{-# LANGUAGE GADTs, TypeFamilies, ExistentialQuantification, MultiParamTypeClasses, FunctionalDependencies, FlexibleContexts, FlexibleInstances, GeneralizedNewtypeDeriving, EmptyDataDecls #-} -- | This module defines the functions and datatypes used throughout the framework. -- Most of them are for the internal use module Database.Groundhog.Core ( -- * Main types PersistEntity(..) , PersistValue(..) , PersistField(..) , SinglePersistField(..) , PurePersistField(..) , PrimitivePersistField(..) , Embedded(..) , Projection(..) , RestrictionHolder , Unique , KeyForBackend(..) , BackendSpecific , ConstructorMarker , UniqueMarker , Proxy , HFalse , HTrue , ZT (..) -- ZonedTime wrapper , delim -- * Constructing expressions , Cond(..) , ExprRelation(..) , Update(..) , (~>) , toArith , FieldLike(..) , SubField(..) , AutoKeyField(..) , FieldChain , NeverNull , Numeric , Arith(..) , Expr(..) , Order(..) , HasSelectOptions(..) , SelectOptions(..) , limitTo , offsetBy , orderBy -- * Type description , DbType(..) , EntityDef(..) , EmbeddedDef(..) , ConstructorDef(..) , Constructor(..) , IsUniqueKey(..) , UniqueDef(..) -- * Migration , SingleMigration , NamedMigrations , Migration -- * Database , PersistBackend(..) , DbDescriptor(..) , RowPopper , DbPersist(..) , runDbPersist ) where import Control.Applicative (Applicative) import Control.Monad.Base (MonadBase (liftBase)) import Control.Monad.Trans.Class (MonadTrans(..)) import Control.Monad.IO.Class (MonadIO(..)) import Control.Monad.Trans.Control (MonadBaseControl (..), ComposeSt, defaultLiftBaseWith, defaultRestoreM, MonadTransControl (..)) import Control.Monad.Trans.Reader (ReaderT(..), runReaderT) import Control.Monad.Trans.State (StateT) import Control.Monad (liftM) import Data.ByteString.Char8 (ByteString) import Data.Int (Int64) import Data.Map (Map) import Data.Time (Day, TimeOfDay, UTCTime) import Data.Time.LocalTime (ZonedTime, zonedTimeToUTC, zonedTimeToLocalTime, zonedTimeZone) -- | Only instances of this class can be persisted in a database class (PersistField v, PurePersistField (AutoKey v)) => PersistEntity v where -- | This type is used for typesafe manipulation of separate fields of datatype v. -- Each constructor in 'Field' corresponds to its field in a datatype v. -- It is parametrised by constructor phantom type and field value type. data Field v :: ((* -> *) -> *) -> * -> * -- | A unique identifier of a value stored in a database. This may be a primary key, a constraint or unique indices. The second parameter is the key description. data Key v :: * -> * -- | This type is the default autoincremented key for the entity. If entity does not have such key, AutoKey v = (). type AutoKey v -- | This type is the default key for the entity. type DefaultKey v -- | Returns a complete description of the type entityDef :: v -> EntityDef -- | Marshalls value to a list of 'PersistValue' ready for insert to a database toEntityPersistValues :: PersistBackend m => v -> m ([PersistValue] -> [PersistValue]) -- | Constructs the value from the list of 'PersistValue' fromEntityPersistValues :: PersistBackend m => [PersistValue] -> m (v, [PersistValue]) -- | Returns constructor number and a list of uniques names and corresponding field values getUniques :: DbDescriptor db => Proxy db -> v -> (Int, [(String, [PersistValue])]) -- | Is internally used by FieldLike Field instance -- We could avoid this function if class FieldLike allowed FieldLike Fields Data or FieldLike (Fields Data). However that would require additional extensions in user-space code entityFieldChain :: Field v c a -> FieldChain -- | A holder for Unique constraints data Unique (u :: (* -> *) -> *) -- | Key marked with this type can have value for any backend data BackendSpecific -- | A phantom datatype to make instance head diffirent @c (ConstructorMarker, v)@ data ConstructorMarker v a -- | A phantom datatype to make instance head diffirent @u (UniqueMarker, v)@ data UniqueMarker v a -- | A holder for DB type in backend-specific keys data KeyForBackend db v = (DbDescriptor db, PersistEntity v) => KeyForBackend (AutoKeyType db) data Proxy a data HFalse data HTrue -- | Represents condition for a query. data Cond v (c :: (* -> *) -> *) = And (Cond v c) (Cond v c) | Or (Cond v c) (Cond v c) | Not (Cond v c) | forall