{- (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 \section[ConFold]{Constant Folder} Conceptually, constant folding should be parameterized with the kind of target machine to get identical behaviour during compilation time and runtime. We cheat a little bit here... ToDo: check boundaries before folding, e.g. we can fold the Float addition (i1 + i2) only if it results in a valid Float. -} {-# LANGUAGE CPP, RankNTypes, PatternSynonyms, ViewPatterns, RecordWildCards, DeriveFunctor, LambdaCase, TypeApplications, MultiWayIf #-} {-# OPTIONS_GHC -optc-DNON_POSIX_SOURCE -Wno-incomplete-uni-patterns #-} module GHC.Core.Opt.ConstantFold ( primOpRules , builtinRules , caseRules , EnableBignumRules (..) ) where #include "GhclibHsVersions.h" import GHC.Prelude import {-# SOURCE #-} GHC.Types.Id.Make ( mkPrimOpId, magicDictId, voidPrimId ) import GHC.Core import GHC.Core.Make import GHC.Types.Id import GHC.Types.Literal import GHC.Core.SimpleOpt ( exprIsLiteral_maybe ) import GHC.Builtin.PrimOps ( PrimOp(..), tagToEnumKey ) import GHC.Builtin.Types import GHC.Builtin.Types.Prim import GHC.Core.TyCon ( tyConDataCons_maybe, isAlgTyCon, isEnumerationTyCon , isNewTyCon, unwrapNewTyCon_maybe, tyConDataCons , tyConFamilySize ) import GHC.Core.DataCon ( dataConTagZ, dataConTyCon, dataConWrapId, dataConWorkId ) import GHC.Core.Utils ( eqExpr, cheapEqExpr, exprIsHNF, exprType , stripTicksTop, stripTicksTopT, mkTicks, stripTicksE ) import GHC.Core.Unfold ( exprIsConApp_maybe ) import GHC.Core.Multiplicity import GHC.Core.FVs import GHC.Core.Type import GHC.Types.Var.Set import GHC.Types.Var.Env import GHC.Types.Name.Occurrence ( occNameFS ) import GHC.Builtin.Names import GHC.Data.Maybe ( orElse ) import GHC.Types.Name ( Name, nameOccName ) import GHC.Utils.Outputable import GHC.Data.FastString import GHC.Types.Basic import GHC.Platform import GHC.Utils.Misc import GHC.Core.Coercion (mkUnbranchedAxInstCo,mkSymCo,Role(..)) import Control.Applicative ( Alternative(..) ) import Control.Monad import Data.Bits as Bits import qualified Data.ByteString as BS import Data.Int import Data.Ratio import Data.Word import Data.Maybe (fromMaybe) {- Note [Constant folding] ~~~~~~~~~~~~~~~~~~~~~~~ primOpRules generates a rewrite rule for each primop These rules do what is often called "constant folding" E.g. the rules for +# might say 4 +# 5 = 9 Well, of course you'd need a lot of rules if you did it like that, so we use a BuiltinRule instead, so that we can match in any two literal values. So the rule is really more like (Lit x) +# (Lit y) = Lit (x+#y) where the (+#) on the rhs is done at compile time That is why these rules are built in here. -} primOpRules :: Name -> PrimOp -> Maybe CoreRule primOpRules nm = \case TagToEnumOp -> mkPrimOpRule nm 2 [ tagToEnumRule ] DataToTagOp -> mkPrimOpRule nm 2 [ dataToTagRule ] -- Int operations IntAddOp -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (+)) , identityPlatform zeroi , numFoldingRules IntAddOp intPrimOps ] IntSubOp -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (-)) , rightIdentityPlatform zeroi , equalArgs >> retLit zeroi , numFoldingRules IntSubOp intPrimOps ] IntAddCOp -> mkPrimOpRule nm 2 [ binaryLit (intOpC2 (+)) , identityCPlatform zeroi ] IntSubCOp -> mkPrimOpRule nm 2 [ binaryLit (intOpC2 (-)) , rightIdentityCPlatform zeroi , equalArgs >> retLitNoC zeroi ] IntMulOp -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (*)) , zeroElem zeroi , identityPlatform onei , numFoldingRules IntMulOp intPrimOps ] IntQuotOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 quot) , leftZero zeroi , rightIdentityPlatform onei , equalArgs >> retLit onei ] IntRemOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 rem) , leftZero zeroi , do l <- getLiteral 1 platform <- getPlatform guard (l == onei platform) retLit zeroi , equalArgs >> retLit zeroi , equalArgs >> retLit zeroi ] AndIOp -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (.&.)) , idempotent , zeroElem zeroi ] OrIOp -> mkPrimOpRule nm 2 [ binaryLit (intOp2 (.|.)) , idempotent , identityPlatform zeroi ] XorIOp -> mkPrimOpRule nm 2 [ binaryLit (intOp2 xor) , identityPlatform zeroi , equalArgs >> retLit zeroi ] NotIOp -> mkPrimOpRule nm 1 [ unaryLit complementOp , inversePrimOp NotIOp ] IntNegOp -> mkPrimOpRule nm 1 [ unaryLit negOp , inversePrimOp IntNegOp ] ISllOp -> mkPrimOpRule nm 2 [ shiftRule LitNumInt (const Bits.shiftL) , rightIdentityPlatform zeroi ] ISraOp -> mkPrimOpRule nm 2 [ shiftRule LitNumInt (const Bits.shiftR) , rightIdentityPlatform zeroi ] ISrlOp -> mkPrimOpRule nm 2 [ shiftRule LitNumInt shiftRightLogical , rightIdentityPlatform zeroi ] -- Word operations WordAddOp -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (+)) , identityPlatform zerow , numFoldingRules WordAddOp wordPrimOps ] WordSubOp -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (-)) , rightIdentityPlatform zerow , equalArgs >> retLit zerow , numFoldingRules WordSubOp wordPrimOps ] WordAddCOp -> mkPrimOpRule nm 2 [ binaryLit (wordOpC2 (+)) , identityCPlatform zerow ] WordSubCOp -> mkPrimOpRule nm 2 [ binaryLit (wordOpC2 (-)) , rightIdentityCPlatform zerow , equalArgs >> retLitNoC zerow ] WordMulOp -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (*)) , identityPlatform onew , numFoldingRules WordMulOp wordPrimOps ] WordQuotOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 quot) , rightIdentityPlatform onew ] WordRemOp -> mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 rem) , leftZero zerow , do l <- getLiteral 1 platform <- getPlatform guard (l == onew platform) retLit zerow , equalArgs >> retLit zerow ] AndOp -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.&.)) , idempotent , zeroElem zerow ] OrOp -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.|.)) , idempotent , identityPlatform zerow ] XorOp -> mkPrimOpRule nm 2 [ binaryLit (wordOp2 xor) , identityPlatform zerow , equalArgs >> retLit zerow ] NotOp -> mkPrimOpRule nm 1 [ unaryLit complementOp , inversePrimOp NotOp ] SllOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord (const Bits.shiftL) ] SrlOp -> mkPrimOpRule nm 2 [ shiftRule LitNumWord shiftRightLogical ] -- coercions Word2IntOp -> mkPrimOpRule nm 1 [ liftLitPlatform word2IntLit , inversePrimOp Int2WordOp ] Int2WordOp -> mkPrimOpRule nm 1 [ liftLitPlatform int2WordLit , inversePrimOp Word2IntOp ] Narrow8IntOp -> mkPrimOpRule nm 1 [ liftLit narrow8IntLit , subsumedByPrimOp Narrow8IntOp , Narrow8IntOp `subsumesPrimOp` Narrow16IntOp , Narrow8IntOp `subsumesPrimOp` Narrow32IntOp , narrowSubsumesAnd AndIOp Narrow8IntOp 8 ] Narrow16IntOp -> mkPrimOpRule nm 1 [ liftLit narrow16IntLit , subsumedByPrimOp Narrow8IntOp , subsumedByPrimOp Narrow16IntOp , Narrow16IntOp `subsumesPrimOp` Narrow32IntOp , narrowSubsumesAnd AndIOp Narrow16IntOp 16 ] Narrow32IntOp -> mkPrimOpRule nm 1 [ liftLit narrow32IntLit , subsumedByPrimOp Narrow8IntOp , subsumedByPrimOp Narrow16IntOp , subsumedByPrimOp Narrow32IntOp , removeOp32 , narrowSubsumesAnd AndIOp Narrow32IntOp 32 ] Narrow8WordOp -> mkPrimOpRule nm 1 [ liftLit narrow8WordLit , subsumedByPrimOp Narrow8WordOp , Narrow8WordOp `subsumesPrimOp` Narrow16WordOp , Narrow8WordOp `subsumesPrimOp` Narrow32WordOp , narrowSubsumesAnd AndOp Narrow8WordOp 8 ] Narrow16WordOp -> mkPrimOpRule nm 1 [ liftLit narrow16WordLit , subsumedByPrimOp Narrow8WordOp , subsumedByPrimOp Narrow16WordOp , Narrow16WordOp `subsumesPrimOp` Narrow32WordOp , narrowSubsumesAnd AndOp Narrow16WordOp 16 ] Narrow32WordOp -> mkPrimOpRule nm 1 [ liftLit narrow32WordLit , subsumedByPrimOp Narrow8WordOp , subsumedByPrimOp Narrow16WordOp , subsumedByPrimOp Narrow32WordOp , removeOp32 , narrowSubsumesAnd AndOp Narrow32WordOp 32 ] OrdOp -> mkPrimOpRule nm 1 [ liftLit char2IntLit , inversePrimOp ChrOp ] ChrOp -> mkPrimOpRule nm 1 [ do [Lit lit] <- getArgs guard (litFitsInChar lit) liftLit int2CharLit , inversePrimOp OrdOp ] Float2IntOp -> mkPrimOpRule nm 1 [ liftLit float2IntLit ] Int2FloatOp -> mkPrimOpRule nm 1 [ liftLit int2FloatLit ] Double2IntOp -> mkPrimOpRule nm 1 [ liftLit double2IntLit ] Int2DoubleOp -> mkPrimOpRule nm 1 [ liftLit int2DoubleLit ] -- SUP: Not sure what the standard says about precision in the following 2 cases Float2DoubleOp -> mkPrimOpRule nm 1 [ liftLit float2DoubleLit ] Double2FloatOp -> mkPrimOpRule nm 1 [ liftLit double2FloatLit ] -- Float FloatAddOp -> mkPrimOpRule nm 2 [ binaryLit (floatOp2 (+)) , identity zerof ] FloatSubOp -> mkPrimOpRule nm 2 [ binaryLit (floatOp2 (-)) , rightIdentity zerof ] FloatMulOp -> mkPrimOpRule nm 2 [ binaryLit (floatOp2 (*)) , identity onef , strengthReduction twof FloatAddOp ] -- zeroElem zerof doesn't hold because of NaN FloatDivOp -> mkPrimOpRule nm 2 [ guardFloatDiv >> binaryLit (floatOp2 (/)) , rightIdentity onef ] FloatNegOp -> mkPrimOpRule nm 1 [ unaryLit negOp , inversePrimOp FloatNegOp ] FloatDecode_IntOp -> mkPrimOpRule nm 1 [ unaryLit floatDecodeOp ] -- Double DoubleAddOp -> mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (+)) , identity zerod ] DoubleSubOp -> mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (-)) , rightIdentity zerod ] DoubleMulOp -> mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (*)) , identity oned , strengthReduction twod DoubleAddOp ] -- zeroElem zerod doesn't hold because of NaN DoubleDivOp -> mkPrimOpRule nm 2 [ guardDoubleDiv >> binaryLit (doubleOp2 (/)) , rightIdentity oned ] DoubleNegOp -> mkPrimOpRule nm 1 [ unaryLit negOp , inversePrimOp DoubleNegOp ] DoubleDecode_Int64Op -> mkPrimOpRule nm 1 [ unaryLit doubleDecodeOp ] -- Relational operators IntEqOp -> mkRelOpRule nm (==) [ litEq True ] IntNeOp -> mkRelOpRule nm (/=) [ litEq False ] CharEqOp -> mkRelOpRule nm (==) [ litEq True ] CharNeOp -> mkRelOpRule nm (/=) [ litEq False ] IntGtOp -> mkRelOpRule nm (>) [ boundsCmp Gt ] IntGeOp -> mkRelOpRule nm (>=) [ boundsCmp Ge ] IntLeOp -> mkRelOpRule nm (<=) [ boundsCmp Le ] IntLtOp -> mkRelOpRule nm (<) [ boundsCmp Lt ] CharGtOp -> mkRelOpRule nm (>) [ boundsCmp Gt ] CharGeOp -> mkRelOpRule nm (>=) [ boundsCmp Ge ] CharLeOp -> mkRelOpRule nm (<=) [ boundsCmp Le ] CharLtOp -> mkRelOpRule nm (<) [ boundsCmp Lt ] FloatGtOp -> mkFloatingRelOpRule nm (>) FloatGeOp -> mkFloatingRelOpRule nm (>=) FloatLeOp -> mkFloatingRelOpRule nm (<=) FloatLtOp -> mkFloatingRelOpRule nm (<) FloatEqOp -> mkFloatingRelOpRule nm (==) FloatNeOp -> mkFloatingRelOpRule nm (/=) DoubleGtOp -> mkFloatingRelOpRule nm (>) DoubleGeOp -> mkFloatingRelOpRule nm (>=) DoubleLeOp -> mkFloatingRelOpRule nm (<=) DoubleLtOp -> mkFloatingRelOpRule nm (<) DoubleEqOp -> mkFloatingRelOpRule nm (==) DoubleNeOp -> mkFloatingRelOpRule nm (/=) WordGtOp -> mkRelOpRule nm (>) [ boundsCmp Gt ] WordGeOp -> mkRelOpRule nm (>=) [ boundsCmp Ge ] WordLeOp -> mkRelOpRule nm (<=) [ boundsCmp Le ] WordLtOp -> mkRelOpRule nm (<) [ boundsCmp Lt ] WordEqOp -> mkRelOpRule nm (==) [ litEq True ] WordNeOp -> mkRelOpRule nm (/=) [ litEq False ] AddrAddOp -> mkPrimOpRule nm 2 [ rightIdentityPlatform zeroi ] SeqOp -> mkPrimOpRule nm 4 [ seqRule ] SparkOp -> mkPrimOpRule nm 4 [ sparkRule ] _ -> Nothing {- ************************************************************************ * * \subsection{Doing the business} * * ************************************************************************ -} -- useful shorthands mkPrimOpRule :: Name -> Int -> [RuleM CoreExpr] -> Maybe CoreRule mkPrimOpRule nm arity rules = Just $ mkBasicRule nm arity (msum rules) mkRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool) -> [RuleM CoreExpr] -> Maybe CoreRule mkRelOpRule nm cmp extra = mkPrimOpRule nm 2 $ binaryCmpLit cmp : equal_rule : extra where -- x `cmp` x does not depend on x, so -- compute it for the arbitrary value 'True' -- and use that result equal_rule = do { equalArgs ; platform <- getPlatform ; return (if cmp True True then trueValInt platform else falseValInt platform) } {- Note [Rules for floating-point comparisons] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We need different rules for floating-point values because for floats it is not true that x = x (for NaNs); so we do not want the equal_rule rule that mkRelOpRule uses. Note also that, in the case of equality/inequality, we do /not/ want to switch to a case-expression. For example, we do not want to convert case (eqFloat# x 3.8#) of True -> this False -> that to case x of 3.8#::Float# -> this _ -> that See #9238. Reason: comparing floating-point values for equality delicate, and we don't want to implement that delicacy in the code for case expressions. So we make it an invariant of Core that a case expression never scrutinises a Float# or Double#. This transformation is what the litEq rule does; see Note [The litEq rule: converting equality to case]. So we /refrain/ from using litEq for mkFloatingRelOpRule. -} mkFloatingRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool) -> Maybe CoreRule -- See Note [Rules for floating-point comparisons] mkFloatingRelOpRule nm cmp = mkPrimOpRule nm 2 [binaryCmpLit cmp] -- common constants zeroi, onei, zerow, onew :: Platform -> Literal zeroi platform = mkLitInt platform 0 onei platform = mkLitInt platform 1 zerow platform = mkLitWord platform 0 onew platform = mkLitWord platform 1 zerof, onef, twof, zerod, oned, twod :: Literal zerof = mkLitFloat 0.0 onef = mkLitFloat 1.0 twof = mkLitFloat 2.0 zerod = mkLitDouble 0.0 oned = mkLitDouble 1.0 twod = mkLitDouble 2.0 cmpOp :: Platform -> (forall a . Ord a => a -> a -> Bool) -> Literal -> Literal -> Maybe CoreExpr cmpOp platform cmp = go where done True = Just $ trueValInt platform done False = Just $ falseValInt platform -- These compares are at different types go (LitChar i1) (LitChar i2) = done (i1 `cmp` i2) go (LitFloat i1) (LitFloat i2) = done (i1 `cmp` i2) go (LitDouble i1) (LitDouble i2) = done (i1 `cmp` i2) go (LitNumber nt1 i1) (LitNumber nt2 i2) | nt1 /= nt2 = Nothing | otherwise = done (i1 `cmp` i2) go _ _ = Nothing -------------------------- negOp :: RuleOpts -> Literal -> Maybe CoreExpr -- Negate negOp env = \case (LitFloat 0.0) -> Nothing -- can't represent -0.0 as a Rational (LitFloat f) -> Just (mkFloatVal env (-f)) (LitDouble 0.0) -> Nothing (LitDouble d) -> Just (mkDoubleVal env (-d)) (LitNumber nt i) | litNumIsSigned nt -> Just (Lit (mkLitNumberWrap (roPlatform env) nt (-i))) _ -> Nothing complementOp :: RuleOpts -> Literal -> Maybe CoreExpr -- Binary complement complementOp env (LitNumber nt i) = Just (Lit (mkLitNumberWrap (roPlatform env) nt (complement i))) complementOp _ _ = Nothing intOp2 :: (Integral a, Integral b) => (a -> b -> Integer) -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr intOp2 = intOp2' . const intOp2' :: (Integral a, Integral b) => (RuleOpts -> a -> b -> Integer) -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr intOp2' op env (LitNumber LitNumInt i1) (LitNumber LitNumInt i2) = let o = op env in intResult (roPlatform env) (fromInteger i1 `o` fromInteger i2) intOp2' _ _ _ _ = Nothing intOpC2 :: (Integral a, Integral b) => (a -> b -> Integer) -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr intOpC2 op env (LitNumber LitNumInt i1) (LitNumber LitNumInt i2) = do intCResult (roPlatform env) (fromInteger i1 `op` fromInteger i2) intOpC2 _ _ _ _ = Nothing shiftRightLogical :: Platform -> Integer -> Int -> Integer -- Shift right, putting zeros in rather than sign-propagating as Bits.shiftR would do -- Do this by converting to Word and back. Obviously this won't work for big -- values, but its ok as we use it here shiftRightLogical platform x n = case platformWordSize platform of PW4 -> fromIntegral (fromInteger x `shiftR` n :: Word32) PW8 -> fromIntegral (fromInteger x `shiftR` n :: Word64) -------------------------- retLit :: (Platform -> Literal) -> RuleM CoreExpr retLit l = do platform <- getPlatform return $ Lit $ l platform retLitNoC :: (Platform -> Literal) -> RuleM CoreExpr retLitNoC l = do platform <- getPlatform let lit = l platform let ty = literalType lit return $ mkCoreUbxTup [ty, ty] [Lit lit, Lit (zeroi platform)] wordOp2 :: (Integral a, Integral b) => (a -> b -> Integer) -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr wordOp2 op env (LitNumber LitNumWord w1) (LitNumber LitNumWord w2) = wordResult (roPlatform env) (fromInteger w1 `op` fromInteger w2) wordOp2 _ _ _ _ = Nothing wordOpC2 :: (Integral a, Integral b) => (a -> b -> Integer) -> RuleOpts -> Literal -> Literal -> Maybe CoreExpr wordOpC2 op env (LitNumber LitNumWord w1) (LitNumber LitNumWord w2) = wordCResult (roPlatform env) (fromInteger w1 `op` fromInteger w2) wordOpC2 _ _ _ _ = Nothing shiftRule :: LitNumType -- Type of the result, either LitNumInt or LitNumWord -> (Platform -> Integer -> Int -> Integer) -> RuleM CoreExpr -- Shifts take an Int; hence third arg of op is Int -- Used for shift primops -- ISllOp, ISraOp, ISrlOp :: Int# -> Int# -> Int# -- SllOp, SrlOp :: Word# -> Int# -> Word# shiftRule lit_num_ty shift_op = do { platform <- getPlatform ; [e1, Lit (LitNumber LitNumInt shift_len)] <- getArgs ; case e1 of _ | shift_len == 0 -> return e1 -- See Note [Guarding against silly shifts] | shift_len < 0 || shift_len > toInteger (platformWordSizeInBits platform) -> return $ Lit $ mkLitNumberWrap platform lit_num_ty 0 -- Be sure to use lit_num_ty here, so we get a correctly typed zero -- of type Int# or Word# resp. See #18589 -- Do the shift at type Integer, but shift length is Int Lit (LitNumber nt x) | 0 < shift_len , shift_len <= toInteger (platformWordSizeInBits platform) -> let op = shift_op platform y = x `op` fromInteger shift_len in liftMaybe $ Just (Lit (mkLitNumberWrap platform nt y)) _ -> mzero } -------------------------- floatOp2 :: (Rational -> Rational -> Rational) -> RuleOpts -> Literal -> Literal -> Maybe (Expr CoreBndr) floatOp2 op env (LitFloat f1) (LitFloat f2) = Just (mkFloatVal env (f1 `op` f2)) floatOp2 _ _ _ _ = Nothing -------------------------- floatDecodeOp :: RuleOpts -> Literal -> Maybe CoreExpr floatDecodeOp env (LitFloat ((decodeFloat . fromRational @Float) -> (m, e))) = Just $ mkCoreUbxTup [intPrimTy, intPrimTy] [ mkIntVal (roPlatform env) (toInteger m) , mkIntVal (roPlatform env) (toInteger e) ] floatDecodeOp _ _ = Nothing -------------------------- doubleOp2 :: (Rational -> Rational -> Rational) -> RuleOpts -> Literal -> Literal -> Maybe (Expr CoreBndr) doubleOp2 op env (LitDouble f1) (LitDouble f2) = Just (mkDoubleVal env (f1 `op` f2)) doubleOp2 _ _ _ _ = Nothing -------------------------- doubleDecodeOp :: RuleOpts -> Literal -> Maybe CoreExpr doubleDecodeOp env (LitDouble ((decodeFloat . fromRational @Double) -> (m, e))) = Just $ mkCoreUbxTup [iNT64Ty, intPrimTy] [ Lit (mkLitINT64 (roPlatform env) (toInteger m)) , mkIntVal platform (toInteger e) ] where platform = roPlatform env (iNT64Ty, mkLitINT64) | platformWordSizeInBits platform < 64 = (int64PrimTy, mkLitInt64Wrap) | otherwise = (intPrimTy , mkLitIntWrap) doubleDecodeOp _ _ = Nothing -------------------------- {- Note [The litEq rule: converting equality to case] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This stuff turns n ==# 3# into case n of 3# -> True m -> False This is a Good Thing, because it allows case-of case things to happen, and case-default absorption to happen. For example: if (n ==# 3#) || (n ==# 4#) then e1 else e2 will transform to case n of 3# -> e1 4# -> e1 m -> e2 (modulo the usual precautions to avoid duplicating e1) -} litEq :: Bool -- True <=> equality, False <=> inequality -> RuleM CoreExpr litEq is_eq = msum [ do [Lit lit, expr] <- getArgs platform <- getPlatform do_lit_eq platform lit expr , do [expr, Lit lit] <- getArgs platform <- getPlatform do_lit_eq platform lit expr ] where do_lit_eq platform lit expr = do guard (not (litIsLifted lit)) return (mkWildCase expr (unrestricted $ literalType lit) intPrimTy [(DEFAULT, [], val_if_neq), (LitAlt