{- Author: George Karachalias Pattern Matching Coverage Checking. -} {-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE LambdaCase #-} module Check ( -- Checking and printing checkSingle, checkMatches, checkGuardMatches, needToRunPmCheck, isMatchContextPmChecked, -- See Note [Type and Term Equality Propagation] addTyCsDs, addScrutTmCs, addPatTmCs ) where #include "HsVersions.h" import GhcPrelude import PmTypes import PmOracle import PmPpr import BasicTypes (Origin, isGenerated) import CoreSyn (CoreExpr, Expr(Var)) import CoreUtils (exprType) import FastString (unpackFS) import DynFlags import GHC.Hs import TcHsSyn import Id import ConLike import Name import FamInst import TysWiredIn import SrcLoc import Util import Outputable import DataCon import BasicTypes (Boxity(..)) import Var (EvVar) import Coercion import TcEvidence import {-# SOURCE #-} DsExpr (dsExpr, dsLExpr, dsSyntaxExpr) import MatchLit (dsLit, dsOverLit) import IOEnv import DsMonad import Bag import TyCoRep import Type import DsUtils (isTrueLHsExpr) import Maybes (isJust, expectJust) import qualified GHC.LanguageExtensions as LangExt import Data.List (find) import Control.Monad (forM, when, forM_) import Control.Monad.Trans.Class (lift) import Control.Monad.Trans.Maybe import qualified Data.Semigroup as Semi {- This module checks pattern matches for: \begin{enumerate} \item Equations that are redundant \item Equations with inaccessible right-hand-side \item Exhaustiveness \end{enumerate} The algorithm is based on the paper: "GADTs Meet Their Match: Pattern-matching Warnings That Account for GADTs, Guards, and Laziness" http://people.cs.kuleuven.be/~george.karachalias/papers/p424-karachalias.pdf %************************************************************************ %* * Pattern Match Check Types %* * %************************************************************************ -} data PmPat where -- | For the arguments' meaning see 'HsPat.ConPatOut'. PmCon :: { pm_con_con :: PmAltCon , pm_con_arg_tys :: [Type] , pm_con_tvs :: [TyVar] , pm_con_args :: [PmPat] } -> PmPat PmVar :: { pm_var_id :: Id } -> PmPat PmGrd :: { pm_grd_pv :: PatVec -- ^ Always has 'patVecArity' 1. , pm_grd_expr :: CoreExpr } -> PmPat -- (PmGrd pat expr) matches expr against pat, binding the variables in pat -- | Should not be user-facing. instance Outputable PmPat where ppr (PmCon alt _arg_tys _con_tvs con_args) = cparen (notNull con_args) (hsep [ppr alt, hsep (map ppr con_args)]) ppr (PmVar vid) = ppr vid ppr (PmGrd pv ge) = hsep (map ppr pv) <+> text "<-" <+> ppr ge -- data T a where -- MkT :: forall p q. (Eq p, Ord q) => p -> q -> T [p] -- or MkT :: forall p q r. (Eq p, Ord q, [p] ~ r) => p -> q -> T r -- | Pattern Vectors. The *arity* of a PatVec [p1,..,pn] is -- the number of p1..pn that are not Guards. See 'patternArity'. type PatVec = [PmPat] type ValVec = [Id] -- ^ Value Vector Abstractions -- | Each 'Delta' is proof (i.e., a model of the fact) that some values are not -- covered by a pattern match. E.g. @f Nothing = @ might be given an -- uncovered set @[x :-> Just y]@ or @[x /= Nothing]@, where @x@ is the variable -- matching against @f@'s first argument. type Uncovered = [Delta] -- Instead of keeping the whole sets in memory, we keep a boolean for both the -- covered and the divergent set (we store the uncovered set though, since we -- want to print it). For both the covered and the divergent we have: -- -- True <=> The set is non-empty -- -- hence: -- C = True ==> Useful clause (no warning) -- C = False, D = True ==> Clause with inaccessible RHS -- C = False, D = False ==> Redundant clause data Covered = Covered | NotCovered deriving Show instance Outputable Covered where ppr = text . show -- Like the or monoid for booleans -- Covered = True, Uncovered = False instance Semi.Semigroup Covered where Covered <> _ = Covered _ <> Covered = Covered NotCovered <> NotCovered = NotCovered instance Monoid Covered where mempty = NotCovered mappend = (Semi.<>) data Diverged = Diverged | NotDiverged deriving Show instance Outputable Diverged where ppr = text . show instance Semi.Semigroup Diverged where Diverged <> _ = Diverged _ <> Diverged = Diverged NotDiverged <> NotDiverged = NotDiverged instance Monoid Diverged where mempty = NotDiverged mappend = (Semi.<>) data Precision = Approximate | Precise deriving (Eq, Show) instance Outputable Precision where ppr = text . show instance Semi.Semigroup Precision where Approximate <> _ = Approximate _ <> Approximate = Approximate Precise <> Precise = Precise instance Monoid Precision where mempty = Precise mappend = (Semi.<>) -- | A triple of covered, uncovered, and divergent sets. -- -- Also stores a flag 'presultApprox' denoting whether we ran into the -- 'maxPmCheckModels' limit for the purpose of hints in warning messages to -- maybe increase the limit. data PartialResult = PartialResult { presultCovered :: Covered , presultUncovered :: Uncovered , presultDivergent :: Diverged , presultApprox :: Precision } emptyPartialResult :: PartialResult emptyPartialResult = PartialResult { presultUncovered = mempty , presultCovered = mempty , presultDivergent = mempty , presultApprox = mempty } combinePartialResults :: PartialResult -> PartialResult -> PartialResult combinePartialResults (PartialResult cs1 vsa1 ds1 ap1) (PartialResult cs2 vsa2 ds2 ap2) = PartialResult (cs1 Semi.<> cs2) (vsa1 Semi.<> vsa2) (ds1 Semi.<> ds2) (ap1 Semi.<> ap2) -- the result is approximate if either is instance Outputable PartialResult where ppr (PartialResult c unc d pc) = hang (text "PartialResult" <+> ppr c <+> ppr d <+> ppr pc) 2 (ppr_unc unc) where ppr_unc = braces . fsep . punctuate comma . map ppr instance Semi.Semigroup PartialResult where (<>) = combinePartialResults instance Monoid PartialResult where mempty = emptyPartialResult mappend = (Semi.