{-# OPTIONS_GHC -fno-warn-orphans #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ViewPatterns #-} module Data.Graph.UGraph where import qualified Data.Foldable as F (toList) import Data.List (foldl') import GHC.Generics (Generic) import Control.DeepSeq import Data.Hashable import qualified Data.HashMap.Lazy as HM import qualified Data.Sequence as S import Test.QuickCheck import Text.Read import Data.Graph.Types -- | Undirected Graph of Vertices in /v/ and Edges with attributes in /e/ newtype UGraph v e = UGraph { unUGraph :: HM.HashMap v (Links v e) } deriving (Eq, Generic) instance (Hashable v, Eq v, Show v, Show e) => Show (UGraph v e) where showsPrec d m = showParen (d > 10) $ showString "fromList " . shows (toList m) instance (Hashable v, Eq v, Read v, Read e) => Read (UGraph v e) where readPrec = parens $ prec 10 $ do Ident "fromList" <- lexP xs <- readPrec return (fromList xs) instance (NFData v, NFData e) => NFData (UGraph v e) instance (Arbitrary v, Arbitrary e, Hashable v, Num v, Ord v) => Arbitrary (UGraph v e) where arbitrary = insertEdges <$> arbitrary <*> pure empty instance Graph UGraph where empty = UGraph HM.empty order (UGraph g) = HM.size g vertices (UGraph g) = HM.keys g edgePairs g = toPair <$> edges g containsVertex (UGraph g) = flip HM.member g areAdjacent (UGraph g) v1 v2 = HM.member v2 $ getLinks v1 g adjacentVertices (UGraph g) v = HM.keys $ getLinks v g directlyReachableVertices g v = v : (adjacentVertices g v) vertexDegree (UGraph g) v = length $ HM.keys $ getLinks v g insertVertex v (UGraph g) = UGraph $ hashMapInsert v HM.empty g containsEdgePair = containsEdge' incidentEdgePairs g v = fmap toPair $ incidentEdges g v insertEdgePair (v1, v2) g = insertEdge (Edge v1 v2 ()) g removeEdgePair = removeEdge' removeVertex v g = UGraph $ (\(UGraph g') -> HM.delete v g') $ foldl' (flip removeEdge) g $ incidentEdges g v isSimple g = foldl' go True $ vertices g where go bool v = bool && (not $ HM.member v $ getLinks v $ unUGraph g) fromAdjacencyMatrix m | length m /= length (head m) = Nothing | otherwise = Just $ insertEdges (foldl' genEdges [] labeledM) empty where labeledM :: [(Int, [(Int, Int)])] labeledM = zip [1..] $ fmap (zip [1..]) m genEdges :: [Edge Int ()] -> (Int, [(Int, Int)]) -> [Edge Int ()] genEdges es (i, vs) = es ++ fmap (\v -> Edge i v ()) connected where connected = fst <$> filter (\(_, v) -> v /= 0) vs toAdjacencyMatrix = undefined -- | @O(log n)@ Insert an undirected 'Edge' into a 'UGraph' -- | The involved vertices are inserted if don't exist. If the graph already -- | contains the Edge, its attribute is updated insertEdge :: (Hashable v, Eq v) => Edge v e -> UGraph v e -> UGraph v e insertEdge (Edge v1 v2 edgeAttr) g = UGraph $ link v2 v1 $ link v1 v2 g' where g' = unUGraph $ insertVertices [v1, v2] g link fromV toV = HM.adjust (insertLink toV edgeAttr) fromV -- | @O(m*log n)@ Insert many directed 'Edge's into a 'UGraph' -- | Same rules as 'insertEdge' are applied insertEdges :: (Hashable v, Eq v) => [Edge v e] -> UGraph v e -> UGraph v e insertEdges es g = foldl' (flip insertEdge) g es -- | @O(log n)@ Remove the undirected 'Edge' from a 'UGraph' if present -- | The involved vertices are left untouched removeEdge :: (Hashable v, Eq v) => Edge v e -> UGraph v e -> UGraph v e removeEdge = removeEdgePair . toPair -- | Same as 'removeEdge' but the edge is an unordered pair removeEdge' :: (Hashable v, Eq v) => (v, v) -> UGraph v e -> UGraph v e removeEdge' (v1, v2) graph@(UGraph g) | containsVertex graph v1 && containsVertex graph v2 = UGraph $ update v2Links v2 $ update v1Links v1 g | otherwise = graph where v1Links = HM.delete v2 $ getLinks v1 g v2Links = HM.delete v1 $ getLinks v2 g update = HM.adjust . const -- | @O(log n)@ Remove the undirected 'Edge' from a 'UGraph' if present -- | The involved vertices are also removed removeEdgeAndVertices :: (Hashable v, Eq v) => Edge v e -> UGraph v e -> UGraph v e removeEdgeAndVertices = removeEdgePairAndVertices . toPair -- | @O(n*m)@ Retrieve the 'Edge's of a 'UGraph' edges :: forall v e . (Hashable v, Eq v) => UGraph v e -> [Edge v e] edges g = F.toList $ go g S.empty where go (order -> 0) es = es go g' es = let v = head $ vertices g' in go (removeVertex v g') (es S.>< (S.fromList $ incidentEdges g' v)) -- | @O(log n)@ Tell if an undirected 'Edge' exists in the graph containsEdge :: (Hashable v, Eq v) => UGraph v e -> Edge v e -> Bool containsEdge g = containsEdge' g . toPair -- | Same as 'containsEdge' but the edge is an unordered pair containsEdge' :: (Hashable v, Eq v) => UGraph v e -> (v, v) -> Bool containsEdge' graph@(UGraph g) (v1, v2) = containsVertex graph v1 && containsVertex graph v2 && v2 `HM.member` v1Links where v1Links = getLinks v1 g -- | Retrieve the incident 'Edge's of a Vertex incidentEdges :: (Hashable v, Eq v) => UGraph v e -> v -> [Edge v e] incidentEdges (UGraph g) v = fmap (uncurry (Edge v)) (HM.toList (getLinks v g)) -- * Lists -- | Convert a 'UGraph' to a list of 'Edge's -- | Same as 'edges' toList :: (Hashable v, Eq v) => UGraph v e -> [Edge v e] toList = edges -- | Construct a 'UGraph' from a list of 'Edge's fromList :: (Hashable v, Eq v) => [Edge v e] -> UGraph v e fromList es = insertEdges es empty