a b . Compare ExprRelation (Expr v c a) (Expr v c b) data ExprRelation = Eq | Ne | Gt | Lt | Ge | Le deriving Show data Update v c = forall f a b . (FieldLike f (RestrictionHolder v c) a) => Update f (Expr v c b) -- | Defines sort order of a result-set data Order v c = forall a f . (FieldLike f (RestrictionHolder v c) a) => Asc f | forall a f . (FieldLike f (RestrictionHolder v c) a) => Desc f type FieldChain = ((String, DbType), [(String, EmbeddedDef)]) -- | Generalises data that can occur in expressions (so far there are Field and SubField). class Projection f r a => FieldLike f r a | f -> r a where -- | It is used to map field to column names. It can be either a column name for a regular field of non-embedded type or a list of this field and the outer fields in reverse order. Eg, fieldChain $ SomeField ~> Tuple2_0Selector may result in Right [(\"val0\", DbString), (\"some\", DbEmbedded False [dbType \"\", dbType True])]. -- Function fieldChain can be simplified to f v c a -> [(String, DbType)]. Datatype Either is used for optimisation of the common case, eg Field v c Int. fieldChain :: f -> FieldChain class PersistField v => Embedded v where data Selector v :: * -> * selectorNum :: Selector v a -> Int infixl 5 ~> -- | Accesses fields of the embedded datatypes. For example, @SomeField ==. (\"abc\", \"def\") ||. SomeField ~> Tuple2_0Selector ==. \"def\"@ (~>) :: (PersistEntity v, Constructor c, FieldLike f (RestrictionHolder v c) a, Embedded a) => f -> Selector a a' -> SubField v c a' field ~> sel = case fieldChain field of ((name, typ), prefix) -> case typ of DbEmbedded emb@(EmbeddedDef _ ts) -> SubField (ts !! selectorNum sel, (name, emb):prefix) DbEntity (Just (emb@(EmbeddedDef _ ts), _)) _ -> SubField (ts !! selectorNum sel, (name, emb):prefix) other -> error $ "(~>): cannot get subfield of non-embedded type " ++ show other newtype SubField v (c :: (* -> *) -> *) a = SubField ((String, DbType), [(String, EmbeddedDef)]) -- | It can be used in expressions like a regular field. Note that the constructor should be specified for the condition. -- For example, @delete (AutoKeyField `asTypeOf` (undefined :: f v SomeConstructor) ==. k)@ -- or @delete (AutoKeyField ==. k ||. SomeField ==. \"DUPLICATE\")@ data AutoKeyField v c where AutoKeyField :: (PersistEntity v, Constructor c) => AutoKeyField v c data RestrictionHolder v (c :: (* -> *) -> *) -- | Any data that can be fetched from a database class Projection p r a | p -> r a where -- | It is like a 'fieldChain' for many fields. Difflist is used for concatenation efficiency. projectionFieldChains :: p -> [FieldChain] -> [FieldChain] -- | It is like 'fromPersistValues'. However, we cannot use it for projections in all cases. For the 'PersistEntity' instances 'fromPersistValues' expects entity id instead of the entity values. projectionResult :: PersistBackend m => p -> [PersistValue] -> m (a, [PersistValue]) data SelectOptions v c hasLimit hasOffset hasOrder = SelectOptions { condOptions :: Cond v c , limitOptions :: Maybe Int , offsetOptions :: Maybe Int , orderOptions :: [Order v c] } class HasSelectOptions a v c | a -> v c where type HasLimit a type HasOffset a type HasOrder a getSelectOptions :: a -> SelectOptions v c (HasLimit a) (HasOffset a) (HasOrder a) instance HasSelectOptions (Cond v c) v c where type HasLimit (Cond v c) = HFalse type HasOffset (Cond v c) = HFalse type HasOrder (Cond v c) = HFalse getSelectOptions a = SelectOptions a Nothing Nothing [] instance HasSelectOptions (SelectOptions v c hasLimit hasOffset hasOrder) v c where type HasLimit (SelectOptions v c hasLimit hasOffset hasOrder) = hasLimit type HasOffset (SelectOptions v c hasLimit hasOffset hasOrder) = hasOffset type HasOrder (SelectOptions v c hasLimit hasOffset hasOrder) = hasOrder getSelectOptions = id limitTo :: (HasSelectOptions a v c, HasLimit a ~ HFalse) => a -> Int -> SelectOptions v c HTrue (HasOffset a) (HasOrder a) limitTo opts lim = case getSelectOptions opts of SelectOptions c _ off ord -> SelectOptions c (Just lim) off ord offsetBy :: (HasSelectOptions a v c, HasOffset a ~ HFalse) => a -> Int -> SelectOptions v c (HasLimit a) HTrue (HasOrder a) offsetBy opts off = case getSelectOptions opts of SelectOptions c lim _ ord -> SelectOptions c lim (Just off) ord orderBy :: (HasSelectOptions a v c, HasOrder a ~ HFalse) => a -> [Order v c] -> SelectOptions v c (HasLimit a) (HasOffset a) HTrue orderBy opts ord = case getSelectOptions opts of SelectOptions c lim off _ -> SelectOptions c lim off ord newtype Monad m => DbPersist conn m a = DbPersist { unDbPersist :: ReaderT conn m a } deriving (Monad, MonadIO, Functor, Applicative, MonadTrans) instance MonadBase IO m => MonadBase IO (DbPersist conn m) where liftBase = lift . liftBase instance MonadTransControl (DbPersist conn) where newtype StT (DbPersist conn) a = StReader {unStReader :: a} liftWith f = DbPersist $ ReaderT $ \r -> f $ \t -> liftM StReader $ runReaderT (unDbPersist t) r restoreT = DbPersist . ReaderT . const . liftM unStReader instance MonadBaseControl IO m => MonadBaseControl IO (DbPersist conn m) where newtype StM (DbPersist conn m) a = StMSP {unStMSP :: ComposeSt (DbPersist conn) m a} liftBaseWith = defaultLiftBaseWith StMSP restoreM = defaultRestoreM unStMSP runDbPersist :: Monad m => DbPersist conn m a -> conn -> m a runDbPersist = runReaderT . unDbPersist class PrimitivePersistField (AutoKeyType a) => DbDescriptor a where -- | Type of the database default autoincremented key. For example, Sqlite has Int64 type AutoKeyType a class (Monad m, DbDescriptor (PhantomDb m)) => PersistBackend m where -- | A token which defines the DB type. For example, different monads working with Sqlite, return Sqlite type. type PhantomDb m -- | Insert a new record to a database and return its 'Key' insert :: PersistEntity v => v -> m (AutoKey v) -- | Try to insert a record and return Right newkey. If there is a constraint violation for the given constraint, Left oldkey is returned -- , where oldkey is an identifier of the record with the matching values. insertBy :: (PersistEntity v, IsUniqueKey (Key v (Unique u))) => u (UniqueMarker v) -> v -> m (Either (AutoKey v) (AutoKey v)) -- | Try to insert a record and return Right newkey. If there is a constraint violation for any constraint, Left oldkey is returned -- , where oldkey is an identifier of the record with the matching values. Note that if several constraints are violated, a key of an arbitrary matching record is returned. insertByAll :: PersistEntity v => v -> m (Either (AutoKey v) (AutoKey v)) -- | Replace a record with the given autogenerated key. Result is undefined if the record does not exist. replace :: (PersistEntity v, PrimitivePersistField (Key v BackendSpecific)) => Key v BackendSpecific -> v -> m () -- | Return a list of the records satisfying the condition select :: (PersistEntity v, Constructor c, HasSelectOptions opts v c) => opts -> m [v] -- | Return a list of all records. Order is undefined. It is useful for datatypes with multiple constructors. selectAll :: PersistEntity v => m [(AutoKey v, v)] -- | Fetch an entity from a database get :: (PersistEntity v, PrimitivePersistField (Key v BackendSpecific)) => Key v BackendSpecific -> m (Maybe v) -- | Fetch an entity from a database by its unique key getBy :: (PersistEntity v, IsUniqueKey (Key v (Unique u))) => Key v (Unique u) -> m (Maybe v) -- | Update the records satisfying the condition update :: (PersistEntity v, Constructor c) => [Update v c] -> Cond v c -> m () -- | Remove the records satisfying the condition delete :: (PersistEntity v, Constructor c) => Cond v c -> m () -- | Remove the record with given key. No-op if the record does not exist deleteByKey :: (PersistEntity v, PrimitivePersistField (Key v BackendSpecific)) => Key v BackendSpecific -> m () -- | Count total number of records satisfying the condition count :: (PersistEntity v, Constructor c) => Cond v c -> m Int -- | Count total number of records with all constructors countAll :: PersistEntity v => v -> m Int -- | Fetch projection of some fields project :: (PersistEntity v, Constructor c, Projection p (RestrictionHolder v c) a', HasSelectOptions opts v c) => p -> opts -> m [a'] -- | Check database schema and create migrations for the entity and the entities it contains migrate :: PersistEntity v => v -> Migration m -- | Execute raw query executeRaw :: Bool -- ^ keep in cache -> String -- ^ query -> [PersistValue] -- ^ positional parameters -> m () -- | Execute raw query with results queryRaw :: Bool -- ^ keep in cache -> String -- ^ query -> [PersistValue] -- ^ positional parameters -> (RowPopper m -> m a) -- ^ results processing function -> m a insertList :: PersistField a => [a] -> m Int64 getList :: PersistField a => Int64 -> m [a] type RowPopper m = m (Maybe [PersistValue]) type Migration m = StateT NamedMigrations m () -- | Datatype names and corresponding migrations type NamedMigrations = Map String SingleMigration -- | Either error messages or migration queries with safety flag and execution order type SingleMigration = Either [String] [(Bool, Int, String)] -- | Describes an ADT. data EntityDef = EntityDef { -- | Entity name. @entityName (entityDef v) == persistName v@ entityName :: String -- | Named types of the instantiated polymorphic type parameters , typeParams :: [DbType] -- | List of entity constructors definitions , constructors :: [ConstructorDef] } deriving (Show, Eq) -- | Describes an entity constructor data ConstructorDef = ConstructorDef { -- | Number of the constructor in the ADT constrNum :: Int -- | Constructor name , constrName :: String -- | Autokey name if any , constrAutoKeyName :: Maybe String -- | Parameter names with their named type , constrParams :: [(String, DbType)] -- | Uniqueness constraints on the constructor fiels , constrUniques :: [UniqueDef] } deriving (Show, Eq) -- | Phantom constructors are made instances of this class. This class should be used only by Template Haskell codegen class Constructor c where -- returning ConstructorDef seems more logical, but it would require the value datatype -- it can be supplied either as a part of constructor type, eg instance Constructor (MyDataConstructor (MyData a)) which requires -XFlexibleInstances -- or as a separate type, eg instance Constructor MyDataConstructor (MyData a) which requires -XMultiParamTypeClasses -- the phantoms are primarily used to get the constructor name. So to keep user code cleaner we return only the name and number, which can be later used to get ConstructorDef from the EntityDef phantomConstrName :: c (a :: * -> *) -> String phantomConstrNum :: c (a :: * -> *) -> Int class (Constructor (UniqueConstr uKey), PurePersistField uKey) => IsUniqueKey uKey where type UniqueConstr uKey :: (* -> *) -> * extractUnique :: uKey ~ Key v u => v -> uKey uniqueNum :: uKey -> Int -- | Unique name and list of the field names that form a unique combination. -- Only fields of 'PrimitivePersistField' types can be used in a unique definition data UniqueDef = UniqueDef { uniqueName :: String , uniqueFields :: [(String, DbType)] } deriving (Show, Eq) -- | A DB data type. Naming attempts to reflect the underlying Haskell -- datatypes, eg DbString instead of DbVarchar. Different databases may -- have different translations for these types. data DbType = DbString | DbInt32 | DbInt64 | DbReal | DbBool | DbDay | DbTime | DbDayTime | DbDayTimeZoned | DbBlob -- ByteString -- More complex types | DbMaybe DbType | DbList String DbType -- list name and type of its argument | DbEmbedded EmbeddedDef -- Nothing means autokey, Just contains a unique key definition and a name of unique constraint. | DbEntity (Maybe (EmbeddedDef, String)) EntityDef deriving (Eq, Show) -- | The first argument is a flag which defines if the field names should be concatenated with the outer field name (False) or used as is which provides full control over table column names (True). -- Value False should be the default value so that a datatype can be embedded without name conflict concern. The second argument list of field names and field types. data EmbeddedDef = EmbeddedDef Bool [(String, DbType)] deriving (Eq, Show) -- | A raw value which can be stored in any backend and can be marshalled to -- and from a 'PersistField'. data PersistValue = PersistString String | PersistByteString ByteString | PersistInt64 Int64 | PersistDouble Double | PersistBool Bool | PersistDay Day | PersistTimeOfDay TimeOfDay | PersistUTCTime UTCTime | PersistZonedTime ZT | PersistNull deriving (Eq, Show) -- | Avoid orphan instances. newtype ZT = ZT ZonedTime deriving (Show, Read) instance Eq ZT where ZT a == ZT b = zonedTimeToLocalTime a == zonedTimeToLocalTime b && zonedTimeZone a == zonedTimeZone b instance Ord ZT where ZT a `compare` ZT b = zonedTimeToUTC a `compare` zonedTimeToUTC b -- | Arithmetic expressions which can include