-- | This is where we define a mapping from Uniques to their associated -- known-key Names for things associated with tuples and sums. We use this -- mapping while deserializing known-key Names in interface file symbol tables, -- which are encoded as their Unique. See Note [Symbol table representation of -- names] for details. -- module GHC.Builtin.Uniques ( -- * Looking up known-key names knownUniqueName -- * Getting the 'Unique's of 'Name's -- ** Anonymous sums , mkSumTyConUnique, mkSumDataConUnique -- ** Tuples -- *** Vanilla , mkTupleTyConUnique , mkTupleDataConUnique , isTupleTyConUnique -- *** Constraint , mkCTupleTyConUnique , mkCTupleDataConUnique , mkCTupleSelIdUnique -- ** Making built-in uniques , mkAlphaTyVarUnique , mkPrimOpIdUnique, mkPrimOpWrapperUnique , mkPreludeMiscIdUnique, mkPreludeDataConUnique , mkPreludeTyConUnique, mkPreludeClassUnique , mkRegSingleUnique, mkRegPairUnique, mkRegClassUnique, mkRegSubUnique , mkCostCentreUnique , varNSUnique, dataNSUnique, tvNSUnique, tcNSUnique , mkFldNSUnique, isFldNSUnique , mkBuiltinUnique , mkPseudoUniqueE -- ** Deriving uniques -- *** From TyCon name uniques , tyConRepNameUnique -- *** From DataCon name uniques , dataConWorkerUnique, dataConTyRepNameUnique , initExitJoinUnique -- Boxing data types , mkBoxingTyConUnique, boxingDataConUnique ) where import GHC.Prelude import {-# SOURCE #-} GHC.Builtin.Types import {-# SOURCE #-} GHC.Core.TyCon import {-# SOURCE #-} GHC.Core.DataCon import {-# SOURCE #-} GHC.Types.Id import {-# SOURCE #-} GHC.Types.Name import GHC.Types.Basic import GHC.Types.Unique import GHC.Data.FastString import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.Panic.Plain (assert) import Data.Maybe import GHC.Utils.Word64 (word64ToInt) -- | Get the 'Name' associated with a known-key 'Unique'. knownUniqueName :: Unique -> Maybe Name knownUniqueName u = case tag of 'z' -> Just $ getUnboxedSumName n '4' -> Just $ getTupleTyConName Boxed n '5' -> Just $ getTupleTyConName Unboxed n '7' -> Just $ getTupleDataConName Boxed n '8' -> Just $ getTupleDataConName Unboxed n 'j' -> Just $ getCTupleSelIdName n 'k' -> Just $ getCTupleTyConName n 'm' -> Just $ getCTupleDataConName n _ -> Nothing where (tag, n') = unpkUnique u -- Known unique names are guaranteed to fit in Int, so we don't need the whole Word64. n = assert (isValidKnownKeyUnique u) (word64ToInt n') {- Note [Unique layout for unboxed sums] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Sum arities start from 2. The encoding is a bit funny: we break up the integral part into bitfields for the arity, an alternative index (which is taken to be 0xfc in the case of the TyCon), and, in the case of a datacon, a tag (used to identify the sum's TypeRep binding). This layout is chosen to remain compatible with the usual unique allocation for wired-in data constructors described in GHC.Types.Unique TyCon for sum of arity k: 00000000 kkkkkkkk 11111100 TypeRep of TyCon for sum of arity k: 00000000 kkkkkkkk 11111101 DataCon for sum of arity k and alternative n (zero-based): 00000000 kkkkkkkk nnnnnn00 TypeRep for sum DataCon of arity k and alternative n (zero-based): 00000000 kkkkkkkk nnnnnn10 -} mkSumTyConUnique :: Arity -> Unique mkSumTyConUnique arity = assertPpr (arity <= 0x3f) (ppr arity) $ -- 0x3f since we only have 6 bits to encode the -- alternative mkUniqueInt 'z' (arity `shiftL` 8 .|. 0xfc) mkSumDataConUnique :: ConTagZ -> Arity -> Unique mkSumDataConUnique alt arity | alt >= arity = panic ("mkSumDataConUnique: " ++ show alt ++ " >= " ++ show arity) | otherwise = mkUniqueInt 'z' (arity `shiftL` 8 + alt `shiftL` 2) {- skip the tycon -} getUnboxedSumName :: Int -> Name getUnboxedSumName n | n .&. 