lit, [], val_if_eq)]) where val_if_eq | is_eq = trueValInt platform | otherwise = falseValInt platform val_if_neq | is_eq = falseValInt platform | otherwise = trueValInt platform -- | Check if there is comparison with minBound or maxBound, that is -- always true or false. For instance, an Int cannot be smaller than its -- minBound, so we can replace such comparison with False. boundsCmp :: Comparison -> RuleM CoreExpr boundsCmp op = do platform <- getPlatform [a, b] <- getArgs liftMaybe $ mkRuleFn platform op a b data Comparison = Gt | Ge | Lt | Le mkRuleFn :: Platform -> Comparison -> CoreExpr -> CoreExpr -> Maybe CoreExpr mkRuleFn platform Gt (Lit lit) _ | isMinBound platform lit = Just $ falseValInt platform mkRuleFn platform Le (Lit lit) _ | isMinBound platform lit = Just $ trueValInt platform mkRuleFn platform Ge _ (Lit lit) | isMinBound platform lit = Just $ trueValInt platform mkRuleFn platform Lt _ (Lit lit) | isMinBound platform lit = Just $ falseValInt platform mkRuleFn platform Ge (Lit lit) _ | isMaxBound platform lit = Just $ trueValInt platform mkRuleFn platform Lt (Lit lit) _ | isMaxBound platform lit = Just $ falseValInt platform mkRuleFn platform Gt _ (Lit lit) | isMaxBound platform lit = Just $ falseValInt platform mkRuleFn platform Le _ (Lit lit) | isMaxBound platform lit = Just $ trueValInt platform mkRuleFn _ _ _ _ = Nothing isMinBound :: Platform -> Literal -> Bool isMinBound _ (LitChar c) = c == minBound isMinBound platform (LitNumber nt i) = case nt of LitNumInt -> i == platformMinInt platform LitNumInt64 -> i == toInteger (minBound :: Int64) LitNumWord -> i == 0 LitNumWord64 -> i == 0 LitNumNatural -> i == 0 LitNumInteger -> False isMinBound _ _ = False isMaxBound :: Platform -> Literal -> Bool isMaxBound _ (LitChar c) = c == maxBound isMaxBound platform (LitNumber nt i) = case nt of LitNumInt -> i == platformMaxInt platform LitNumInt64 -> i == toInteger (maxBound :: Int64) LitNumWord -> i == platformMaxWord platform LitNumWord64 -> i == toInteger (maxBound :: Word64) LitNumNatural -> False LitNumInteger -> False isMaxBound _ _ = False -- | Create an Int literal expression while ensuring the given Integer is in the -- target Int range intResult :: Platform -> Integer -> Maybe CoreExpr intResult platform result = Just (intResult' platform result) intResult' :: Platform -> Integer -> CoreExpr intResult' platform result = Lit (mkLitIntWrap platform result) -- | Create an unboxed pair of an Int literal expression, ensuring the given -- Integer is in the target Int range and the corresponding overflow flag -- (@0#@/@1#@) if it wasn't. intCResult :: Platform -> Integer -> Maybe CoreExpr intCResult platform result = Just (mkPair [Lit lit, Lit c]) where mkPair = mkCoreUbxTup [intPrimTy, intPrimTy] (lit, b) = mkLitIntWrapC platform result c = if b then onei platform else zeroi platform -- | Create a Word literal expression while ensuring the given Integer is in the -- target Word range wordResult :: Platform -> Integer -> Maybe CoreExpr wordResult platform result = Just (wordResult' platform result) wordResult' :: Platform -> Integer -> CoreExpr wordResult' platform result = Lit (mkLitWordWrap platform result) -- | Create an unboxed pair of a Word literal expression, ensuring the given -- Integer is in the target Word range and the corresponding carry flag -- (@0#@/@1#@) if it wasn't. wordCResult :: Platform -> Integer -> Maybe CoreExpr wordCResult platform result = Just (mkPair [Lit lit, Lit c]) where mkPair = mkCoreUbxTup [wordPrimTy, intPrimTy] (lit, b) = mkLitWordWrapC platform result c = if b then onei platform else zeroi platform inversePrimOp :: PrimOp -> RuleM CoreExpr inversePrimOp primop = do [Var primop_id `App` e] <- getArgs matchPrimOpId primop primop_id return e subsumesPrimOp :: PrimOp -> PrimOp -> RuleM CoreExpr this `subsumesPrimOp` that = do [Var primop_id `App` e] <- getArgs matchPrimOpId that primop_id return (Var (mkPrimOpId this) `App` e) subsumedByPrimOp :: PrimOp -> RuleM CoreExpr subsumedByPrimOp primop = do [e@(Var primop_id `App` _)] <- getArgs matchPrimOpId primop primop_id return e -- | narrow subsumes bitwise `and` with full mask (cf #16402): -- -- narrowN (x .&. m) -- m .&. (2^N-1) = 2^N-1 -- ==> narrowN x -- -- e.g. narrow16 (x .&. 0xFFFF) -- ==> narrow16 x -- narrowSubsumesAnd :: PrimOp -> PrimOp -> Int -> RuleM CoreExpr narrowSubsumesAnd and_primop narrw n = do [Var primop_id `App` x `App` y] <- getArgs matchPrimOpId and_primop primop_id let mask = bit n -1 g v (Lit (LitNumber _ m)) = do guard (m .&. mask == mask) return (Var (mkPrimOpId narrw) `App` v) g _ _ = mzero g x y <|> g y x idempotent :: RuleM CoreExpr idempotent = do [e1, e2] <- getArgs guard $ cheapEqExpr e1 e2 return e1 {- Note [Guarding against silly shifts] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this code: import Data.Bits( (.|.), shiftL ) chunkToBitmap :: [Bool] -> Word32 chunkToBitmap chunk = foldr (.|.) 0 [ 1 `shiftL` n | (True,n) <- zip chunk [0..] ] This optimises to: Shift.$wgo = \ (w_sCS :: GHC.Prim.Int#) (w1_sCT :: [GHC.Types.Bool]) -> case w1_sCT of _ { [] -> 0##; : x_aAW xs_aAX -> case x_aAW of _ { GHC.Types.False -> case w_sCS of wild2_Xh { __DEFAULT -> Shift.$wgo (GHC.Prim.+# wild2_Xh 1) xs_aAX; 9223372036854775807 -> 0## }; GHC.Types.True -> case GHC.Prim.>=# w_sCS 64 of _ { GHC.Types.False -> case w_sCS of wild3_Xh { __DEFAULT -> case Shift.$wgo (GHC.Prim.+# wild3_Xh 1) xs_aAX of ww_sCW { __DEFAULT -> GHC.Prim.or# (GHC.Prim.narrow32Word# (GHC.Prim.uncheckedShiftL# 1## wild3_Xh)) ww_sCW }; 9223372036854775807 -> GHC.Prim.narrow32Word# !!!!--> (GHC.Prim.uncheckedShiftL# 1## 9223372036854775807) }; GHC.Types.True -> case w_sCS of wild3_Xh { __DEFAULT -> Shift.$wgo (GHC.Prim.+# wild3_Xh 1) xs_aAX; 9223372036854775807 -> 0## } } } } Note the massive shift on line "!!!!". It can't happen, because we've checked that w < 64, but the optimiser didn't spot that. We DO NOT want to constant-fold this! Moreover, if the programmer writes (n `uncheckedShiftL` 9223372036854775807), we can't constant fold it, but if it gets to the assembler we get Error: operand type mismatch for `shl' So the best thing to do is to rewrite the shift with a call to error, when the second arg is large. However, in general we cannot do this; consider this case let x = I# (uncheckedIShiftL# n 80) in ... Here x contains an invalid shift and consequently we would like to rewrite it as follows: let x = I# (error "invalid shift) in ... This was originally done in the fix to #16449 but this breaks the let/app invariant (see Note [Core let/app invariant] in GHC.Core) as noted in #16742. For the reasons discussed in Note [Checking versus non-checking primops] (in the PrimOp module) there is no safe way rewrite the argument of I# such that it bottoms. Consequently we instead take advantage of the fact that large shifts are undefined behavior (see associated documentation in primops.txt.pp) and transform the invalid shift into an "obviously incorrect" value. There are two cases: - Shifting fixed-width things: the primops ISll, Sll, etc These are handled by shiftRule. We are happy to shift by any amount up to wordSize but no more. - Shifting Bignums (Integer, Natural): these are handled by bignum_shift. Here we could in principle shift by any amount, but we arbitrary limit the shift to 4 bits; in particular we do not want shift by a huge amount, which can happen in code like that above. The two cases are more different in their code paths that is comfortable, but that is only a historical accident. ************************************************************************ * * \subsection{Vaguely generic functions} * * ************************************************************************ -} mkBasicRule :: Name -> Int -> RuleM CoreExpr -> CoreRule -- Gives the Rule the same name as the primop itself mkBasicRule op_name n_args rm = BuiltinRule { ru_name = occNameFS (nameOccName op_name), ru_fn = op_name, ru_nargs = n_args, ru_try = runRuleM rm } newtype RuleM r = RuleM { runRuleM :: RuleOpts -> InScopeEnv -> Id -> [CoreExpr] -> Maybe r } deriving (Functor) instance Applicative RuleM where pure x = RuleM $ \_ _ _ _ -> Just x (<*>) = ap instance Monad RuleM where RuleM f >>= g = RuleM $ \env iu fn args -> case f env iu fn args of Nothing -> Nothing Just r -> runRuleM (g r) env iu fn args instance MonadFail RuleM where fail _ = mzero instance Alternative RuleM where empty = RuleM $ \_ _ _ _ -> Nothing RuleM f1 <|> RuleM f2 = RuleM $ \env iu fn args -> f1 env iu fn args <|> f2 env iu fn args instance MonadPlus RuleM getPlatform :: RuleM Platform getPlatform = roPlatform <$> getEnv getEnv :: RuleM RuleOpts getEnv = RuleM $ \env _ _ _ -> Just env liftMaybe :: Maybe a -> RuleM a liftMaybe Nothing = mzero liftMaybe (Just x) = return x liftLit :: (Literal -> Literal) -> RuleM CoreExpr liftLit f = liftLitPlatform (const f) liftLitPlatform :: (Platform -> Literal -> Literal) -> RuleM CoreExpr liftLitPlatform f = do platform <- getPlatform [Lit lit] <- getArgs return $ Lit (f platform lit) removeOp32 :: RuleM CoreExpr removeOp32 = do platform <- getPlatform case platformWordSize platform of PW4 -> do [e] <- getArgs return e PW8 -> mzero getArgs :: RuleM [CoreExpr] getArgs = RuleM $ \_ _ _ args -> Just args getInScopeEnv :: RuleM InScopeEnv getInScopeEnv = RuleM $ \_ iu _ _ -> Just iu getFunction :: RuleM Id getFunction = RuleM $ \_ _ fn _ -> Just fn isLiteral :: CoreExpr -> RuleM Literal isLiteral e = do env <- getInScopeEnv case exprIsLiteral_maybe env e of Nothing -> mzero Just l -> pure l isNumberLiteral :: CoreExpr -> RuleM Integer isNumberLiteral e = isLiteral e >>= \case LitNumber _ x -> pure x _ -> mzero isIntegerLiteral :: CoreExpr -> RuleM Integer isIntegerLiteral e = isLiteral e >>= \case LitNumber LitNumInteger x -> pure x _ -> mzero isNaturalLiteral :: CoreExpr -> RuleM Integer isNaturalLiteral e = isLiteral e >>= \case LitNumber LitNumNatural x -> pure x _ -> mzero isWordLiteral :: CoreExpr -> RuleM Integer isWordLiteral e = isLiteral e >>= \case LitNumber LitNumWord x -> pure x _ -> mzero isIntLiteral :: CoreExpr -> RuleM Integer isIntLiteral e = isLiteral e >>= \case LitNumber LitNumInt x -> pure x _ -> mzero -- return the n-th argument of this rule, if it is a literal -- argument indices start from 0 getLiteral :: Int -> RuleM Literal getLiteral n = RuleM $ \_ _ _ exprs -> case drop n exprs of (Lit l:_) -> Just l _ -> Nothing unaryLit :: (RuleOpts -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr unaryLit op = do env <- getEnv [Lit l] <- getArgs liftMaybe $ op env (convFloating env l) binaryLit :: (RuleOpts -> Literal -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr binaryLit op = do env <- getEnv [Lit l1, Lit l2] <- getArgs liftMaybe $ op env (convFloating env l1) (convFloating env l2) binaryCmpLit :: (forall a . Ord a => a -> a -> Bool) -> RuleM CoreExpr binaryCmpLit op = do platform <- getPlatform binaryLit (\_ -> cmpOp platform op) leftIdentity :: Literal -> RuleM CoreExpr leftIdentity id_lit = leftIdentityPlatform (const id_lit) rightIdentity :: Literal -> RuleM CoreExpr rightIdentity id_lit = rightIdentityPlatform (const id_lit) identity :: Literal -> RuleM CoreExpr identity lit = leftIdentity lit `mplus` rightIdentity lit leftIdentityPlatform :: (Platform -> Literal) -> RuleM CoreExpr leftIdentityPlatform id_lit = do platform <- getPlatform [Lit l1, e2] <- getArgs guard $ l1 == id_lit platform return e2 -- | Left identity rule for PrimOps like 'IntAddC' and 'WordAddC', where, in -- addition to the result, we have to indicate that no carry/overflow occurred. leftIdentityCPlatform :: (Platform -> Literal) -> RuleM CoreExpr leftIdentityCPlatform id_lit = do platform <- getPlatform [Lit l1, e2] <- getArgs guard $ l1 == id_lit platform let no_c = Lit (zeroi platform) return (mkCoreUbxTup [exprType e2, intPrimTy] [e2, no_c]) rightIdentityPlatform :: (Platform -> Literal) -> RuleM CoreExpr rightIdentityPlatform id_lit = do platform <- getPlatform [e1, Lit l2] <- getArgs guard $ l2 == id_lit platform return e1 -- | Right identity rule for PrimOps like 'IntSubC' and 'WordSubC', where, in -- addition to the result, we have to indicate that no carry/overflow occurred. rightIdentityCPlatform :: (Platform -> Literal) -> RuleM CoreExpr rightIdentityCPlatform id_lit = do platform <- getPlatform [e1, Lit l2] <- getArgs guard $ l2 == id_lit platform let no_c = Lit (zeroi platform) return (mkCoreUbxTup [exprType e1, intPrimTy] [e1, no_c]) identityPlatform :: (Platform -> Literal) -> RuleM CoreExpr identityPlatform lit = leftIdentityPlatform lit `mplus` rightIdentityPlatform lit -- | Identity rule for PrimOps like 'IntAddC' and 'WordAddC', where, in addition -- to the result, we have to indicate that no carry/overflow occurred. identityCPlatform :: (Platform -> Literal) -> RuleM CoreExpr identityCPlatform lit = leftIdentityCPlatform lit `mplus` rightIdentityCPlatform lit leftZero :: (Platform -> Literal) -> RuleM CoreExpr leftZero zero = do platform <- getPlatform [Lit l1, _] <- getArgs guard $ l1 == zero platform return $ Lit l1 rightZero :: (Platform -> Literal) -> RuleM CoreExpr rightZero zero = do platform <- getPlatform [_, Lit l2] <- getArgs guard $ l2 == zero platform return $ Lit l2 zeroElem :: (Platform -> Literal) -> RuleM CoreExpr zeroElem lit = leftZero lit `mplus` rightZero lit equalArgs :: RuleM () equalArgs = do [e1, e2] <- getArgs guard $ e1 `cheapEqExpr` e2 nonZeroLit :: Int -> RuleM () nonZeroLit n = getLiteral n >>= guard . not . isZeroLit -- When excess precision is not requested, cut down the precision of the -- Rational value to that of Float/Double. We confuse host architecture -- and target architecture here, but it's convenient (and wrong :-). convFloating :: RuleOpts -> Literal -> Literal convFloating env (LitFloat f) | not (roExcessRationalPrecision env) = LitFloat (toRational (fromRational f :: Float )) convFloating env (LitDouble d) | not (roExcessRationalPrecision env) = LitDouble (toRational (fromRational d :: Double)) convFloating _ l = l guardFloatDiv :: RuleM () guardFloatDiv = do [Lit (LitFloat f1), Lit (LitFloat f2)] <- getArgs guard $ (f1 /=0 || f2 > 0) -- see Note [negative zero] && f2 /= 0 -- avoid NaN and Infinity/-Infinity guardDoubleDiv :: RuleM () guardDoubleDiv = do [Lit (LitDouble d1), Lit (LitDouble d2)] <- getArgs guard $ (d1 /=0 || d2 > 0) -- see Note [negative zero] && d2 /= 0 -- avoid NaN and Infinity/-Infinity -- Note [negative zero] Avoid (0 / -d), otherwise 0/(-1) reduces to -- zero, but we might want to preserve the negative zero here which -- is representable in Float/Double but not in (normalised) -- Rational. (#3676) Perhaps we should generate (0 :% (-1)) instead? strengthReduction :: Literal -> PrimOp -> RuleM CoreExpr strengthReduction two_lit add_op = do -- Note [Strength reduction] arg <- msum [ do [arg, Lit mult_lit] <- getArgs guard (mult_lit == two_lit) return arg , do [Lit mult_lit, arg] <- getArgs guard (mult_lit == two_lit) return arg ] return $ Var (mkPrimOpId add_op) `App` arg `App` arg -- Note [Strength reduction] -- ~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- This rule turns floating point multiplications of the form 2.0 * x and -- x * 2.0 into x + x addition, because addition costs less than multiplication. -- See #7116 -- Note [What's true and false] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- trueValInt and falseValInt represent true and false values returned by -- comparison primops for Char, Int, Word, Integer, Double, Float and Addr. -- True is represented as an unboxed 1# literal, while false is represented -- as 0# literal. -- We still need Bool data constructors (True and False) to use in a rule -- for constant folding of equal Strings trueValInt, falseValInt :: Platform -> Expr CoreBndr trueValInt platform = Lit $ onei platform -- see Note [What's true and false] falseValInt platform = Lit $ zeroi platform trueValBool, falseValBool :: Expr CoreBndr trueValBool = Var trueDataConId -- see Note [What's true and false] falseValBool = Var falseDataConId ltVal, eqVal, gtVal :: Expr CoreBndr ltVal = Var ordLTDataConId eqVal = Var ordEQDataConId gtVal = Var ordGTDataConId mkIntVal :: Platform -> Integer -> Expr CoreBndr mkIntVal platform i = Lit (mkLitInt platform i) mkFloatVal :: RuleOpts -> Rational -> Expr CoreBndr mkFloatVal env f = Lit (convFloating env (LitFloat f)) mkDoubleVal :: RuleOpts -> Rational -> Expr CoreBndr mkDoubleVal env d = Lit (convFloating env (LitDouble d)) matchPrimOpId :: PrimOp -> Id -> RuleM () matchPrimOpId op id = do op' <- liftMaybe $ isPrimOpId_maybe id guard $ op == op' {- ************************************************************************ * * \subsection{Special rules for seq, tagToEnum, dataToTag} * * ************************************************************************ Note [tagToEnum#] ~~~~~~~~~~~~~~~~~ Nasty check to ensure that tagToEnum# is applied to a type that is an enumeration TyCon. Unification may refine the type later, but this check won't see that, alas. It's crude but it works. Here's are two cases that should fail f :: forall a. a f = tagToEnum# 0 -- Can't do tagToEnum# at a type variable g :: Int g = tagToEnum# 0 -- Int is not an enumeration We used to make this check in the type inference engine, but it's quite ugly to do so, because the delayed constraint solving means that we don't really know what's going on until the end. It's very much a corner case because we don't expect the user to call tagToEnum# at all; we merely generate calls in derived instances of Enum. So we compromise: a rewrite rule rewrites a bad instance of tagToEnum# to an error call, and emits a warning. -} tagToEnumRule :: RuleM CoreExpr -- If data T a = A | B | C -- then tagToEnum# (T ty) 2# --> B ty tagToEnumRule = do [Type ty, Lit (LitNumber LitNumInt i)] <- getArgs case splitTyConApp_maybe ty of Just (tycon, tc_args) | isEnumerationTyCon tycon -> do let tag = fromInteger i correct_tag dc = (dataConTagZ dc) == tag (dc:rest) <- return $ filter correct_tag (tyConDataCons_maybe tycon `orElse` []) ASSERT(null rest) return () return $ mkTyApps (Var (dataConWorkId dc)) tc_args -- See Note [tagToEnum#] _ -> WARN( True, text "tagToEnum# on non-enumeration type" <+> ppr ty ) return $ mkRuntimeErrorApp rUNTIME_ERROR_ID ty "tagToEnum# on non-enumeration type" ------------------------------ dataToTagRule :: RuleM CoreExpr -- See Note [dataToTag#] in primops.txt.pp dataToTagRule = a `mplus` b where -- dataToTag (tagToEnum x) ==> x a = do [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag] <- getArgs guard $ tag_to_enum `hasKey` tagToEnumKey guard $ ty1 `eqType` ty2 return tag -- dataToTag (K e1 e2) ==> tag-of K -- This also works (via exprIsConApp_maybe) for -- dataToTag x -- where x's unfolding is a constructor application b = do dflags <- getPlatform [_, val_arg] <- getArgs in_scope <- getInScopeEnv (_,floats, dc,_,_) <- liftMaybe $ exprIsConApp_maybe in_scope val_arg ASSERT( not (isNewTyCon (dataConTyCon dc)) ) return () return $ wrapFloats floats (mkIntVal dflags (toInteger (dataConTagZ dc))) {- Note [dataToTag# magic] ~~~~~~~~~~~~~~~~~~~~~~~~~~ The primop dataToTag# is unusual because it evaluates its argument. Only `SeqOp` shares that property. (Other primops do not do anything as fancy as argument evaluation.) The special handling for dataToTag# is: * GHC.Core.Utils.exprOkForSpeculation has a special case for DataToTagOp, (actually in app_ok). Most primops with lifted arguments do not evaluate those arguments, but DataToTagOp and SeqOp are two exceptions. We say that they are /never/ ok-for-speculation, regardless of the evaluated-ness of their argument. See GHC.Core.Utils Note [exprOkForSpeculation and SeqOp/DataToTagOp] * There is a special case for DataToTagOp in