<>) -- | Pattern check result -- -- * Redundant clauses -- * Not-covered clauses (or their type, if no pattern is available) -- * Clauses with inaccessible RHS -- * A flag saying whether we ran into the 'maxPmCheckModels' limit for the -- purpose of suggesting to crank it up in the warning message -- -- More details about the classification of clauses into useful, redundant -- and with inaccessible right hand side can be found here: -- -- https://gitlab.haskell.org/ghc/ghc/wikis/pattern-match-check -- data PmResult = PmResult { pmresultRedundant :: [Located [LPat GhcTc]] , pmresultUncovered :: UncoveredCandidates , pmresultInaccessible :: [Located [LPat GhcTc]] , pmresultApproximate :: Precision } instance Outputable PmResult where ppr pmr = hang (text "PmResult") 2 $ vcat [ text "pmresultRedundant" <+> ppr (pmresultRedundant pmr) , text "pmresultUncovered" <+> ppr (pmresultUncovered pmr) , text "pmresultInaccessible" <+> ppr (pmresultInaccessible pmr) , text "pmresultApproximate" <+> ppr (pmresultApproximate pmr) ] -- | Either a list of patterns that are not covered, or their type, in case we -- have no patterns at hand. Not having patterns at hand can arise when -- handling EmptyCase expressions, in two cases: -- -- * The type of the scrutinee is a trivially inhabited type (like Int or Char) -- * The type of the scrutinee cannot be reduced to WHNF. -- -- In both these cases we have no inhabitation candidates for the type at hand, -- but we don't want to issue just a wildcard as missing. Instead, we print a -- type annotated wildcard, so that the user knows what kind of patterns is -- expected (e.g. (_ :: Int), or (_ :: F Int), where F Int does not reduce). data UncoveredCandidates = UncoveredPatterns [Id] [Delta] | TypeOfUncovered Type instance Outputable UncoveredCandidates where ppr (UncoveredPatterns vva deltas) = text "UnPat" <+> ppr vva $$ ppr deltas ppr (TypeOfUncovered ty) = text "UnTy" <+> ppr ty {- %************************************************************************ %* * Entry points to the checker: checkSingle and checkMatches %* * %************************************************************************ -} -- | Check a single pattern binding (let) checkSingle :: DynFlags -> DsMatchContext -> Id -> Pat GhcTc -> DsM () checkSingle dflags ctxt@(DsMatchContext _ locn) var p = do tracePm "checkSingle" (vcat [ppr ctxt, ppr var, ppr p]) res <- checkSingle' locn var p dsPmWarn dflags ctxt res -- | Check a single pattern binding (let) checkSingle' :: SrcSpan -> Id -> Pat GhcTc -> DsM PmResult checkSingle' locn var p = do fam_insts <- dsGetFamInstEnvs clause <- translatePat fam_insts p missing <- getPmDelta tracePm "checkSingle': missing" (ppr missing) PartialResult cs us ds pc <- pmcheckI clause [] [var] 1 missing dflags <- getDynFlags us' <- getNFirstUncovered [var] (maxUncoveredPatterns dflags + 1) us let uc = UncoveredPatterns [var] us' return $ case (cs,ds) of (Covered, _ ) -> PmResult [] uc [] pc -- useful (NotCovered, NotDiverged) -> PmResult m uc [] pc -- redundant (NotCovered, Diverged ) -> PmResult [] uc m pc -- inaccessible rhs where m = [cL locn [cL locn p]] -- | Exhaustive for guard matches, is used for guards in pattern bindings and -- in @MultiIf@ expressions. checkGuardMatches :: HsMatchContext Name -- Match context -> GRHSs GhcTc (LHsExpr GhcTc) -- Guarded RHSs -> DsM () checkGuardMatches hs_ctx guards@(GRHSs _ grhss _) = do dflags <- getDynFlags let combinedLoc = foldl1 combineSrcSpans (map getLoc grhss) dsMatchContext = DsMatchContext hs_ctx combinedLoc match = cL combinedLoc $ Match { m_ext = noExtField , m_ctxt = hs_ctx , m_pats = [] , m_grhss = guards } checkMatches dflags dsMatchContext [] [match] checkGuardMatches _ (XGRHSs nec) = noExtCon nec -- | Check a matchgroup (case, functions, etc.) checkMatches :: DynFlags -> DsMatchContext -> [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> DsM () checkMatches dflags ctxt vars matches = do tracePm "checkMatches" (hang (vcat [ppr ctxt , ppr vars , text "Matches:"]) 2 (vcat (map ppr matches))) res <- case matches of -- Check EmptyCase separately -- See Note [Checking EmptyCase Expressions] in PmOracle [] | [var] <- vars -> checkEmptyCase' var _normal_match -> checkMatches' vars matches dsPmWarn dflags ctxt res -- | Check a matchgroup (case, functions, etc.). To be called on a non-empty -- list of matches. For empty case expressions, use checkEmptyCase' instead. checkMatches' :: [Id] -> [LMatch GhcTc (LHsExpr GhcTc)] -> DsM PmResult checkMatches' vars matches | null matches = panic "checkMatches': EmptyCase" | otherwise = do missing <- getPmDelta tracePm "checkMatches': missing" (ppr missing) (rs,us,ds,pc) <- go matches [missing] dflags <- getDynFlags us' <- getNFirstUncovered vars (maxUncoveredPatterns dflags + 1) us let up = UncoveredPatterns vars us' return $ PmResult { pmresultRedundant = map hsLMatchToLPats rs , pmresultUncovered = up , pmresultInaccessible = map hsLMatchToLPats ds , pmresultApproximate = pc } where go :: [LMatch GhcTc (LHsExpr GhcTc)] -> Uncovered -> DsM ( [LMatch GhcTc (LHsExpr GhcTc)] , Uncovered , [LMatch GhcTc (LHsExpr GhcTc)] , Precision) go [] missing = return ([], missing, [], Precise) go (m:ms) missing = do tracePm "checkMatches': go" (ppr m) dflags <- getDynFlags fam_insts <- dsGetFamInstEnvs (clause, guards) <- translateMatch fam_insts m let limit = maxPmCheckModels dflags n_siblings = length missing throttled_check delta = snd <$> throttle limit (pmcheckI clause guards vars) n_siblings delta r@(PartialResult cs missing' ds pc1) <- runMany throttled_check missing tracePm "checkMatches': go: res" (ppr r) (rs, final_u, is, pc2) <- go ms missing' return $ case (cs, ds) of -- useful (Covered, _ ) -> (rs, final_u, is, pc1 Semi.<> pc2) -- redundant (NotCovered, NotDiverged) -> (m:rs, final_u, is, pc1 Semi.<> pc2) -- inaccessible (NotCovered, Diverged ) -> (rs, final_u, m:is, pc1 Semi.<> pc2) hsLMatchToLPats :: LMatch id body -> Located [LPat id] hsLMatchToLPats (dL->L l (Match { m_pats = pats })) = cL l pats hsLMatchToLPats _ = panic "checkMatches'" -- | Check an empty case expression. Since there are no clauses to process, we -- only compute the uncovered set. See Note [Checking EmptyCase Expressions] -- in "PmOracle" for details. checkEmptyCase' :: Id -> DsM PmResult checkEmptyCase' x = do delta <- getPmDelta us <- inhabitants delta (idType x) >>= \case -- Inhabitation checking failed / the type is trivially inhabited Left ty -> pure (TypeOfUncovered ty) -- A list of oracle states for the different satisfiable constructors is -- available. Turn this into a value set abstraction. Right (va, deltas) -> pure (UncoveredPatterns [va] deltas) pure (PmResult [] us [] Precise) getNFirstUncovered :: [Id] -> Int -> [Delta] -> DsM [Delta] getNFirstUncovered _ 0 _ = pure [] getNFirstUncovered _ _ [] = pure [] getNFirstUncovered vars n (delta:deltas) = do front <- provideEvidenceForEquation vars n delta back <- getNFirstUncovered vars (n - length front) deltas pure (front ++ back) {- %************************************************************************ %* * Transform source syntax to *our* syntax %* * %************************************************************************ -} -- ----------------------------------------------------------------------- -- * Utilities nullaryConPattern :: ConLike -> PmPat -- Nullary data constructor and nullary type constructor nullaryConPattern con = PmCon { pm_con_con = (PmAltConLike con), pm_con_arg_tys = [] , pm_con_tvs = [], pm_con_args = [] } {-# INLINE nullaryConPattern #-} truePattern :: PmPat truePattern = nullaryConPattern (RealDataCon trueDataCon) {-# INLINE truePattern #-} vanillaConPattern :: ConLike -> [Type] -> PatVec -> PmPat -- ADT constructor pattern => no existentials, no local constraints vanillaConPattern con arg_tys args = PmCon { pm_con_con = PmAltConLike con, pm_con_arg_tys = arg_tys , pm_con_tvs = [], pm_con_args = args } {-# INLINE vanillaConPattern #-} -- | Create an empty list pattern of a given type nilPattern :: Type -> PmPat nilPattern ty = PmCon { pm_con_con = PmAltConLike (RealDataCon nilDataCon) , pm_con_arg_tys = [ty], pm_con_tvs = [], pm_con_args = [] } {-# INLINE nilPattern #-} mkListPatVec :: Type -> PatVec -> PatVec -> PatVec mkListPatVec ty xs ys = [PmCon { pm_con_con = PmAltConLike (RealDataCon consDataCon) , pm_con_arg_tys = [ty] , pm_con_tvs = [] , pm_con_args = xs++ys }] {-# INLINE mkListPatVec #-} -- | Create a literal pattern mkPmLitPattern :: PmLit -> PatVec mkPmLitPattern lit@(PmLit _ val) -- We translate String literals to list literals for better overlap reasoning. -- It's a little unfortunate we do this here rather than in -- 'PmOracle.trySolve' and 'PmOracle.addRefutableAltCon', but it's so much -- simpler here. -- See Note [Representation of Strings in TmState] in PmOracle | PmLitString s <- val , let mk_char_lit c = mkPmLitPattern (PmLit charTy (PmLitChar c)) = foldr (\c p -> mkListPatVec charTy (mk_char_lit c) p) [nilPattern charTy] (unpackFS s) | otherwise = [PmCon { pm_con_con = PmAltLit lit , pm_con_arg_tys = [] , pm_con_tvs = [] , pm_con_args = [] }] {-# INLINE mkPmLitPattern #-} -- ----------------------------------------------------------------------- -- * Transform (Pat Id) into [PmPat] -- The arity of the [PmPat] is always 1, but it may be a combination -- of a vanilla pattern and a guard pattern. -- Example: view pattern (f y -> Just x) -- becomes [PmVar z, PmGrd [PmPat (Just x), f y]] -- where z is fresh translatePat :: FamInstEnvs -> Pat GhcTc -> DsM PatVec translatePat fam_insts pat = case pat of WildPat ty -> mkPmVars [ty] VarPat _ id -> return [PmVar (unLoc id)] ParPat _ p -> translatePat fam_insts (unLoc p) LazyPat _ _ -> mkPmVars [hsPatType pat] -- like a variable -- ignore strictness annotations for now BangPat _ p -> translatePat fam_insts (unLoc p) -- (x@pat) ===> x (pat <- x) AsPat _ (dL->L _ x) p -> do pat <- translatePat fam_insts (unLoc p) pure [PmVar x, PmGrd pat (Var x)] SigPat _ p _ty -> translatePat fam_insts (unLoc p) -- See Note [Translate CoPats] CoPat _ wrapper p ty | isIdHsWrapper wrapper -> translatePat fam_insts p | WpCast co <- wrapper, isReflexiveCo co -> translatePat fam_insts p | otherwise -> do ps <- translatePat fam_insts p (xp,xe) <- mkPmId2Forms ty g <- mkGuard ps (mkHsWrap wrapper (unLoc xe)) pure [xp,g] -- (n + k) ===> x (True <- x >= k) (n <- x-k) NPlusKPat pat_ty (dL->L _ n) k1 k2 ge minus -> do (xp, xe) <- mkPmId2Forms pat_ty let ke1 = HsOverLit noExtField (unLoc k1) ke2 = HsOverLit noExtField k2 g1 <- mkGuardSyntaxExpr [truePattern] ge [unLoc xe, ke1] g2 <- mkGuardSyntaxExpr [PmVar n] minus [ke2] return [xp, g1, g2] -- (fun -> pat) ===> x (pat <- fun x) ViewPat arg_ty lexpr lpat -> do ps <- translatePat fam_insts (unLoc lpat) (xp,xe) <- mkPmId2Forms arg_ty g <- mkGuard ps (HsApp noExtField lexpr xe) return [xp, g] -- list ListPat (ListPatTc ty Nothing) ps -> do pv <- translatePatVec fam_insts (map unLoc ps) return (foldr (mkListPatVec ty) [nilPattern ty] pv) -- overloaded list ListPat (ListPatTc elem_ty (Just (pat_ty, to_list))) lpats -> do dflags <- getDynFlags case splitListTyConApp_maybe pat_ty of Just e_ty | not (xopt LangExt.RebindableSyntax dflags) -- Just translate it as a regular ListPat -> translatePat fam_insts (ListPat (ListPatTc e_ty Nothing) lpats) _ -> do ps <- translatePatVec fam_insts (map unLoc lpats) (xp, xe) <- mkPmId2Forms pat_ty let pats = foldr (mkListPatVec elem_ty) [nilPattern elem_ty] ps g <- mkGuardSyntaxExpr pats to_list [unLoc xe] return [xp,g] -- (a) In the presence of RebindableSyntax, we don't know anything about -- `toList`, we should treat `ListPat` as any other view pattern. -- -- (b) In the absence of RebindableSyntax, -- - If the pat_ty is `[a]`, then we treat the overloaded list pattern -- as ordinary list pattern. Although we can give an instance -- `IsList [Int]` (more specific than the default `IsList [a]`), in -- practice, we almost never do that. We assume the `_to_list` is -- the `toList` from `instance IsList [a]`. -- -- - Otherwise, we treat the `ListPat` as ordinary view pattern. -- -- See #14547, especially comment#9 and comment#10. -- -- Here we construct CanFailPmPat directly, rather can construct a view -- pattern and do further translation as an optimization, for the reason, -- see Note [Countering exponential blowup]. ConPatOut { pat_con = (dL->L _ con) , pat_arg_tys = arg_tys , pat_tvs = ex_tvs , pat_args = ps } -> do args <- translateConPatVec fam_insts arg_tys ex_tvs con ps return [PmCon { pm_con_con = PmAltConLike con , pm_con_arg_tys = arg_tys , pm_con_tvs = ex_tvs , pm_con_args = args }] NPat ty (dL->L _ olit) mb_neg _ -> do -- See Note [Literal short cut] in MatchLit.hs -- We inline the Literal short cut for @ty@ here, because @ty@ is more -- precise than the field of OverLitTc, which is all that dsOverLit (which -- normally does the literal short cut) can look at. Also @ty@ matches the -- type of the scrutinee, so info on both pattern and scrutinee (for which -- short cutting in dsOverLit works properly) is overloaded iff either is. dflags <- getDynFlags core_expr <- case olit of OverLit{ ol_val = val, ol_ext = OverLitTc rebindable _ } | not rebindable , Just expr <- shortCutLit dflags val ty -> dsExpr expr _ -> dsOverLit olit let lit = expectJust "failed to detect OverLit" (coreExprAsPmLit core_expr) let lit' = case mb_neg of Just _ -> expectJust "failed to negate lit" (negatePmLit lit) Nothing -> lit return (mkPmLitPattern lit') LitPat _ lit -> do core_expr <- dsLit (convertLit lit) let lit = expectJust "failed to detect Lit" (coreExprAsPmLit core_expr) return (mkPmLitPattern lit) TuplePat tys ps boxity -> do tidy_ps <- translatePatVec fam_insts (map unLoc ps) let