0xfc == 0xfc = case tag of 0x0 -> tyConName $ sumTyCon arity 0x1 -> getRep $ sumTyCon arity _ -> pprPanic "getUnboxedSumName: invalid tag" (ppr tag) | tag == 0x0 = dataConName $ sumDataCon (alt + 1) arity | tag == 0x1 = getName $ dataConWrapId $ sumDataCon (alt + 1) arity | tag == 0x2 = getRep $ promoteDataCon $ sumDataCon (alt + 1) arity | otherwise = pprPanic "getUnboxedSumName" (ppr n) where arity = n `shiftR` 8 alt = (n .&. 0xfc) `shiftR` 2 tag = 0x3 .&. n getRep tycon = fromMaybe (pprPanic "getUnboxedSumName(getRep)" (ppr tycon)) $ tyConRepName_maybe tycon -- Note [Uniques for tuple type and data constructors] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Wired-in type constructor keys occupy *two* slots: -- * u: the TyCon itself -- * u+1: the TyConRepName of the TyCon -- -- Wired-in tuple data constructor keys occupy *three* slots: -- * u: the DataCon itself -- * u+1: its worker Id -- * u+2: the TyConRepName of the promoted TyCon {- Note [Unique layout for constraint tuple selectors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Constraint tuples, like boxed and unboxed tuples, have their type and data constructor Uniques wired in (see Note [Uniques for tuple type and data constructors]). Constraint tuples are somewhat more involved, however. For a boxed or unboxed n-tuple, we need: * A Unique for the type constructor, and * A Unique for the data constructor With a constraint n-tuple, however, we need: * A Unique for the type constructor, * A Unique for the data constructor, and * A Unique for each of the n superclass selectors To pick a concrete example (n = 2), the binary constraint tuple has a type constructor and data constructor (%,%) along with superclass selectors $p1(%,%) and $p2(%,%). Just as we wire in the Uniques for constraint tuple type constructors and data constructors, we wish to wire in the Uniques for the superclass selectors as well. Not only does this make everything consistent, it also avoids a compile-time performance penalty whenever GHC.Classes is loaded from an interface file. This is because GHC.Classes defines constraint tuples as class definitions, and if these classes weren't wired in, then loading GHC.Classes would also load every single constraint tuple type constructor, data constructor, and superclass selector. See #18635. We encode the Uniques for constraint tuple superclass selectors as follows. The integral part of the Unique is broken up into bitfields for the arity and the position of the superclass. Given a selector for a constraint tuple with arity n (zero-based) and position k (where 1 <= k <= n), its Unique will look like: 00000000 nnnnnnnn kkkkkkkk We can use bit-twiddling tricks to access the arity and position with cTupleSelIdArityBits and cTupleSelIdPosBitmask, respectively. This pattern bears a certain resemblance to the way that the Uniques for unboxed sums are encoded. This is because for a unboxed sum of arity n, there are n corresponding data constructors, each with an alternative position k. Similarly, for a constraint tuple of arity n, there are n corresponding superclass selectors. Reading Note [Unique layout for unboxed sums] will instill an appreciation for how the encoding for constraint tuple superclass selector Uniques takes inspiration from the encoding for unboxed sum Uniques. -} mkCTupleTyConUnique :: Arity -> Unique mkCTupleTyConUnique a = mkUniqueInt 'k' (2*a) mkCTupleDataConUnique :: Arity -> Unique mkCTupleDataConUnique a = mkUniqueInt 'm' (3*a) mkCTupleSelIdUnique :: ConTagZ -> Arity -> Unique mkCTupleSelIdUnique sc_pos arity | sc_pos >= arity = panic ("mkCTupleSelIdUnique: " ++ show sc_pos ++ " >= " ++ show arity) | otherwise = mkUniqueInt 'j' (arity `shiftL` cTupleSelIdArityBits + sc_pos) getCTupleTyConName :: Int -> Name getCTupleTyConName n = case n `divMod` 2 of (arity, 0) -> cTupleTyConName arity (arity, 1) -> mkPrelTyConRepName $ cTupleTyConName arity _ -> panic "getCTupleTyConName: impossible" getCTupleDataConName :: Int -> Name getCTupleDataConName n = case n `divMod` 3 of (arity, 0) -> cTupleDataConName arity (arity, 1) -> getName $ dataConWrapId $ cTupleDataCon arity (arity, 2) -> mkPrelTyConRepName $ cTupleDataConName arity _ -> panic "getCTupleDataConName: impossible" getCTupleSelIdName :: Int -> Name getCTupleSelIdName n = cTupleSelIdName (sc_pos + 1) arity where arity = n `shiftR` cTupleSelIdArityBits sc_pos = n .