GHC.StgToCmm.Expr.cgExpr, that evaluates its argument and then extracts the tag from the returned value. * An application like (dataToTag# (Just x)) is optimised by dataToTagRule in GHC.Core.Opt.ConstantFold. * A case expression like case (dataToTag# e) of gets transformed t case e of by GHC.Core.Opt.ConstantFold.caseRules; see Note [caseRules for dataToTag] See #15696 for a long saga. -} {- ********************************************************************* * * unsafeEqualityProof * * ********************************************************************* -} -- unsafeEqualityProof k t t ==> UnsafeRefl (Refl t) -- That is, if the two types are equal, it's not unsafe! unsafeEqualityProofRule :: RuleM CoreExpr unsafeEqualityProofRule = do { [Type rep, Type t1, Type t2] <- getArgs ; guard (t1 `eqType` t2) ; fn <- getFunction ; let (_, ue) = splitForAllTys (idType fn) tc = tyConAppTyCon ue -- tycon: UnsafeEquality (dc:_) = tyConDataCons tc -- data con: UnsafeRefl -- UnsafeRefl :: forall (r :: RuntimeRep) (a :: TYPE r). -- UnsafeEquality r a a ; return (mkTyApps (Var (dataConWrapId dc)) [rep, t1]) } {- ********************************************************************* * * Rules for seq# and spark# * * ********************************************************************* -} {- Note [seq# magic] ~~~~~~~~~~~~~~~~~~~~ The primop seq# :: forall a s . a -> State# s -> (# State# s, a #) is /not/ the same as the Prelude function seq :: a -> b -> b as you can see from its type. In fact, seq# is the implementation mechanism for 'evaluate' evaluate :: a -> IO a evaluate a = IO $ \s -> seq# a s The semantics of seq# is * evaluate its first argument * and return it Things to note * Why do we need a primop at all? That is, instead of case seq# x s of (# x, s #) -> blah why not instead say this? case x of { DEFAULT -> blah) Reason (see #5129): if we saw catch# (\s -> case x of { DEFAULT -> raiseIO# exn s }) handler then we'd drop the 'case x' because the body of the case is bottom anyway. But we don't want to do that; the whole /point/ of seq#/evaluate is to evaluate 'x' first in the IO monad. In short, we /always/ evaluate the first argument and never just discard it. * Why return the value? So that we can control sharing of seq'd values: in let x = e in x `seq` ... x ... We don't want to inline x, so better to represent it as let x = e in case seq# x RW of (# _, x' #) -> ... x' ... also it matches the type of rseq in the Eval monad. Implementing seq#. The compiler has magic for SeqOp in - GHC.Core.Opt.ConstantFold.seqRule: eliminate (seq# s) - GHC.StgToCmm.Expr.cgExpr, and cgCase: special case for seq# - GHC.Core.Utils.exprOkForSpeculation; see Note [exprOkForSpeculation and SeqOp/DataToTagOp] in GHC.Core.Utils - Simplify.addEvals records evaluated-ness for the result; see Note [Adding evaluatedness info to pattern-bound variables] in GHC.Core.Opt.Simplify -} seqRule :: RuleM CoreExpr seqRule = do [Type ty_a, Type _ty_s, a, s] <- getArgs guard $ exprIsHNF a return $ mkCoreUbxTup [exprType s, ty_a] [s, a] -- spark# :: forall a s . a -> State# s -> (# State# s, a #) sparkRule :: RuleM CoreExpr sparkRule = seqRule -- reduce on HNF, just the same -- XXX perhaps we shouldn't do this, because a spark eliminated by -- this rule won't be counted as a dud at runtime? {- ************************************************************************ * * \subsection{Built in rules} * * ************************************************************************ Note [Scoping for Builtin rules] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When compiling a (base-package) module that defines one of the functions mentioned in the RHS of a built-in rule, there's a danger that we'll see f = ...(eq String x).... ....and lower down... eqString = ... Then a rewrite would give f = ...(eqString x)... ....and lower down... eqString = ... and lo, eqString is not in scope. This only really matters when we get to code generation. But the occurrence analyser does a GlomBinds step when necessary, that does a new SCC analysis on the whole set of bindings (see occurAnalysePgm), which sorts out the dependency, so all is fine. -} newtype EnableBignumRules = EnableBignumRules Bool builtinRules :: EnableBignumRules -> [CoreRule] -- Rules for non-primops that can't be expressed using a RULE pragma builtinRules enableBignumRules = [BuiltinRule { ru_name = fsLit "AppendLitString", ru_fn = unpackCStringFoldrName, ru_nargs = 4, ru_try = match_append_lit_C }, BuiltinRule { ru_name = fsLit "AppendLitStringUtf8", ru_fn = unpackCStringFoldrUtf8Name, ru_nargs = 4, ru_try = match_append_lit_utf8 }, BuiltinRule { ru_name = fsLit "EqString", ru_fn = eqStringName, ru_nargs = 2, ru_try = match_eq_string }, BuiltinRule { ru_name = fsLit "CStringLength", ru_fn = cstringLengthName, ru_nargs = 1, ru_try = match_cstring_length }, BuiltinRule { ru_name = fsLit "Inline", ru_fn = inlineIdName, ru_nargs = 2, ru_try = \_ _ _ -> match_inline }, BuiltinRule { ru_name = fsLit "MagicDict", ru_fn = idName magicDictId, ru_nargs = 4, ru_try = \_ _ _ -> match_magicDict }, mkBasicRule unsafeEqualityProofName 3 unsafeEqualityProofRule, mkBasicRule divIntName 2 $ msum [ nonZeroLit 1 >> binaryLit (intOp2 div) , leftZero zeroi , do [arg, Lit (LitNumber LitNumInt d)] <- getArgs Just n <- return $ exactLog2 d platform <- getPlatform return $ Var (mkPrimOpId ISraOp) `App` arg `App` mkIntVal platform n ], mkBasicRule modIntName 2 $ msum [ nonZeroLit 1 >> binaryLit (intOp2 mod) , leftZero zeroi , do [arg, Lit (LitNumber LitNumInt d)] <- getArgs Just _ <- return $ exactLog2 d platform <- getPlatform return $ Var (mkPrimOpId AndIOp) `App` arg `App` mkIntVal platform (d - 1) ] ] ++ builtinBignumRules enableBignumRules {-# NOINLINE builtinRules #-} -- there is no benefit to inlining these yet, despite this, GHC produces -- unfoldings for this regardless since the floated list entries look small. builtinBignumRules :: EnableBignumRules -> [CoreRule] builtinBignumRules (EnableBignumRules False) = [] builtinBignumRules _ = [ -- conversions lit_to_integer "Word# -> Integer" integerFromWordName , lit_to_integer "Int64# -> Integer" integerFromInt64Name , lit_to_integer "Word64# -> Integer" integerFromWord64Name , lit_to_integer "Natural -> Integer" integerFromNaturalName , integer_to_lit "Integer -> Word# (wrap)" integerToWordName mkWordLitWrap , integer_to_lit "Integer -> Int# (wrap)" integerToIntName mkIntLitWrap , integer_to_lit "Integer -> Word64# (wrap)" integerToWord64Name (\_ -> mkWord64LitWord64 . fromInteger) , integer_to_lit "Integer -> Int64# (wrap)" integerToInt64Name (\_ -> mkInt64LitInt64 . fromInteger) , integer_to_lit "Integer -> Float#" integerToFloatName (\_ -> mkFloatLitFloat . fromInteger) , integer_to_lit "Integer -> Double#" integerToDoubleName (\_ -> mkDoubleLitDouble . fromInteger) , integer_to_natural "Integer -> Natural (clamp)" integerToNaturalClampName False True , integer_to_natural "Integer -> Natural (wrap)" integerToNaturalName False False , integer_to_natural "Integer -> Natural (throw)" integerToNaturalThrowName True False , lit_to_natural "Word# -> Natural" naturalNSName , natural_to_word "Natural -> Word# (wrap)" naturalToWordName False , natural_to_word "Natural -> Word# (clamp)" naturalToWordClampName True -- comparisons (return an unlifted Int#) , integer_cmp "integerEq#" integerEqName (==) , integer_cmp "integerNe#" integerNeName (/=) , integer_cmp "integerLe#" integerLeName (<=) , integer_cmp "integerGt#" integerGtName (>) , integer_cmp "integerLt#" integerLtName (<) , integer_cmp "integerGe#" integerGeName (>=) , natural_cmp "naturalEq#" naturalEqName (==) , natural_cmp "naturalNe#" naturalNeName (/=) , natural_cmp "naturalLe#" naturalLeName (<=) , natural_cmp "naturalGt#" naturalGtName (>) , natural_cmp "naturalLt#" naturalLtName (<) , natural_cmp "naturalGe#" naturalGeName (>=) -- comparisons (return an Ordering) , bignum_compare "integerCompare" integerCompareName , bignum_compare "naturalCompare" naturalCompareName -- binary operations , integer_binop "integerAdd" integerAddName (+) , integer_binop "integerSub" integerSubName (-) , integer_binop "integerMul" integerMulName (*) , integer_binop "integerGcd" integerGcdName gcd , integer_binop "integerLcm" integerLcmName lcm , integer_binop "integerAnd" integerAndName (.&.) , integer_binop "integerOr" integerOrName (.|.) , integer_binop "integerXor" integerXorName xor , natural_binop "naturalAdd" naturalAddName (+) , natural_binop "naturalMul" naturalMulName (*) , natural_binop "naturalGcd" naturalGcdName gcd , natural_binop "naturalLcm" naturalLcmName lcm , natural_binop "naturalAnd" naturalAndName (.&.) , natural_binop "naturalOr" naturalOrName (.