tuple_con = RealDataCon (tupleDataCon boxity (length ps)) tys' = case boxity of Boxed -> tys -- See Note [Unboxed tuple RuntimeRep vars] in TyCon Unboxed -> map getRuntimeRep tys ++ tys return [vanillaConPattern tuple_con tys' (concat tidy_ps)] SumPat ty p alt arity -> do tidy_p <- translatePat fam_insts (unLoc p) let sum_con = RealDataCon (sumDataCon alt arity) -- See Note [Unboxed tuple RuntimeRep vars] in TyCon return [vanillaConPattern sum_con (map getRuntimeRep ty ++ ty) tidy_p] -- -------------------------------------------------------------------------- -- Not supposed to happen ConPatIn {} -> panic "Check.translatePat: ConPatIn" SplicePat {} -> panic "Check.translatePat: SplicePat" XPat {} -> panic "Check.translatePat: XPat" -- | Translate a list of patterns (Note: each pattern is translated -- to a pattern vector but we do not concatenate the results). translatePatVec :: FamInstEnvs -> [Pat GhcTc] -> DsM [PatVec] translatePatVec fam_insts pats = mapM (translatePat fam_insts) pats -- | Translate a constructor pattern translateConPatVec :: FamInstEnvs -> [Type] -> [TyVar] -> ConLike -> HsConPatDetails GhcTc -> DsM PatVec translateConPatVec fam_insts _univ_tys _ex_tvs _ (PrefixCon ps) = concat <$> translatePatVec fam_insts (map unLoc ps) translateConPatVec fam_insts _univ_tys _ex_tvs _ (InfixCon p1 p2) = concat <$> translatePatVec fam_insts (map unLoc [p1,p2]) translateConPatVec fam_insts univ_tys ex_tvs c (RecCon (HsRecFields fs _)) -- Nothing matched. Make up some fresh term variables | null fs = mkPmVars arg_tys -- The data constructor was not defined using record syntax. For the -- pattern to be in record syntax it should be empty (e.g. Just {}). -- So just like the previous case. | null orig_lbls = ASSERT(null matched_lbls) mkPmVars arg_tys -- Some of the fields appear, in the original order (there may be holes). -- Generate a simple constructor pattern and make up fresh variables for -- the rest of the fields | matched_lbls `subsetOf` orig_lbls = ASSERT(orig_lbls `equalLength` arg_tys) let translateOne (lbl, ty) = case lookup lbl matched_pats of Just p -> translatePat fam_insts p Nothing -> mkPmVars [ty] in concatMapM translateOne (zip orig_lbls arg_tys) -- The fields that appear are not in the correct order. Make up fresh -- variables for all fields and add guards after matching, to force the -- evaluation in the correct order. | otherwise = do arg_var_pats <- mkPmVars arg_tys translated_pats <- forM matched_pats $ \(x,pat) -> do pvec <- translatePat fam_insts pat return (x, pvec) let zipped = zip orig_lbls [ x | PmVar x <- arg_var_pats ] guards = map (\(name,pvec) -> case lookup name zipped of Just x -> PmGrd pvec (Var x) Nothing -> panic "translateConPatVec: lookup") translated_pats return (arg_var_pats ++ guards) where -- The actual argument types (instantiated) arg_tys = conLikeInstOrigArgTys c (univ_tys ++ mkTyVarTys ex_tvs) -- Some label information orig_lbls = map flSelector $ conLikeFieldLabels c matched_pats = [ (getName (unLoc (hsRecFieldId x)), unLoc (hsRecFieldArg x)) | (dL->L _ x) <- fs] matched_lbls = [ name | (name, _pat) <- matched_pats ] subsetOf :: Eq a => [a] -> [a] -> Bool subsetOf [] _ = True subsetOf (_:_) [] = False subsetOf (x:xs) (y:ys) | x == y = subsetOf xs ys | otherwise = subsetOf (x:xs) ys -- Translate a single match translateMatch :: FamInstEnvs -> LMatch GhcTc (LHsExpr GhcTc) -> DsM (PatVec, [PatVec]) translateMatch fam_insts (dL->L _ (Match { m_pats = lpats, m_grhss = grhss })) = do pats' <- concat <$> translatePatVec fam_insts pats guards' <- mapM (translateGuards fam_insts) guards -- tracePm "translateMatch" (vcat [ppr pats, ppr pats', ppr guards, ppr guards']) return (pats', guards') where extractGuards :: LGRHS GhcTc (LHsExpr GhcTc) -> [GuardStmt GhcTc] extractGuards (dL->L _ (GRHS _ gs _)) = map unLoc gs extractGuards _ = panic "translateMatch" pats = map unLoc lpats guards = map extractGuards (grhssGRHSs grhss) translateMatch _ _ = panic "translateMatch" -- ----------------------------------------------------------------------- -- * Transform source guards (GuardStmt Id) to PmPats (Pattern) -- | Translate a list of guard statements to a pattern vector translateGuards :: FamInstEnvs -> [GuardStmt GhcTc] -> DsM PatVec translateGuards fam_insts guards = concat <$> mapM (translateGuard fam_insts) guards -- | Translate a guard statement to Pattern translateGuard :: FamInstEnvs -> GuardStmt GhcTc -> DsM PatVec translateGuard fam_insts guard = case guard of BodyStmt _ e _ _ -> translateBoolGuard e LetStmt _ binds -> translateLet (unLoc binds) BindStmt _ p e _ _ -> translateBind fam_insts p e LastStmt {} -> panic "translateGuard LastStmt" ParStmt {} -> panic "translateGuard ParStmt" TransStmt {} -> panic "translateGuard TransStmt" RecStmt {} -> panic "translateGuard RecStmt" ApplicativeStmt {} -> panic "translateGuard ApplicativeLastStmt" XStmtLR nec -> noExtCon nec -- | Translate let-bindings translateLet :: HsLocalBinds GhcTc -> DsM PatVec translateLet _binds = return [] -- | Translate a pattern guard translateBind :: FamInstEnvs -> LPat GhcTc -> LHsExpr GhcTc -> DsM PatVec translateBind fam_insts (dL->L _ p) e = do ps <- translatePat fam_insts p g <- mkGuard ps (unLoc e) return [g] -- | Translate a boolean guard translateBoolGuard :: LHsExpr GhcTc -> DsM PatVec translateBoolGuard e | isJust (isTrueLHsExpr e) = return [] -- The formal thing to do would be to generate (True <- True) -- but it is trivial to solve so instead we give back an empty -- PatVec for efficiency | otherwise = (:[]) <$> mkGuard [truePattern] (unLoc e) {- Note [Countering exponential blowup] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Precise pattern match exhaustiveness checking is necessarily exponential in the size of some input programs. We implement a counter-measure in the form of the -fmax-pmcheck-models flag, limiting the number of Deltas we check against each pattern by a constant. How do we do that? Consider f True True = () f True True = () And imagine we set our limit to 1 for the sake of the example. The first clause will be checked against the initial Delta, {}. Doing so will produce an Uncovered set of size 2, containing the models {x/~True} and {x~True,y/~True}. Also we find the first clause to cover the model {x~True,y~True}. But the Uncovered set we get out of the match is too huge! We somehow have to ensure not to make things worse as they are already, so we continue checking with a singleton Uncovered set of the initial Delta {}. Why is this sound (wrt. notion of the GADTs Meet their Match paper)? Well, it basically amounts to forgetting that we matched against the first clause. The values represented by {} are a superset of those represented by its two refinements {x/~True} and {x~True,y/~True}. This forgetfulness becomes very apparent in the example above: By continuing with {} we don't detect the second clause as redundant, as it again covers the same non-empty subset of {}. So we don't flag everything as redundant anymore, but still will never flag something as redundant that isn't. For exhaustivity, the converse applies: We will report @f@ as non-exhaustive and report @f _ _@ as missing, which is a superset of the actual missing matches. But soundness means we will never fail to report a missing match. This mechanism is implemented in the higher-order function 'throttle'. Note [Combinatorial explosion in guards] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Function with many clauses and deeply nested guards like in #11195 tend to overwhelm the checker because they lead to exponential splitting behavior. See the comments on #11195 on refinement trees. Every guard refines the disjunction of Deltas by another split. This no different than the ConVar case, but in stark contrast we mostly don't get any useful information out of that split! Hence splitting k-fold just means having k-fold more work. The problem exacerbates for larger k, because it gets even more unlikely that we can handle all of the arising Deltas better than just continue working on the original Delta. We simply apply the same mechanism as in Note [Countering exponential blowup]. But we don't want to forget about actually useful info from pattern match clauses just because we had one clause with many guards. So we set the limit for guards much lower. Note [Translate CoPats] ~~~~~~~~~~~~~~~~~~~~~~~ The pattern match checker did not know how to handle coerced patterns `CoPat` efficiently, which gave rise to #11276. The original approach translated `CoPat`s: pat |> co ===> x (pat <- (x |> co)) Why did we do this seemingly unnecessary expansion in the first place? The reason is that the type of @pat |> co@ (which is the type of the value abstraction we match against) might be different than that of @pat@. Data instances such as @Sing (a :: Bool)@ are a good example of this: If we would just drop the coercion, we'd get a type error when matching @pat@ against its value abstraction, with the result being that pmIsSatisfiable decides that every possible data constructor fitting @pat@ is rejected as uninhabitated, leading to a lot of false warnings. But we can check whether the coercion is a hole or if it is just refl, in which case we can drop it. %************************************************************************ %* * Utilities for Pattern Match Checking %* * %************************************************************************ -} -- ---------------------------------------------------------------------------- -- * Basic utilities -- | Get the type out of a PmPat. For guard patterns (ps <- e) we use the type -- of the first (or the single -WHEREVER IT IS- valid to use?) pattern pmPatType :: PmPat -> Type pmPatType (PmCon { pm_con_con = con, pm_con_arg_tys = tys }) = pmAltConType con tys pmPatType (PmVar { pm_var_id = x }) = idType x pmPatType (PmGrd { pm_grd_pv = pv }) = ASSERT(patVecArity pv == 1) (pmPatType p) where Just p = find ((==1) . patternArity) pv {- Note [Extensions to GADTs Meet Their Match] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The GADTs Meet Their Match paper presents the formalism that GHC's coverage checker adheres to. Since the paper's publication, there have been some additional features added to the coverage checker which are not described in the paper. This Note serves as a reference for these new features. * Value abstractions are severely simplified to the point where they are just variables. The information about the shape of a variable is encoded in the oracle state 'Delta' instead. * Handling of uninhabited fields like `!Void`. See Note [Strict argument type constraints] in PmOracle. * Efficient handling of literal splitting, large enumerations and accurate redundancy warnings for `COMPLETE` groups through the oracle. -} -- ---------------------------------------------------------------------------- -- * More smart constructors and fresh variable generation -- | Create a guard pattern mkGuard :: PatVec -> HsExpr GhcTc -> DsM PmPat mkGuard pv e = PmGrd pv <$> dsExpr e mkGuardSyntaxExpr :: PatVec -> SyntaxExpr GhcTc -> [HsExpr GhcTc] -> DsM PmPat mkGuardSyntaxExpr pv f args = do core_args <- traverse dsExpr args PmGrd pv <$> dsSyntaxExpr f core_args -- | Generate a variable pattern of a given type mkPmVar :: Type -> DsM PmPat mkPmVar ty = PmVar <$> mkPmId ty -- | Generate many variable patterns, given a list of types mkPmVars :: [Type] -> DsM PatVec mkPmVars tys = mapM mkPmVar tys -- | Generate a fresh term variable of a given and return it in two forms: -- * A variable pattern -- * A variable expression mkPmId2Forms :: Type -> DsM (PmPat, LHsExpr GhcTc) mkPmId2Forms ty = do x <- mkPmId ty return (PmVar x, noLoc (HsVar noExtField (noLoc x))) {- Note [Filtering out non-matching COMPLETE sets] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Currently, conlikes in a COMPLETE set are simply grouped by the type constructor heading the return type. This is nice and simple, but it does mean that there are scenarios when a COMPLETE set might be incompatible with the type of a scrutinee. For instance, consider (from #14135): data Foo a = Foo1 a | Foo2 a pattern MyFoo2 :: Int -> Foo Int pattern MyFoo2 i = Foo2 i {-# COMPLETE Foo1, MyFoo2 #-} f :: Foo a -> a f (Foo1 x) = x `f` has an incomplete pattern-match, so when choosing which constructors to report as unmatched in a warning, GHC must choose between the original set of data constructors {Foo1, Foo2} and the COMPLETE set {Foo1, MyFoo2}. But observe that GHC shouldn't even consider the COMPLETE set as a possibility: the return type of MyFoo2, Foo Int, does not match the type of the scrutinee, Foo a, since there's no substitution `s` such that s(Foo Int) = Foo a. To ensure that GHC doesn't pick this COMPLETE set, it checks each pattern synonym constructor's return type matches the type of the scrutinee, and if one doesn't, then we remove the whole COMPLETE set from consideration. One might wonder why GHC only checks /pattern synonym/ constructors, and not /data/ constructors