fields and literals data Arith v c a = Plus (Arith v c a) (Arith v c a) | Minus (Arith v c a) (Arith v c a) | Mult (Arith v c a) (Arith v c a) | Abs (Arith v c a) | forall f . (FieldLike f (RestrictionHolder v c) a) => ArithField f | Lit Int64 instance (PersistEntity v, Constructor c) => Eq (Arith v c a) where (Plus a1 b1) == (Plus a2 b2) = a1 == a2 && b1 == b2 (Minus a1 b1) == (Minus a2 b2) = a1 == a2 && b1 == b2 (Mult a1 b1) == (Mult a2 b2) = a1 == a2 && b1 == b2 (Abs a) == (Abs b) = a == b (ArithField a) == (ArithField b) = fieldChain a == fieldChain b (Lit a) == (Lit b) = a == b _ == _ = False instance (PersistEntity v, Constructor c) => Show (Arith v c a) where show (Plus a b) = "Plus (" ++ show a ++ ") (" ++ show b ++ ")" show (Minus a b) = "Minus (" ++ show a ++ ") (" ++ show b ++ ")" show (Mult a b) = "Mult (" ++ show a ++ ") (" ++ show b ++ ")" show (Abs a) = "Abs (" ++ show a ++ ")" show (ArithField a) = "ArithField " ++ show (fieldChain a) show (Lit a) = "Lit " ++ show a instance (PersistEntity v, Constructor c, Numeric a) => Num (Arith v c a) where a + b = Plus a b a - b = Minus a b a * b = Mult a b abs = Abs signum = error "no signum" fromInteger = Lit . fromInteger -- | Convert field to an arithmetic value toArith :: (PersistEntity v, FieldLike f (RestrictionHolder v c) a') => f -> Arith v c a' toArith = ArithField -- | Constraint for use in arithmetic expressions. 'Num' is not used to explicitly include only types supported by the library. -- TODO: consider replacement with 'Num' class Numeric a -- | Types which when converted to 'PersistValue' are never NULL. -- Consider the type @Maybe (Maybe a)@. Now Nothing is stored as NULL, so we cannot distinguish between Just Nothing and Nothing which is a problem. -- The purpose of this class is to ban the inner Maybe's. -- Maybe this class can be removed when support for inner Maybe's appears. class NeverNull a -- | Used to uniformly represent fields, constants and arithmetic expressions. -- A value should be converted to 'Expr' for usage in expressions data Expr v c a where ExprField :: (PersistEntity v, FieldLike f (RestrictionHolder v c) a') => f -> Expr v c f ExprArith :: PersistEntity v => Arith v c a -> Expr v c (Arith v c a) ExprPure :: forall v c a . PurePersistField a => a -> Expr v c a -- | Represents everything which can be put into a database. This data can be stored in multiple columns and tables. To get value of those columns we might need to access another table. That is why the result type is monadic. class PersistField a where -- | Return name of the type. If it is polymorhic, the names of parameter types are separated with 'Database.Groundhog.Generic.delim' symbol persistName :: a -> String -- | Convert a value into something which can be stored in a database column. -- Note that for complex datatypes it may insert them to return identifier toPersistValues :: PersistBackend m => a -> m ([PersistValue] -> [PersistValue]) -- | Constructs a value from a 'PersistValue'. For complex datatypes it may query the database fromPersistValues :: PersistBackend m => [PersistValue] -> m (a, [PersistValue]) -- | Description of value type dbType :: a -> DbType -- | Represents all datatypes that map into a single column. Getting value for that column might require monadic actions to access other tables. class PersistField a => SinglePersistField a where toSinglePersistValue :: PersistBackend m => a -> m PersistValue fromSinglePersistValue :: PersistBackend m => PersistValue -> m a -- | Represents all datatypes that map into several columns. Getting values for those columns is pure. class PersistField a => PurePersistField a where toPurePersistValues :: DbDescriptor db => Proxy db -> a -> ([PersistValue] -> [PersistValue]) fromPurePersistValues :: DbDescriptor db => Proxy db -> [PersistValue] -> (a, [PersistValue]) -- | Datatypes which can be converted directly to 'PersistValue'. The no-value parameter @DbDescriptor db => Proxy db@ allows conversion depend the database details while keeping it pure. class (SinglePersistField a, PurePersistField a) => PrimitivePersistField a where toPrimitivePersistValue :: DbDescriptor db => Proxy db -> a -> PersistValue fromPrimitivePersistValue :: DbDescriptor db => Proxy db -> PersistValue -> a delim :: Char delim = '#'