|.) , natural_binop "naturalXor" naturalXorName xor -- Natural subtraction: it's a binop but it can fail because of underflow so -- we have several primitives to handle here. , natural_sub "naturalSubUnsafe" naturalSubUnsafeName , natural_sub "naturalSubThrow" naturalSubThrowName , mkRule "naturalSub" naturalSubName 2 $ do [a0,a1] <- getArgs x <- isNaturalLiteral a0 y <- isNaturalLiteral a1 -- return an unboxed sum: (# (# #) | Natural #) let ret n v = pure $ mkCoreUbxSum 2 n [voidPrimTy,naturalTy] v if x < y then ret 1 $ Var voidPrimId else ret 2 $ Lit (mkLitNatural (x - y)) -- unary operations , bignum_unop "integerNegate" integerNegateName mkLitInteger negate , bignum_unop "integerAbs" integerAbsName mkLitInteger abs , bignum_unop "integerSignum" integerSignumName mkLitInteger signum , bignum_unop "integerComplement" integerComplementName mkLitInteger complement , bignum_unop "naturalSignum" naturalSignumName mkLitNatural signum , mkRule "naturalNegate" naturalNegateName 1 $ do [a0] <- getArgs x <- isNaturalLiteral a0 guard (x == 0) -- negate is only valid for (0 :: Natural) pure a0 , bignum_popcount "integerPopCount" integerPopCountName mkLitIntWrap , bignum_popcount "naturalPopCount" naturalPopCountName mkLitWordWrap -- identity passthrough , id_passthrough "Int# -> Integer -> Int#" integerToIntName integerISName , id_passthrough "Word# -> Integer -> Word#" integerToWordName integerFromWordName , id_passthrough "Int64# -> Integer -> Int64#" integerToInt64Name integerFromInt64Name , id_passthrough "Word64# -> Integer -> Word64#" integerToWord64Name integerFromWord64Name , id_passthrough "Word# -> Natural -> Word#" naturalToWordName naturalNSName -- identity passthrough with a conversion that can be done directly instead , small_passthrough "Int# -> Integer -> Word#" integerISName integerToWordName (mkPrimOpId Int2WordOp) , small_passthrough "Int# -> Integer -> Float#" integerISName integerToFloatName (mkPrimOpId Int2FloatOp) , small_passthrough "Int# -> Integer -> Double#" integerISName integerToDoubleName (mkPrimOpId Int2DoubleOp) , small_passthrough "Word# -> Natural -> Int#" naturalNSName naturalToWordName (mkPrimOpId Word2IntOp) -- Bits.bit , bignum_bit "integerBit" integerBitName mkLitInteger , bignum_bit "naturalBit" naturalBitName mkLitNatural -- Bits.testBit , bignum_testbit "integerTestBit" integerTestBitName , bignum_testbit "naturalTestBit" naturalTestBitName -- Bits.shift , bignum_shift "integerShiftL" integerShiftLName shiftL mkLitInteger , bignum_shift "integerShiftR" integerShiftRName shiftR mkLitInteger , bignum_shift "naturalShiftL" naturalShiftLName shiftL mkLitNatural , bignum_shift "naturalShiftR" naturalShiftRName shiftR mkLitNatural -- division , divop_one "integerQuot" integerQuotName quot mkLitInteger , divop_one "integerRem" integerRemName rem mkLitInteger , divop_one "integerDiv" integerDivName div mkLitInteger , divop_one "integerMod" integerModName mod mkLitInteger , divop_both "integerDivMod" integerDivModName divMod mkLitInteger integerTy , divop_both "integerQuotRem" integerQuotRemName quotRem mkLitInteger integerTy , divop_one "naturalQuot" naturalQuotName quot mkLitNatural , divop_one "naturalRem" naturalRemName rem mkLitNatural , divop_both "naturalQuotRem" naturalQuotRemName quotRem mkLitNatural naturalTy -- conversions from Rational for Float/Double literals , rational_to "rationalToFloat" rationalToFloatName mkFloatExpr , rational_to "rationalToDouble" rationalToDoubleName mkDoubleExpr -- conversions from Integer for Float/Double literals , integer_encode_float "integerEncodeFloat" integerEncodeFloatName mkFloatLitFloat , integer_encode_float "integerEncodeDouble" integerEncodeDoubleName mkDoubleLitDouble ] where -- The rule is matching against an occurrence of a data constructor in a -- Core expression. It must match either its worker name or its wrapper -- name, /not/ the DataCon name itself, which is different. -- See Note [Data Constructor Naming] in GHC.Core.DataCon and #19892 -- -- But data constructor wrappers deliberately inline late; See Note -- [Activation for data constructor wrappers] in GHC.Types.Id.Make. -- Suppose there is a wrapper and the rule matches on the worker: the -- wrapper won't be inlined until rules have finished firing and the rule -- will never fire. -- -- Hence the rule must match on the wrapper, if there is one, otherwise on -- the worker. That is exactly the dataConWrapId for the data constructor. -- The data constructor may or may not have a wrapper, but if not -- dataConWrapId will return the worker -- integerISName = idName (dataConWrapId integerISDataCon) naturalNSName = idName (dataConWrapId naturalNSDataCon) mkRule str name nargs f = BuiltinRule { ru_name = fsLit str , ru_fn = name , ru_nargs = nargs , ru_try = runRuleM f } integer_to_lit str name convert = mkRule str name 1 $ do [a0] <- getArgs platform <- getPlatform x <- isIntegerLiteral a0 pure (convert platform x) natural_to_word str name clamp = mkRule str name 1 $ do [a0] <- getArgs n <- isNaturalLiteral a0 platform <- getPlatform if clamp && not (platformInWordRange platform n) then pure (Lit (mkLitWord platform (platformMaxWord platform))) else pure (Lit (mkLitWordWrap platform n)) integer_to_natural str name thrw clamp = mkRule str name 1 $ do [a0] <- getArgs x <- isIntegerLiteral a0 if | x >= 0 -> pure $ Lit $ mkLitNatural x | thrw -> mzero | clamp -> pure $ Lit $ mkLitNatural 0 -- clamp to 0 | otherwise -> pure $ Lit $ mkLitNatural (abs x) -- negate/wrap lit_to_integer str name = mkRule str name 1 $ do [a0] <- getArgs isLiteral a0 >>= \case -- convert any numeric literal into an Integer literal LitNumber _ i -> pure (Lit (mkLitInteger i)) _ -> mzero lit_to_natural str name = mkRule str name 1 $ do [a0] <- getArgs isLiteral a0 >>= \case -- convert any *positive* numeric literal into a Natural literal LitNumber _ i | i >= 0 -> pure (Lit (mkLitNatural i)) _ -> mzero integer_binop str name op = mkRule str name 2 $ do [a0,a1] <- getArgs x <- isIntegerLiteral a0 y <- isIntegerLiteral a1 pure (Lit (mkLitInteger (x `op` y))) natural_binop str name op = mkRule str name 2 $ do [a0,a1] <- getArgs x <- isNaturalLiteral a0 y <- isNaturalLiteral a1 pure (Lit (mkLitNatural (x `op` y))) natural_sub str name = mkRule str name 2 $ do [a0,a1] <- getArgs x <- isNaturalLiteral a0 y <- isNaturalLiteral a1 guard (x >= y) pure (Lit (mkLitNatural (x - y))) integer_cmp str name op = mkRule str name 2 $ do platform <- getPlatform [a0,a1] <- getArgs x <- isIntegerLiteral a0 y <- isIntegerLiteral a1 pure $ if x `op` y then trueValInt platform else falseValInt platform natural_cmp str name op = mkRule str name 2 $ do platform <- getPlatform [a0,a1] <- getArgs x <- isNaturalLiteral a0 y <- isNaturalLiteral a1 pure $ if x `op` y then trueValInt platform else falseValInt platform bignum_compare str name = mkRule str name 2 $ do [a0,a1] <- getArgs x <- isNumberLiteral a0 y <- isNumberLiteral a1 pure $ case x `compare` y of LT -> ltVal EQ -> eqVal GT -> gtVal bignum_unop str name mk_lit op = mkRule str name 1 $ do [a0] <- getArgs x <- isNumberLiteral a0 pure $ Lit (mk_lit (op x)) bignum_popcount str name mk_lit = mkRule str name 1 $ do platform <- getPlatform -- We use a host Int to compute the popCount. If we compile on a 32-bit -- host for a 64-bit target, the result may be different than if computed -- by the target. So we disable this rule if sizes don't match. guard (platformWordSizeInBits platform == finiteBitSize (0 :: Word)) [a0] <- getArgs x <- isNumberLiteral a0 pure $ Lit (mk_lit platform (fromIntegral (popCount x))) id_passthrough str to_x from_x = mkRule str to_x 1 $ do [App (Var f) x] <- getArgs guard (idName f == from_x) pure x small_passthrough str from_x to_y x_to_y = mkRule str to_y 1 $ do [App (Var f) x] <- getArgs guard (idName f == from_x) pure $ App (Var x_to_y) x bignum_bit str name mk_lit = mkRule str name 1 $ do [a0] <- getArgs platform <- getPlatform n <- isNumberLiteral a0 -- Make sure n is positive and small enough to yield a decently -- small number. Attempting to construct the Integer for -- (integerBit 9223372036854775807#) -- would be a bad idea (#14959) guard (n >= 0 && n <= fromIntegral (platformWordSizeInBits platform)) -- it's safe to convert a target Int value into a host Int value -- to perform the "bit" operation because n is very small (<= 64). pure $ Lit (mk_lit (bit (fromIntegral n))) bignum_testbit str name = mkRule str name 2 $ do [a0,a1] <- getArgs platform <- getPlatform x <- isNumberLiteral a0 n <- isNumberLiteral a1 -- ensure that we can store 'n' in a host Int guard (n >= 0 && n <= fromIntegral (maxBound :: Int)) pure $ if testBit x (fromIntegral n) then trueValInt platform else falseValInt platform bignum_shift str name shift_op mk_lit = mkRule str name 2 $ do [a0,a1] <- getArgs x <- isNumberLiteral a0 n <- isWordLiteral a1 -- See Note [Guarding against silly shifts] -- Restrict constant-folding of shifts on Integers, somewhat arbitrary. -- We can get huge shifts in inaccessible code (#15673) guard (n <= 4) pure $ Lit (mk_lit (x `shift_op` fromIntegral n)) divop_one str name divop mk_lit = mkRule str name 2 $ do [a0,a1] <- getArgs n <- isNumberLiteral a0 d <- isNumberLiteral a1 guard (d /= 0) pure $ Lit (mk_lit (n `divop` d)) divop_both str name divop mk_lit ty = mkRule str name 2 $ do [a0,a1] <- getArgs n <- isNumberLiteral a0 d <- isNumberLiteral a1 guard (d /= 0) let (r,s) = n `divop` d pure $ mkCoreUbxTup [ty,ty] [Lit (mk_lit r), Lit (mk_lit s)] integer_encode_float :: RealFloat a => String -> Name -> (a -> CoreExpr) -> CoreRule integer_encode_float str name mk_lit = mkRule str name 2 $ do [a0,a1] <- getArgs x <- isIntegerLiteral a0 y <- isIntLiteral a1 -- check that y (a target Int) is in the host Int range guard (y <= fromIntegral (maxBound :: Int)) pure (mk_lit $ encodeFloat x (fromInteger y)) rational_to :: RealFloat a => String -> Name -> (a -> CoreExpr) -> CoreRule rational_to str name mk_lit = mkRule str name 2 $ do -- This turns `rationalToFloat n d` where `n` and `d` are literals into -- a literal Float (and similarly for Double). [a0,a1] <- getArgs n <- isIntegerLiteral a0 d <- isIntegerLiteral a1 -- it's important to not match d == 0, because that may represent a -- literal "0/0" or similar, and we can't produce a literal value for -- NaN or +-Inf guard (d /= 0) pure $ mk_lit (fromRational (n % d)) --------------------------------------------------- -- The rule is this: -- unpackFoldrCString*# "foo"# c (unpackFoldrCString*# "baz"# c n) -- = unpackFoldrCString*# "foobaz"# c n -- -- See also Note [String literals in GHC] in CString.hs -- CString version match_append_lit_C :: RuleFun match_append_lit_C = match_append_lit unpackCStringFoldrIdKey -- CStringUTF8 version match_append_lit_utf8 :: RuleFun match_append_lit_utf8 = match_append_lit unpackCStringFoldrUtf8IdKey {-# INLINE match_append_lit #-} match_append_lit :: Unique -> RuleFun match_append_lit foldVariant _ id_unf _ [ Type ty1 , lit1 , c1 , e2 ] -- N.B. Ensure that we strip off any ticks (e.g. source notes) from the -- `lit` and `c` arguments, lest this may