff closureField profile off = off + fixedHdrSize profile -- Note [Unlifted boxed arguments to foreign calls] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- For certain types passed to foreign calls, we adjust the actual -- value passed to the call. For ByteArray#, Array#, SmallArray#, -- and ArrayArray#, we pass the address of the array's payload, not -- the address of the heap object. For example, consider -- foreign import "c_foo" foo :: ByteArray# -> Int# -> IO () -- At a Haskell call like `foo x y`, we'll generate a C call that -- is more like -- c_foo( x+8, y ) -- where the "+8" takes the heap pointer (x :: ByteArray#) and moves -- it past the header words of the ByteArray object to point directly -- to the data inside the ByteArray#. (The exact offset depends -- on the target architecture and on profiling) By contrast, (y :: Int#) -- requires no such adjustment. -- -- This adjustment is performed by 'add_shim'. The size of the -- adjustment depends on the type of heap object. But -- how can we determine that type? There are two available options. -- We could use the types of the actual values that the foreign call -- has been applied to, or we could use the types present in the -- foreign function's type. Prior to GHC 8.10, we used the former -- strategy since it's a little more simple. However, in issue #16650 -- and more compellingly in the comments of -- https://gitlab.haskell.org/ghc/ghc/merge_requests/939, it was -- demonstrated that this leads to bad behavior in the presence -- of unsafeCoerce#. Returning to the above example, suppose the -- Haskell call looked like -- foo (unsafeCoerce# p) -- where the types of expressions comprising the arguments are -- p :: (Any :: TYPE 'UnliftedRep) -- i :: Int# -- so that the unsafe-coerce is between Any and ByteArray#. -- These two types have the same kind (they are both represented by -- a heap pointer) so no GC errors will occur if we do this unsafe coerce. -- By the time this gets to the code generator the cast has been -- discarded so we have -- foo p y -- But we *must* adjust the pointer to p by a ByteArray# shim, -- *not* by an Any shim (the Any shim involves no offset at all). -- -- To avoid this bad behavior, we adopt the second strategy: use -- the types present in the foreign function's type. -- In collectStgFArgTypes, we convert the foreign function's -- type to a list of StgFArgType. Then, in add_shim, we interpret -- these as numeric offsets. getFCallArgs :: [StgArg] -> Type -- the type of the foreign function -> FCode [(CmmExpr, ForeignHint)] -- (a) Drop void args -- (b) Add foreign-call shim code -- It's (b) that makes this differ from getNonVoidArgAmodes -- Precondition: args and typs have the same length -- See Note [Unlifted boxed arguments to foreign calls] getFCallArgs args typ = do { mb_cmms <- mapM get (zipEqual "getFCallArgs" args (collectStgFArgTypes typ)) ; return (catMaybes mb_cmms) } where get (arg,typ) | null arg_reps = return Nothing | otherwise = do { cmm <- getArgAmode (NonVoid arg) ; profile <- getProfile ; return (Just (add_shim profile typ cmm, hint)) } where arg_ty = stgArgType arg arg_reps = typePrimRep arg_ty hint = typeForeignHint arg_ty -- The minimum amount of information needed to determine -- the offset to apply to an argument to a foreign call. -- See Note [Unlifted boxed arguments to foreign calls] data StgFArgType = StgPlainType | StgArrayType | StgSmallArrayType | StgByteArrayType -- See Note [Unlifted boxed arguments to foreign calls] add_shim :: Profile -> StgFArgType -> CmmExpr -> CmmExpr add_shim profile ty expr = case ty of StgPlainType -> expr StgArrayType -> cmmOffsetB platform expr (arrPtrsHdrSize profile) StgSmallArrayType -> cmmOffsetB platform expr (smallArrPtrsHdrSize profile) StgByteArrayType -> cmmOffsetB platform expr (arrWordsHdrSize profile) where platform = profilePlatform profile -- From a function, extract information needed to determine -- the offset of each argument when used as a C FFI argument. -- See Note [Unlifted boxed arguments to foreign calls] collectStgFArgTypes :: Type -> [StgFArgType] collectStgFArgTypes = go [] where -- Skip foralls go bs (ForAllTy _ res) = go bs res go bs (AppTy{}) = reverse bs go bs (TyConApp{}) = reverse bs go bs (LitTy{}) = reverse bs go bs (TyVarTy{}) = reverse bs go _ (CastTy{}) = panic "myCollectTypeArgs: CastTy" go _ (CoercionTy{}) = panic "myCollectTypeArgs: CoercionTy" go bs (FunTy {ft_arg = arg, ft_res=res}) = go (typeToStgFArgType arg:bs) res -- Choose the offset based on the type. For anything other -- than an unlifted boxed type, there is no offset. -- See Note [Unlifted boxed arguments to foreign calls] typeToStgFArgType :: Type -> StgFArgType typeToStgFArgType typ | tycon == arrayPrimTyCon = StgArrayType | tycon == mutableArrayPrimTyCon = StgArrayType | tycon == arrayArrayPrimTyCon = StgArrayType | tycon == mutableArrayArrayPrimTyCon = StgArrayType | tycon == smallArrayPrimTyCon = StgSmallArrayType | tycon == smallMutableArrayPrimTyCon = StgSmallArrayType | tycon == byteArrayPrimTyCon = StgByteArrayType | tycon == mutableByteArrayPrimTyCon = StgByteArrayType | otherwise = StgPlainType where -- Should be a tycon app, since this is a foreign call. We look -- through newtypes so the offset does not change if a user replaces -- a type in a foreign function signature with a representationally -- equivalent newtype. tycon = tyConAppTyCon (unwrapType typ)