as well. The reason is because that the type of a GADT constructor very well may not match the type of a scrutinee, and that's OK. Consider this example (from #14059): data SBool (z :: Bool) where SFalse :: SBool False STrue :: SBool True pattern STooGoodToBeTrue :: forall (z :: Bool). () => z ~ True => SBool z pattern STooGoodToBeTrue = STrue {-# COMPLETE SFalse, STooGoodToBeTrue #-} wobble :: SBool z -> Bool wobble STooGoodToBeTrue = True In the incomplete pattern match for `wobble`, we /do/ want to warn that SFalse should be matched against, even though its type, SBool False, does not match the scrutinee type, SBool z. SG: Another angle at this is that the implied constraints when we instantiate universal type variables in the return type of a GADT will lead to *provided* thetas, whereas when we instantiate the return type of a pattern synonym that corresponds to a *required* theta. See Note [Pattern synonym result type] in PatSyn. Note how isValidCompleteMatches will successfully filter out pattern Just42 :: Maybe Int pattern Just42 = Just 42 But fail to filter out the equivalent pattern Just'42 :: (a ~ Int) => Maybe a pattern Just'42 = Just 42 Which seems fine as far as tcMatchTy is concerned, but it raises a few eye brows. -} {- %************************************************************************ %* * Sanity Checks %* * %************************************************************************ -} -- | The arity of a pattern/pattern vector is the -- number of top-level patterns that are not guards type PmArity = Int -- | Compute the arity of a pattern vector patVecArity :: PatVec -> PmArity patVecArity = sum . map patternArity -- | Compute the arity of a pattern patternArity :: PmPat -> PmArity patternArity (PmGrd {}) = 0 patternArity _other_pat = 1 {- %************************************************************************ %* * Heart of the algorithm: Function pmcheck %* * %************************************************************************ Main functions are: * pmcheck :: PatVec -> [PatVec] -> ValVec -> Delta -> DsM PartialResult This function implements functions `covered`, `uncovered` and `divergent` from the paper at once. Calls out to the auxilary function `pmcheckGuards` for handling (possibly multiple) guarded RHSs when the whole clause is checked. Slightly different from the paper because it does not even produce the covered and uncovered sets. Since we only care about whether a clause covers SOMETHING or if it may forces ANY argument, we only store a boolean in both cases, for efficiency. * pmcheckGuards :: [PatVec] -> ValVec -> Delta -> DsM PartialResult Processes the guards. -} -- | @throttle limit f n delta@ executes the pattern match action @f@ but -- replaces the 'Uncovered' set by @[delta]@ if not doing so would lead to -- too many Deltas to check. -- -- See Note [Countering exponential blowup] and -- Note [Combinatorial explosion in guards] -- -- How many is "too many"? @throttle@ assumes that the pattern match action -- will be executed against @n@ similar other Deltas, its "siblings". Now, by -- observing the branching factor (i.e. the number of children) of executing -- the action, we can estimate how many Deltas there would be in the next -- generation. If we find that this number exceeds @limit@, we do -- "birth control": We simply don't allow a branching factor of more than 1. -- Otherwise we just return the singleton set of the original @delta@. -- This amounts to forgetting about the refined facts we got from running the -- action. throttle :: Int -> (Int -> Delta -> DsM PartialResult) -> Int -> Delta -> DsM (Int, PartialResult) throttle limit f n_siblings delta = do res <- f n_siblings delta let n_own_children = length (presultUncovered res) let n_next_gen = n_siblings * n_own_children -- Birth control! if n_next_gen <= limit || n_own_children <= 1 then pure (n_next_gen, res) else pure (n_siblings, res { presultUncovered = [delta], presultApprox = Approximate }) -- | Map a pattern matching action processing a single 'Delta' over a -- 'Uncovered' set and return the combined 'PartialResult's. runMany :: (Delta -> DsM PartialResult) -> Uncovered -> DsM PartialResult runMany f unc = mconcat <$> traverse f unc -- | Print diagnostic info and actually call 'pmcheck'. pmcheckI :: PatVec -> [PatVec] -> ValVec -> Int -> Delta -> DsM PartialResult pmcheckI ps guards vva n delta = do tracePm "pmCheck {" $ vcat [ ppr n <> colon , hang (text "patterns:") 2 (ppr ps) , hang (text "guards:") 2 (ppr guards) , ppr vva , ppr delta ] res <- pmcheck ps guards vva n delta tracePm "}:" (ppr res) -- braces are easier to match by tooling return res {-# INLINE pmcheckI #-} -- | Check the list of mutually exclusive guards pmcheckGuards :: [PatVec] -> Int -> Delta -> DsM PartialResult pmcheckGuards [] _ delta = return (usimple delta) pmcheckGuards (gv:gvs) n delta = do dflags <- getDynFlags let limit = maxPmCheckModels dflags `div` 5 (n', PartialResult cs unc ds pc) <- throttle limit (pmcheckI gv [] []) n delta (PartialResult css uncs dss pcs) <- runMany (pmcheckGuards gvs n') unc return $ PartialResult (cs `mappend` css) uncs (ds `mappend` dss) (pc `mappend` pcs) -- | Matching function: Check simultaneously a clause (takes separately the -- patterns and the list of guards) for exhaustiveness, redundancy and -- inaccessibility. pmcheck :: PatVec -- ^ Patterns of the clause -> [PatVec] -- ^ (Possibly multiple) guards of the clause -> ValVec -- ^ The value vector abstraction to match against -> Int -- ^ Estimate on the number of similar 'Delta's to handle. -- See 6. in Note [Countering exponential blowup] -> Delta -- ^ Oracle state giving meaning to the identifiers in the ValVec -> DsM PartialResult pmcheck [] guards [] n delta | null guards = return $ mempty { presultCovered = Covered } | otherwise = pmcheckGuards guards n delta -- Guard pmcheck (p@PmGrd { pm_grd_pv = pv, pm_grd_expr = e } : ps) guards vva n delta = do tracePm "PmGrd: pmPatType" (vcat [ppr p, ppr (pmPatType p)]) x <- mkPmId (exprType e) delta' <- expectJust "x is fresh" <$> addVarCoreCt delta x e pmcheckI (pv ++ ps) guards (x : vva) n delta' -- Var: Add x :-> y to the oracle and recurse pmcheck (PmVar x : ps) guards (y : vva) n delta = do delta' <- expectJust "x is fresh" <$> addTmCt delta (TmVarVar x y) pmcheckI ps guards vva n delta' -- ConVar pmcheck (p@PmCon{ pm_con_con = con, pm_con_args = args , pm_con_arg_tys = arg_tys, pm_con_tvs = ex_tvs } : ps) guards (x : vva) n delta = do -- E.g f (K p q) = -- -- Split