fail to fire when building with -- -g3. See #16740. | (strTicks, Var unpk `App` Type ty2 `App` lit2 `App` c2 `App` n) <- stripTicksTop tickishFloatable e2 , unpk `hasKey` foldVariant , Just (LitString s1) <- exprIsLiteral_maybe id_unf lit1 , Just (LitString s2) <- exprIsLiteral_maybe id_unf lit2 , let freeVars = (mkInScopeSet (exprFreeVars c1 `unionVarSet` exprFreeVars c2)) in eqExpr freeVars c1 c2 , (c1Ticks, c1') <- stripTicksTop tickishFloatable c1 , c2Ticks <- stripTicksTopT tickishFloatable c2 = ASSERT( ty1 `eqType` ty2 ) Just $ mkTicks strTicks $ Var unpk `App` Type ty1 `App` Lit (LitString (s1 `BS.append` s2)) `App` mkTicks (c1Ticks ++ c2Ticks) c1' `App` n match_append_lit _ _ _ _ _ = Nothing --------------------------------------------------- -- The rule is this: -- eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2)) = s1==s2 -- Also matches unpackCStringUtf8# match_eq_string :: RuleFun match_eq_string _ id_unf _ [Var unpk1 `App` lit1, Var unpk2 `App` lit2] | unpk_key1 <- getUnique unpk1 , unpk_key2 <- getUnique unpk2 , unpk_key1 == unpk_key2 -- For now we insist the literals have to agree in their encoding -- to keep the rule simple. But we could check if the decoded strings -- compare equal in here as well. , unpk_key1 `elem` [unpackCStringUtf8IdKey, unpackCStringIdKey] , Just (LitString s1) <- exprIsLiteral_maybe id_unf lit1 , Just (LitString s2) <- exprIsLiteral_maybe id_unf lit2 = Just (if s1 == s2 then trueValBool else falseValBool) match_eq_string _ _ _ _ = Nothing ----------------------------------------------------------------------- -- Illustration of this rule: -- -- cstringLength# "foobar"# --> 6 -- cstringLength# "fizz\NULzz"# --> 4 -- -- Nota bene: Addr# literals are suffixed by a NUL byte when they are -- compiled to read-only data sections. That's why cstringLength# is -- well defined on Addr# literals that do not explicitly have an embedded -- NUL byte. -- -- See GHC issue #5218, MR 2165, and bytestring PR 191. This is particularly -- helpful when using OverloadedStrings to create a ByteString since the -- function computing the length of such ByteStrings can often be constant -- folded. match_cstring_length :: RuleFun match_cstring_length env id_unf _ [lit1] | Just (LitString str) <- exprIsLiteral_maybe id_unf lit1 -- If elemIndex returns Just, it has the index of the first embedded NUL -- in the string. If no NUL bytes are present (the common case) then use -- full length of the byte string. = let len = fromMaybe (BS.length str) (BS.elemIndex 0 str) in Just (Lit (mkLitInt (roPlatform env) (fromIntegral len))) match_cstring_length _ _ _ _ = Nothing --------------------------------------------------- {- Note [inlineId magic] ~~~~~~~~~~~~~~~~~~~~~~~~ The call 'inline f' arranges that 'f' is inlined, regardless of its size. More precisely, the call 'inline f' rewrites to the right-hand side of 'f's definition. This allows the programmer to control inlining from a particular call site rather than the definition site of the function. The moving parts are simple: * A very simple definition in the library base:GHC.Magic {-# NOINLINE[0] inline #-} inline :: a -> a inline x = x So in phase 0, 'inline' will be inlined, so its use imposes no overhead. * A rewrite rule, in GHC.Core.Opt.ConstantFold, which makes (inline f) inline, implemented by match_inline. The rule for the 'inline' function is this: inline f_ty (f a b c) = a b c (if f has an unfolding, EVEN if it's a loop breaker) It's important to allow the argument to 'inline' to have args itself (a) because its more forgiving to allow the programmer to write either inline f a b c or inline (f a b c) (b) because a polymorphic f wll get a type argument that the programmer can't avoid, so the call may look like inline (map @Int @Bool) g xs Also, don't forget about 'inline's type argument! -} match_inline :: [Expr CoreBndr] -> Maybe (Expr CoreBndr) match_inline (Type _ : e : _) | (Var f, args1) <- collectArgs e, Just unf <- maybeUnfoldingTemplate (realIdUnfolding f) -- Ignore the IdUnfoldingFun here! = Just (mkApps unf args1) match_inline _ = Nothing --------------------------------------------------- -- See Note [magicDictId magic] in "GHC.Types.Id.Make" -- for a description of what is going on here. match_magicDict :: [Expr CoreBndr] -> Maybe (Expr CoreBndr) match_magicDict [Type _, (stripTicksE (const True) -> (Var wrap `App` Type a `App` Type _ `App` f)), x, y ] | Just (_, fieldTy, _) <- splitFunTy_maybe $ dropForAlls $ idType wrap , Just (_, dictTy, _) <- splitFunTy_maybe fieldTy , Just dictTc <- tyConAppTyCon_maybe dictTy , Just (_,_,co) <- unwrapNewTyCon_maybe dictTc = Just $ f `App` Cast x (mkSymCo (mkUnbranchedAxInstCo Representational co [a] [])) `App` y match_magicDict _ = Nothing -------------------------------------------------------- -- Note [Constant folding through nested expressions] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- We use rewrites rules to perform constant folding. It means that we don't -- have a global view of the expression we are trying to optimise. As a -- consequence we only perform local (small-step) transformations that either: -- 1) reduce the number of operations -- 2) rearrange the expression to increase the odds that other rules will -- match -- -- We don't try to handle more complex expression optimisation cases that would -- require a global view. For example, rewriting expressions to increase -- sharing (e.g., Horner's method); optimisations that require local -- transformations increasing the number of operations; rearrangements to -- cancel/factorize terms (e.g., (a+b-a-b) isn't rearranged to reduce to 0). -- -- We already have rules to perform constant folding on expressions with the -- following shape (where a and/or b are literals): -- -- D) op -- /\ -- / \ -- / \ -- a b -- -- To support nested expressions, we match three other shapes of expression -- trees: -- -- A) op1 B) op1 C) op1 -- /\ /\ /\ -- / \ / \ / \ -- / \ / \ / \ -- a op2 op2 c op2 op3 -- /\ /\ /\ /\ -- / \ / \ / \ / \ -- b c a b a b c d -- -- -- R1) +/- simplification: -- ops = + or -, two literals (not siblings) -- -- Examples: -- A: 5 + (10-x) ==> 15-x -- B: (10+x) + 5 ==> 15+x -- C: (5+a)-(5-b) ==> 0+(a+b) -- -- R2) * simplification -- ops = *, two literals (not siblings) -- -- Examples: -- A: 5 * (10*x) ==> 50*x -- B: (10*x) * 5 ==> 50*x -- C: (5*a)*(5*b) ==> 25*(a*b) -- -- R3) * distribution over +/- -- op1 = *, op2 = + or -, two literals (not siblings) -- -- This transformation doesn't reduce the number of operations but switches -- the outer and the inner operations so that the outer is (+) or (-) instead -- of (*). It increases the odds that other rules will match after this one. -- -- Examples: -- A: 5 * (10-x) ==> 50 - (5*x) -- B: (10+x) * 5 ==> 50 + (5*x) -- C: Not supported as it would increase the number of operations: -- (5+a)*(5-b) ==> 25 - 5*b + 5*a - a*b -- -- R4) Simple factorization -- -- op1 = + or -, op2/op3 = *, -- one literal for each innermost * operation (except in the D case), -- the two other terms are equals -- -- Examples: -- A: x - (10*x) ==> (-9)*x -- B: (10*x) + x ==> 11*x -- C: (5*x)-(x*3) ==> 2*x -- D: x+x ==> 2*x -- -- R5) +/- propagation -- -- ops = + or -, one literal -- -- This transformation doesn't reduce the number of operations but propagates -- the constant to the outer level. It increases the odds that other rules -- will match after this one. -- -- Examples: -- A: x - (10-y) ==> (x+y) - 10 -- B: (10+x) - y ==> 10 + (x-y) -- C: N/A (caught by the A and B cases) -- -------------------------------------------------------- -- | Rules to perform constant folding into nested expressions -- --See Note [Constant folding through nested expressions] numFoldingRules :: PrimOp -> (Platform -> PrimOps) -> RuleM CoreExpr numFoldingRules op dict = do env <- getEnv if not (roNumConstantFolding env) then mzero else do [e1,e2] <- getArgs platform <- getPlatform let PrimOps{..} = dict platform case BinOpApp e1 op e2 of -- R1) +/- simplification x :++: (y :++: v) -> return $ mkL (x+y) `add` v x :++: (L y :-: v) -> return $ mkL (x+y) `sub` v x :++: (v :-: L y) -> return $ mkL (x-y) `add` v L x :-: (y :++: v) -> return $ mkL (x-y) `sub` v L x :-: (L y :-: v) -> return $ mkL (x-y) `add` v L x :-: (v :-: L y) -> return $ mkL (x+y) `sub` v (y :++: v) :-: L x -> return $ mkL (y-x) `add` v (L y :-: v) :-: L x -> return $ mkL (y-x) `sub` v (v :-: L y) :-: L x -> return $ mkL (0-y-x) `add` v (x :++: w) :+: (y :++: v) -> return $ mkL (x+y) `add` (w `add` v) (w :-: L x) :+: (L y :-: v) -> return $ mkL (y-x) `add` (w `sub` v) (w :-: L x) :+: (v :-: L y) -> return $ mkL (0-x-y) `add` (w `add` v) (L x :-: w) :+: (L y :-: v) -> return $ mkL (x+y) `sub` (w `add` v) (L x :-: w) :+: (v :-: L y) -> return $ mkL (x-y) `add` (v `sub` w) (w :-: L x) :+: (y :++: v) -> return $ mkL (y-x) `add` (w `add` v) (L x :-: w) :+: (y :++: v) -> return $ mkL (x+y) `add` (v `sub` w) (y :++: v) :+: (w :-: L x) -> return $ mkL (y-x) `add` (w `add` v) (y :++: v) :+: (L x :-: w) -> return $ mkL (x+y) `add` (v `sub` w) (v :-: L y) :-: (w :-: L x) -> return $ mkL (x-y) `add` (v `sub` w) (v :-: L y) :-: (L x :-: w) -> return $ mkL (0-x-y) `add` (v `add` w) (L y :-: v) :-: (w :-: L x) -> return $ mkL (x+y) `sub` (v `add` w) (L y :-: v) :-: (L x :-: w) -> return $ mkL (y-x) `add` (w `sub` v) (x :++: w) :-: (y :++: v) -> return $ mkL (x-y) `add` (w `sub` v) (w :-: L x) :-: (y :++: v) -> return $ mkL (0-y-x) `add` (w `sub` v) (L x :-: w) :-: (y :++: v) -> return $ mkL (x-y) `sub` (v `add` w) (y :++: v) :-: (w :-: L x) -> return $ mkL (y+x) `add` (v `sub` w) (y :++: v) :-: (L x :-: w) -> return $ mkL (y-x) `add` (v `add` w) -- R2) * simplification x :**: (y :**: v) -> return $ mkL (x*y) `mul` v (x :**: w) :*: (y :**: v) -> return $ mkL (x*y) `mul` (w `mul` v) -- R3) * distribution over +/- x :**: (y :++: v) -> return $ mkL (x*y) `add` (mkL x `mul` v) x :**: (L y :-: v) -> return $ mkL (x*y) `sub` (mkL x `mul` v) x :**: (v :-: L y) -> return $ (mkL x `mul` v) `sub` mkL (x*y) -- R4) Simple factorization v :+: w | w `cheapEqExpr` v -> return $ mkL 2 `mul` v w :+: (y :**: v) | w `cheapEqExpr` v -> return $ mkL (1+y) `mul` v w :-: (y :**: v) | w `cheapEqExpr` v -> return $ mkL (1-y) `mul` v (y :**: v) :+: w | w `cheapEqExpr` v -> return $ mkL (y+1) `mul` v (y :**: v) :-: w | w `cheapEqExpr` v -> return $ mkL (y-1) `mul` v (x :**: w) :+: (y :**: v) | w `cheapEqExpr` v -> return $ mkL (x+y) `mul` v (x :**: w) :-: (y :**: v) | w `cheapEqExpr` v -> return $ mkL (x-y) `mul` v -- R5) +/- propagation w :+: (y :++: v) -> return $ mkL y `add` (w `add` v) (y :++: v) :+: w -> return $ mkL y `add` (w `add` v) w :-: (y :++: v) -> return $ (w `sub` v) `sub` mkL y (y :++: v) :-: w -> return $ mkL y `add` (v `sub` w) w :-: (L y :-: v) -> return $ (w `add` v) `sub` mkL y (L y :-: v) :-: w -> return $ mkL y `sub` (w `add` v) w :+: (L y :-: v) -> return $ mkL y `add` (w `sub` v) w :+: (v :-: L y) -> return $ (w `add` v) `sub` mkL y (L y :-: v) :+: w -> return $ mkL y `add` (w `sub` v) (v :-: L y) :+: w -> return $ (w `add` v) `sub` mkL y _ -> mzero -- | Match the application of a binary primop pattern BinOpApp :: Arg CoreBndr -> PrimOp -> Arg CoreBndr -> CoreExpr pattern BinOpApp x op y = OpVal op `App` x `App` y -- | Match a primop pattern OpVal :: PrimOp -> Arg CoreBndr pattern OpVal op <- Var (isPrimOpId_maybe -> Just op) where OpVal op = Var (mkPrimOpId op) -- | Match a literal pattern L :: Integer -> Arg CoreBndr pattern L l <- Lit (isLitValue_maybe -> Just l) -- | Match an addition pattern (:+:) :: Arg CoreBndr -> Arg CoreBndr -> CoreExpr pattern x :+: y <- BinOpApp x (isAddOp -> True) y -- | Match an addition with a literal (handle commutativity) pattern (:++:) :: Integer -> Arg CoreBndr -> CoreExpr pattern l :++: x <- (isAdd -> Just (l,x)) isAdd :: CoreExpr -> Maybe (Integer,CoreExpr) isAdd e = case e of L l :+: x -> Just (l,x) x :+: L l -> Just (l,x) _ -> Nothing -- | Match a multiplication pattern (:*:) :: Arg CoreBndr -> Arg CoreBndr -> CoreExpr pattern x :*: y <- BinOpApp x (isMulOp -> True) y -- | Match a multiplication with a literal (handle commutativity) pattern (:**:) :: Integer -> Arg CoreBndr -> CoreExpr pattern l :**: x <- (isMul -> Just (l,x)) isMul :: CoreExpr -> Maybe (Integer,CoreExpr) isMul e = case e of L l :*: x -> Just (l,x) x :*: L l -> Just (l,x) _ -> Nothing -- | Match a subtraction pattern (:-:) :: Arg CoreBndr -> Arg CoreBndr -> CoreExpr pattern x :-: y <- BinOpApp x (isSubOp -> True) y isSubOp :: PrimOp -> Bool isSubOp IntSubOp = True isSubOp WordSubOp = True isSubOp _ = False isAddOp :: PrimOp -> Bool isAddOp IntAddOp = True isAddOp WordAddOp = True isAddOp _ = False isMulOp :: PrimOp -> Bool isMulOp IntMulOp = True isMulOp WordMulOp = True isMulOp _ = False -- | Explicit "type-class"-like dictionary for numeric primops -- -- Depends on Platform because creating a literal value depends on Platform data PrimOps = PrimOps { add :: CoreExpr -> CoreExpr -> CoreExpr -- ^ Add two numbers , sub :: CoreExpr -> CoreExpr -> CoreExpr -- ^ Sub two numbers , mul :: CoreExpr -> CoreExpr -> CoreExpr -- ^ Multiply two numbers , mkL :: Integer -> CoreExpr -- ^ Create a literal value } intPrimOps :: Platform -> PrimOps intPrimOps platform = PrimOps { add = \x y -> BinOpApp x IntAddOp y , sub = \x y -> BinOpApp x IntSubOp y , mul = \x y -> BinOpApp x IntMulOp y , mkL = intResult' platform } wordPrimOps :: Platform -> PrimOps wordPrimOps platform = PrimOps { add = \x y -> BinOpApp x WordAddOp y , sub = \x y -> BinOpApp x WordSubOp y , mul = \x y -> BinOpApp x WordMulOp y , mkL = wordResult' platform } -------------------------------------------------------- -- Constant folding through case-expressions -- -- cf Scrutinee Constant Folding in simplCore/GHC.Core.Opt.Simplify.Utils -------------------------------------------------------- -- | Match the scrutinee of a case and potentially return a new scrutinee and a -- function to apply to each literal alternative. caseRules :: Platform -> CoreExpr -- Scrutinee -> Maybe ( CoreExpr -- New scrutinee , AltCon -> Maybe AltCon -- How to fix up the alt pattern -- Nothing <=> Unreachable -- See Note [Unreachable caseRules alternatives] , Id -> CoreExpr) -- How to reconstruct the original scrutinee -- from the new case-binder -- e.g case e of b { -- ...; -- con bs -> rhs; -- ... } -- ==> -- case e' of b' { -- ...; -- fixup_altcon[con] bs -> let b = mk_orig[b] in rhs; -- ... } caseRules platform (App (App (Var f) v) (Lit l)) -- v `op` x# | Just op <- isPrimOpId_maybe f , Just x <- isLitValue_maybe l , Just adjust_lit <- adjustDyadicRight op x = Just (v, tx_lit_con platform adjust_lit , \v -> (App (App (Var f) (Var v)) (Lit l))) caseRules platform (App (App (Var f) (Lit l)) v) -- x# `op` v | Just op <- isPrimOpId_maybe f , Just x <- isLitValue_maybe l , Just adjust_lit <- adjustDyadicLeft x op = Just (v, tx_lit_con platform adjust_lit , \v -> (App (App (Var f) (Lit l)) (Var v))) caseRules platform (App (Var f) v ) -- op v | Just op <- isPrimOpId_maybe f , Just adjust_lit <- adjustUnary op = Just (v, tx_lit_con platform adjust_lit , \v -> App (Var f) (Var v)) -- See Note [caseRules for tagToEnum] caseRules platform (App (App (Var f) type_arg) v) | Just TagToEnumOp <- isPrimOpId_maybe f = Just (v, tx_con_tte platform , \v -> (App (App (Var f) type_arg) (Var v))) -- See Note [caseRules for dataToTag] caseRules _ (App (App (Var f) (Type ty)) v) -- dataToTag x | Just DataToTagOp <- isPrimOpId_maybe f , Just (tc, _) <- tcSplitTyConApp_maybe ty , isAlgTyCon tc = Just (v, tx_con_dtt ty , \v -> App (App (Var f) (Type ty)) (Var v)) caseRules _ _ = Nothing tx_lit_con :: Platform -> (Integer -> Integer) -> AltCon -> Maybe AltCon tx_lit_con _ _ DEFAULT = Just DEFAULT tx_lit_con platform adjust (LitAlt l) = Just $ LitAlt (mapLitValue platform adjust l) tx_lit_con _ _ alt = pprPanic "caseRules" (ppr alt) -- NB: mapLitValue uses mkLitIntWrap etc, to ensure that the -- literal alternatives remain in Word/Int target ranges -- (See Note [Word/Int underflow/overflow] in GHC.Types.Literal and #13172). adjustDyadicRight :: PrimOp -> Integer -> Maybe (Integer -> Integer) -- Given (x `op` lit) return a function 'f' s.t. f (x `op` lit) = x adjustDyadicRight op lit = case op of WordAddOp -> Just (\y -> y-lit ) IntAddOp -> Just (\y -> y-lit ) WordSubOp -> Just (\y -> y+lit ) IntSubOp -> Just (\y -> y+lit ) XorOp -> Just (\y -> y `xor` lit) XorIOp -> Just (\y -> y `xor` lit) _ -> Nothing adjustDyadicLeft :: Integer -> PrimOp -> Maybe (Integer -> Integer) -- Given (lit `op` x) return a function 'f' s.t. f (lit `op` x) = x adjustDyadicLeft lit op = case op of WordAddOp -> Just (\y -> y-lit ) IntAddOp -> Just (\y -> y-lit ) WordSubOp -> Just (\y -> lit-y ) IntSubOp -> Just (\y -> lit-y ) XorOp -> Just (\y -> y `xor` lit) XorIOp -> Just (\y -> y `xor` lit) _ -> Nothing adjustUnary :: PrimOp -> Maybe (Integer -> Integer) -- Given (op x) return a function 'f' s.t. f (op x) = x adjustUnary op = case op of NotOp -> Just (\y -> complement y) NotIOp -> Just (\y -> complement y) IntNegOp -> Just (\y -> negate y ) _ -> Nothing tx_con_tte :: Platform -> AltCon -> Maybe AltCon tx_con_tte _ DEFAULT = Just DEFAULT tx_con_tte _ alt@(LitAlt {}) = pprPanic "caseRules" (ppr alt) tx_con_tte platform (DataAlt dc) -- See Note [caseRules for tagToEnum] = Just $ LitAlt $ mkLitInt platform $ toInteger $ dataConTagZ dc tx_con_dtt :: Type -> AltCon -> Maybe AltCon tx_con_dtt _ DEFAULT = Just DEFAULT tx_con_dtt ty (LitAlt (LitNumber LitNumInt i)) | tag >= 0 , tag < n_data_cons = Just (DataAlt (data_cons !! tag)) -- tag is zero-indexed, as is (!!) | otherwise = Nothing where tag = fromInteger i :: ConTagZ tc = tyConAppTyCon ty n_data_cons = tyConFamilySize tc data_cons = tyConDataCons tc tx_con_dtt _ alt = pprPanic "caseRules" (ppr alt) {- Note [caseRules for tagToEnum] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We want to transform case tagToEnum x of False -> e1 True -> e2 into case x of 0# -> e1 1# -> e2 This rule eliminates a lot of boilerplate. For if (x>y) then e2 else e1 we generate case tagToEnum (x ># y) of False -> e1 True -> e2 and it is nice to then get rid of the tagToEnum. Beware (#14768): avoid the temptation to map constructor 0 to DEFAULT, in the hope of getting this case (x ># y) of DEFAULT -> e1 1# -> e2 That fails utterly in the case of data Colour = Red | Green | Blue case tagToEnum x of DEFAULT -> e1 Red -> e2 We don't want to get this! case x of DEFAULT -> e1 DEFAULT -> e2 Instead, we deal with turning one branch into DEFAULT in GHC.Core.Opt.Simplify.Utils (add_default in mkCase3). Note [caseRules for dataToTag] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See also Note [dataToTag#] in primpops.txt.pp We want to transform case dataToTag x of DEFAULT -> e1 1# -> e2 into case x of DEFAULT -> e1 (:) _ _ -> e2 Note the need for some wildcard binders in the 'cons' case. For the time, we only apply this transformation when the type of `x` is a type headed by a normal tycon. In particular, we do not apply this in the case of a data family tycon, since that would require carefully applying coercion(s) between the data family and the data family instance's representation type, which caseRules isn't currently engineered to handle (#14680). Note [Unreachable caseRules alternatives] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Take care if we see something like case dataToTag x of DEFAULT -> e1 -1# -> e2 100 -> e3 because there isn't a data constructor with tag -1 or 100. In this case the out-of-range alternative is dead code -- we know the range of tags for x. Hence caseRules returns (AltCon -> Maybe AltCon), with Nothing indicating an alternative that is unreachable. You may wonder how this can happen: check out #15436. -}