&. cTupleSelIdPosBitmask -- Given the arity of a constraint tuple, this is the number of bits by which -- one must shift it to the left in order to encode the arity in the Unique -- of a superclass selector for that constraint tuple. Alternatively, given the -- Unique for a constraint tuple superclass selector, this is the number of -- bits by which one must shift it to the right to retrieve the arity of the -- constraint tuple. See Note [Unique layout for constraint tuple selectors]. cTupleSelIdArityBits :: Int cTupleSelIdArityBits = 8 -- Given the Unique for a constraint tuple superclass selector, one can -- retrieve the position of the selector by ANDing this mask, which will -- clear all but the eight least significant bits. -- See Note [Unique layout for constraint tuple selectors]. cTupleSelIdPosBitmask :: Int cTupleSelIdPosBitmask = 0xff -------------------------------------------------- -- Normal tuples mkTupleDataConUnique :: Boxity -> Arity -> Unique mkTupleDataConUnique Boxed a = mkUniqueInt '7' (3*a) -- may be used in C labels mkTupleDataConUnique Unboxed a = mkUniqueInt '8' (3*a) mkTupleTyConUnique :: Boxity -> Arity -> Unique mkTupleTyConUnique Boxed a = mkUniqueInt '4' (2*a) mkTupleTyConUnique Unboxed a = mkUniqueInt '5' (2*a) -- | This function is an inverse of `mkTupleTyConUnique` isTupleTyConUnique :: Unique -> Maybe (Boxity, Arity) isTupleTyConUnique u = case (tag, i) of ('4', 0) -> Just (Boxed, arity) ('5', 0) -> Just (Unboxed, arity) _ -> Nothing where (tag, n) = unpkUnique u (arity', i) = quotRem n 2 arity = word64ToInt arity' getTupleTyConName :: Boxity -> Int -> Name getTupleTyConName boxity n = case n `divMod` 2 of (arity, 0) -> tyConName $ tupleTyCon boxity arity (arity, 1) -> fromMaybe (panic "getTupleTyConName") $ tyConRepName_maybe $ tupleTyCon boxity arity _ -> panic "getTupleTyConName: impossible" getTupleDataConName :: Boxity -> Int -> Name getTupleDataConName boxity n = case n `divMod` 3 of (arity, 0) -> dataConName $ tupleDataCon boxity arity (arity, 1) -> idName $ dataConWorkId $ tupleDataCon boxity arity (arity, 2) -> fromMaybe (panic "getTupleDataCon") $ tyConRepName_maybe $ promotedTupleDataCon boxity arity _ -> panic "getTupleDataConName: impossible" {- Note [Uniques for wired-in prelude things and known tags] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Allocation of unique supply characters: v,u: for renumbering value-, and usage- vars. B: builtin C-E: pseudo uniques (used in native-code generator) I: GHCi evaluation X: uniques from mkLocalUnique _: unifiable tyvars (above) 0-9: prelude things below (no numbers left any more..) :: (prelude) parallel array data constructors other a-z: lower case chars for unique supplies. Used so far: a TypeChecking? b Boxing tycons & datacons c StgToCmm/Renamer d desugarer f AbsC flattener i TypeChecking interface files j constraint tuple superclass selectors k constraint tuple tycons m constraint tuple datacons n Native/LLVM codegen r Hsc name cache s simplifier u Cmm pipeline y GHCi bytecode generator z anonymous sums Note [Related uniques for wired-in things] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * All wired in tycons actually use *two* uniques: * u: the