the value vector into two value vectors: -- * one for , binding x to (K p q) -- * one for , recording that x is /not/ (K _ _) -- Stuff for pr_pos <- refineToAltCon delta x con arg_tys ex_tvs >>= \case Nothing -> pure mempty Just (delta', arg_vas) -> pmcheckI (args ++ ps) guards (arg_vas ++ vva) n delta' -- Stuff for -- The var is forced regardless of whether @con@ was satisfiable let pr_pos' = forceIfCanDiverge delta x pr_pos pr_neg <- addRefutableAltCon delta x con >>= \case Nothing -> pure mempty Just delta' -> pure (usimple delta') tracePm "ConVar" (vcat [ppr p, ppr x, ppr pr_pos', ppr pr_neg]) -- Combine both into a single PartialResult let pr = mkUnion pr_pos' pr_neg pure pr pmcheck [] _ (_:_) _ _ = panic "pmcheck: nil-cons" pmcheck (_:_) _ [] _ _ = panic "pmcheck: cons-nil" -- ---------------------------------------------------------------------------- -- * Utilities for main checking -- | Initialise with default values for covering and divergent information and -- a singleton uncovered set. usimple :: Delta -> PartialResult usimple delta = mempty { presultUncovered = [delta] } -- | Get the union of two covered, uncovered and divergent value set -- abstractions. Since the covered and divergent sets are represented by a -- boolean, union means computing the logical or (at least one of the two is -- non-empty). mkUnion :: PartialResult -> PartialResult -> PartialResult mkUnion = mappend -- | Set the divergent set to not empty forces :: PartialResult -> PartialResult forces pres = pres { presultDivergent = Diverged } -- | Set the divergent set to non-empty if the variable has not been forced yet forceIfCanDiverge :: Delta -> Id -> PartialResult -> PartialResult forceIfCanDiverge delta x | canDiverge delta x = forces | otherwise = id -- ---------------------------------------------------------------------------- -- * Propagation of term constraints inwards when checking nested matches {- Note [Type and Term Equality Propagation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When checking a match it would be great to have all type and term information available so we can get more precise results. For this reason we have functions `addDictsDs' and `addTmVarCsDs' in DsMonad that store in the environment type and term constraints (respectively) as we go deeper. The type constraints we propagate inwards are collected by `collectEvVarsPats' in GHC.Hs.Pat. This handles bug #4139 ( see example https://gitlab.haskell.org/ghc/ghc/snippets/672 ) where this is needed. For term equalities we do less, we just generate equalities for HsCase. For example we accurately give 2 redundancy warnings for the marked cases: f :: [a] -> Bool f x = case x of [] -> case x of -- brings (x ~ []) in scope [] -> True (_:_) -> False -- can't happen (_:_) -> case x of -- brings (x ~ (_:_)) in scope (_:_) -> True [] -> False -- can't happen Functions `addScrutTmCs' and `addPatTmCs' are responsible for generating these constraints. -} locallyExtendPmDelta :: (Delta -> DsM (Maybe Delta)) -> DsM a -> DsM a locallyExtendPmDelta ext k = getPmDelta >>= ext >>= \case -- If adding a constraint would lead to a contradiction, don't add it. -- See @Note [Recovering from unsatisfiable pattern-matching constraints]@ -- for why this is done. Nothing -> k Just delta' -> updPmDelta delta' k -- | Add in-scope type constraints addTyCsDs :: Bag EvVar -> DsM a -> DsM a addTyCsDs ev_vars = locallyExtendPmDelta (\delta -> addTypeEvidence delta ev_vars) -- | Add equalities for the scrutinee to the local 'DsM' environment when -- checking a case expression: -- case e of x { matches } -- When checking matches we record that (x ~ e) where x is the initial -- uncovered. All matches will have to satisfy this equality. addScrutTmCs :: Maybe (LHsExpr GhcTc) -> [Id] -> DsM a -> DsM a addScrutTmCs Nothing _ k = k addScrutTmCs (Just scr) [x] k = do scr_e <- dsLExpr scr locallyExtendPmDelta (\delta -> addVarCoreCt delta x scr_e) k addScrutTmCs _ _ _ = panic "addScrutTmCs: HsCase with more than one case binder" -- | Add equalities to the local 'DsM' environment when checking the RHS of a -- case expression: -- case e of x { p1 -> e1; ... pn -> en } -- When we go deeper to check e.g. e1 we record (x ~ p1). addPatTmCs :: [Pat GhcTc] -- LHS (should have length 1) -> [Id] -- MatchVars (should have length 1) -> DsM a -> DsM a -- Morally, this computes an approximation of the Covered set for p1 -- (which pmcheck currently discards). TODO: Re-use pmcheck instead of calling -- out to awkard addVarPatVecCt. addPatTmCs ps xs k = do fam_insts <- dsGetFamInstEnvs pv <- concat <$> translatePatVec fam_insts ps locallyExtendPmDelta (\delta -> addVarPatVecCt delta xs pv) k -- | Add a constraint equating a variable to a 'PatVec'. Picks out the single -- 'PmPat' of arity 1 and equates x to it. Returns the original Delta if that -- fails. Otherwise it returns Nothing when the resulting Delta would be -- unsatisfiable, or @Just delta'@ when the extended @delta'@ is still possibly -- satisfiable. addVarPatVecCt :: Delta -> [Id] -> PatVec -> DsM (Maybe Delta) -- This is just a simple version of pmcheck to compute the Covered Delta -- (which pmcheck doesn't even attempt to keep). -- Also PmGrd, although having pattern arity 0, really stores important info. -- For example, as-patterns desugar to a plain variable match and an associated -- PmGrd for the RHS of the @. We don't currently look into that PmGrd and I'm -- not willing to duplicate any more of pmcheck. addVarPatVecCt delta (x:xs) (pat:pv) | patternArity pat == 1 -- PmVar or PmCon = runMaybeT $ do delta' <- MaybeT (addVarPatCt delta x pat) MaybeT (addVarPatVecCt delta' xs pv) | otherwise -- PmGrd or PmFake = addVarPatVecCt delta (x:xs) pv addVarPatVecCt delta [] pv = ASSERT( patVecArity pv == 0 ) pure (Just delta) addVarPatVecCt _ (_:_) [] = panic "More match vars than patterns" -- | Convert a pattern to a 'PmTypes' (will be either 'Nothing' if the pattern is -- a guard pattern, or 'Just' an expression in all other cases) by dropping the -- guards addVarPatCt :: Delta -> Id -> PmPat -> DsM (Maybe Delta) addVarPatCt delta x (PmVar { pm_var_id = y }) = addTmCt delta (TmVarVar x y) addVarPatCt delta x (PmCon { pm_con_con = con, pm_con_args = args }) = runMaybeT $ do arg_ids <- traverse (lift . mkPmId . pmPatType) args delta' <- foldlM (\delta (y, arg) -> MaybeT (addVarPatCt delta y arg)) delta (zip arg_ids args) MaybeT (addTmCt delta' (TmVarCon x con arg_ids)) addVarPatCt delta _ _pat = ASSERT( patternArity _pat == 0 ) pure (Just delta) {- %************************************************************************ %* * Pretty printing of exhaustiveness/redundancy check warnings %* * %************************************************************************ -} -- | Check whether any part of pattern match checking is enabled for this -- 'HsMatchContext' (does not matter whether it is the redundancy check or the -- exhaustiveness check). isMatchContextPmChecked :: DynFlags -> Origin -> HsMatchContext id -> Bool isMatchContextPmChecked dflags origin kind | isGenerated origin = False | otherwise = wopt Opt_WarnOverlappingPatterns dflags || exhaustive dflags kind -- | Return True when any of the pattern match warnings ('allPmCheckWarnings') -- are enabled, in which case we need to run the pattern match checker. needToRunPmCheck :: DynFlags -> Origin -> Bool needToRunPmCheck dflags origin | isGenerated origin = False | otherwise = notNull (filter (`wopt` dflags) allPmCheckWarnings) -- | Issue all the warnings (coverage, exhaustiveness, inaccessibility) dsPmWarn :: DynFlags -> DsMatchContext -> PmResult -> DsM () dsPmWarn dflags ctx@(DsMatchContext kind loc) pm_result = when (flag_i || flag_u) $ do let exists_r = flag_i && notNull redundant exists_i = flag_i && notNull inaccessible && not is_rec_upd exists_u = flag_u && (case uncovered of TypeOfUncovered _ -> True UncoveredPatterns _ unc -> notNull unc) approx = precision == Approximate when (approx && (exists_u || exists_i)) $ putSrcSpanDs loc (warnDs NoReason approx_msg) when exists_r $ forM_ redundant $ \(dL->L l q) -> do putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns) (pprEqn q "is redundant")) when exists_i $ forM_ inaccessible $ \(dL->L l q) -> do putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns) (pprEqn q "has inaccessible right hand side")) when exists_u $ putSrcSpanDs loc $ warnDs flag_u_reason $ case uncovered of TypeOfUncovered ty -> warnEmptyCase ty UncoveredPatterns vars unc -> pprEqns vars unc where PmResult { pmresultRedundant = redundant , pmresultUncovered = uncovered , pmresultInaccessible = inaccessible , pmresultApproximate = precision } = pm_result flag_i = wopt Opt_WarnOverlappingPatterns dflags flag_u = exhaustive dflags kind flag_u_reason = maybe NoReason Reason (exhaustiveWarningFlag kind) is_rec_upd = case kind of { RecUpd -> True; _ -> False } -- See Note [Inaccessible warnings for record updates] maxPatterns = maxUncoveredPatterns dflags -- Print a single clause (for redundant/with-inaccessible-rhs) pprEqn q txt = pprContext True ctx (text txt) $ \f -> f (pprPats kind (map unLoc q)) -- Print several clauses (for uncovered clauses) pprEqns vars deltas = pprContext False ctx (text "are non-exhaustive") $ \_ -> case vars of -- See #11245 [] -> text "Guards do not cover entire pattern space" _ -> let us = map (\delta -> pprUncovered delta vars) deltas in hang (text "Patterns not matched:") 4 (vcat (take maxPatterns us) $$ dots maxPatterns us) -- Print a type-annotated wildcard (for non-exhaustive `EmptyCase`s for -- which we only know the type and have no inhabitants at hand) warnEmptyCase ty = pprContext False ctx (text "are non-exhaustive") $ \_ -> hang (text "Patterns not matched:") 4 (underscore <+> dcolon <+> ppr ty) approx_msg = vcat [ hang (text "Pattern match checker ran into -fmax-pmcheck-models=" <> int (maxPmCheckModels dflags) <> text " limit, so") 2 ( bullet <+> text "Redundant clauses might not be reported at all" $$ bullet <+> text "Redundant clauses might be reported as inaccessible" $$ bullet <+> text "Patterns reported as unmatched might actually be matched") , text "Increase the limit or resolve the warnings to suppress this message." ] {- Note [Inaccessible warnings for record updates] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (#12957) data T a where T1 :: { x :: Int } -> T Bool T2 :: { x :: Int } -> T a T3 :: T a f :: T Char -> T a f r = r { x = 3 } The desugarer will (conservatively generate a case for T1 even though it's impossible: f r = case r of T1 x -> T1 3 -- Inaccessible branch T2 x -> T2 3 _ -> error "Missing" We don't want to warn about the inaccessible branch because the programmer didn't put it there! So we filter out the warning here. -} dots :: Int -> [a] -> SDoc dots maxPatterns qs | qs `lengthExceeds` maxPatterns = text "..." | otherwise = empty -- | All warning flags that need to run the pattern match checker. allPmCheckWarnings :: [WarningFlag] allPmCheckWarnings = [ Opt_WarnIncompletePatterns , Opt_WarnIncompleteUniPatterns , Opt_WarnIncompletePatternsRecUpd , Opt_WarnOverlappingPatterns ] -- | Check whether the exhaustiveness checker should run (exhaustiveness only) exhaustive :: DynFlags -> HsMatchContext id -> Bool exhaustive dflags = maybe False (`wopt` dflags) . exhaustiveWarningFlag -- | Denotes whether an exhaustiveness check is supported, and if so, -- via which 'WarningFlag' it's controlled. -- Returns 'Nothing' if check is not supported. exhaustiveWarningFlag :: HsMatchContext id -> Maybe WarningFlag exhaustiveWarningFlag (FunRhs {}) = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag CaseAlt = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag IfAlt = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag LambdaExpr = Just Opt_WarnIncompleteUniPatterns exhaustiveWarningFlag PatBindRhs = Just Opt_WarnIncompleteUniPatterns exhaustiveWarningFlag PatBindGuards = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag ProcExpr = Just Opt_WarnIncompleteUniPatterns exhaustiveWarningFlag RecUpd = Just Opt_WarnIncompletePatternsRecUpd exhaustiveWarningFlag ThPatSplice = Nothing exhaustiveWarningFlag PatSyn = Nothing exhaustiveWarningFlag ThPatQuote = Nothing exhaustiveWarningFlag (StmtCtxt {}) = Nothing -- Don't warn about incomplete patterns -- in list comprehensions, pattern guards -- etc. They are often *supposed* to be -- incomplete -- True <==> singular pprContext :: Bool -> DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc pprContext singular (DsMatchContext kind _loc) msg rest_of_msg_fun = vcat [text txt <+> msg, sep [ text "In" <+> ppr_match <> char ':' , nest 4 (rest_of_msg_fun pref)]] where txt | singular = "Pattern match" | otherwise = "Pattern match(es)" (ppr_match, pref) = case kind of FunRhs { mc_fun = (dL->L _ fun) } -> (pprMatchContext kind, \ pp -> ppr fun <+> pp) _ -> (pprMatchContext kind, \ pp -> pp) pprPats :: HsMatchContext Name -> [Pat GhcTc] -> SDoc pprPats kind pats = sep [sep (map ppr pats), matchSeparator kind, text "..."]