TyCon itself * u+1: the TyConRepName of the TyCon (for use with TypeRep) The "+1" is implemented in tyConRepNameUnique. If this ever changes, make sure to also change the treatment for boxing tycons. * All wired in datacons use *three* uniques: * u: the DataCon itself * u+1: its worker Id * u+2: the TyConRepName of the promoted TyCon No wired-in datacons have wrappers. The "+1" is implemented in dataConWorkerUnique and the "+2" is in dataConTyRepNameUnique. If this ever changes, make sure to also change the treatment for boxing tycons. * Because boxing tycons (see Note [Boxing constructors] in GHC.Builtin.Types) come with both a tycon and a datacon, each one takes up five slots, combining the two cases above. Getting from the tycon to the datacon (by adding 2) is implemented in boxingDataConUnique. -} mkAlphaTyVarUnique :: Int -> Unique mkPreludeClassUnique :: Int -> Unique mkPrimOpIdUnique :: Int -> Unique -- See Note [Primop wrappers] in GHC.Builtin.PrimOps. mkPrimOpWrapperUnique :: Int -> Unique mkPreludeMiscIdUnique :: Int -> Unique mkAlphaTyVarUnique i = mkUniqueInt '1' i mkPreludeClassUnique i = mkUniqueInt '2' i -------------------------------------------------- mkPrimOpIdUnique op = mkUniqueInt '9' (2*op) mkPrimOpWrapperUnique op = mkUniqueInt '9' (2*op+1) mkPreludeMiscIdUnique i = mkUniqueInt '0' i mkPseudoUniqueE, mkBuiltinUnique :: Int -> Unique mkBuiltinUnique i = mkUniqueInt 'B' i mkPseudoUniqueE i = mkUniqueInt 'E' i -- used in NCG spiller to create spill VirtualRegs mkRegSingleUnique, mkRegPairUnique, mkRegSubUnique, mkRegClassUnique :: Int -> Unique mkRegSingleUnique = mkUniqueInt 'R' mkRegSubUnique = mkUniqueInt 'S' mkRegPairUnique = mkUniqueInt 'P' mkRegClassUnique = mkUniqueInt 'L' mkCostCentreUnique :: Int -> Unique mkCostCentreUnique = mkUniqueInt 'C' varNSUnique, dataNSUnique, tvNSUnique, tcNSUnique :: Unique varNSUnique = mkUnique 'i' 0 dataNSUnique = mkUnique 'd' 0 tvNSUnique = mkUnique 'v' 0 tcNSUnique = mkUnique 'c' 0 mkFldNSUnique :: FastString -> Unique mkFldNSUnique fs = mkUniqueInt 'f' (uniqueOfFS fs) isFldNSUnique :: Unique -> Bool isFldNSUnique uniq = case unpkUnique uniq of (tag, _) -> tag == 'f' initExitJoinUnique :: Unique initExitJoinUnique = mkUnique 's' 0 -------------------------------------------------- -- Wired-in type constructor keys occupy *two* slots: -- See Note [Related uniques for wired-in things] mkPreludeTyConUnique :: Int -> Unique mkPreludeTyConUnique i = mkUniqueInt '3' (2*i) tyConRepNameUnique :: Unique -> Unique tyConRepNameUnique u = incrUnique u -------------------------------------------------- -- Wired-in data constructor keys occupy *three* slots: -- See Note [Related uniques for wired-in things] mkPreludeDataConUnique :: Int -> Unique mkPreludeDataConUnique i = mkUniqueInt '6' (3*i) -- Must be alphabetic dataConTyRepNameUnique, dataConWorkerUnique :: Unique -> Unique dataConWorkerUnique u = incrUnique u dataConTyRepNameUnique u = stepUnique u 2 -------------------------------------------------- -- The data constructors of RuntimeRep occupy *five* slots: -- See Note [Related uniques for wired-in things] -- -- Example: WordRep -- -- * u: the TyCon of the boxing data type WordBox -- * u+1: the TyConRepName of the boxing data type -- * u+2: the DataCon for MkWordBox -- * u+3: the worker id for MkWordBox -- * u+4: the TyConRepName of the promoted TyCon 'MkWordBox -- -- Note carefully that -- * u,u+1 are in sync with the conventions for -- wired-in type constructors, above -- * u+2,u+3,u+4 are in sync with the conventions for -- wired-in data constructors, above -- A little delicate! mkBoxingTyConUnique :: Int -> Unique mkBoxingTyConUnique i = mkUniqueInt 'b' (5*i) boxingDataConUnique :: Unique -> Unique boxingDataConUnique u = stepUnique u 2