{-# language CPP #-} {-# language DerivingStrategies #-} {-# language FlexibleInstances #-} {-# language PackageImports #-} {-# language PatternSynonyms #-} {-# language Safe #-} #if MIN_VERSION_base(4,12,0) {-# language TypeOperators #-} #endif {-# language ViewPatterns #-} -- | -- Module : Data.Group -- Copyright : (c) 2020-2021 Emily Pillmore -- License : BSD-style -- -- Maintainer : Emily Pillmore , -- Reed Mullanix -- Stability : stable -- Portability : non-portable -- -- This module contains definitions for 'Group' and 'Abelian', -- along with the relevant combinators. -- module Data.Group ( -- * Groups -- $groups G.Group(..) -- * Group combinators , minus , gtimes , (><) -- ** Conjugation , conjugate , unconjugate , pattern Conjugate -- ** Elements , pattern Inverse , pattern IdentityElem -- ** Abelianization , Abelianizer(..) , abelianize , commutate , pattern Abelianized , pattern Quotiented -- * Abelian groups -- $abelian , G.Abelian ) where import Data.Bool import "groups" Data.Group as G import Data.Monoid import Prelude hiding (negate, exponent) -- $setup -- -- >>> import qualified Prelude -- >>> import Data.Group -- >>> import Data.Monoid -- >>> import Data.Semigroup -- >>> import Data.Word -- >>> :set -XTypeApplications -- >>> :set -XFlexibleContexts infixr 6 >< -- -------------------------------------------------------------------- -- -- Group combinators {- $groups The typeclass of groups (types with an associative binary operation that has an identity, and all inverses, i.e. a 'Monoid' with all inverses), representing the structural symmetries of a mathematical object. Instances should satisfy the following: [Right identity] @ x '<>' 'mempty' = x@ [Left identity] @'mempty' '<>' x = x@ [Associativity] @ x '<>' (y '<>' z) = (x '<>' y) '<>' z@ [Concatenation] @ 'mconcat' = 'foldr' ('<>') 'mempty'@ [Right inverses] @ x '<>' 'invert' x = 'mempty' @ [Left inverses] @ 'invert' x '<>' x = 'mempty' @ Some types can be viewed as a group in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define @newtype@s and make those instances of 'Group', e.g. 'Data.Semigroup.Sum' and 'Data.Semigroup.Product'. Often in practice such differences between addition and multiplication-like operations matter (e.g. when defining rings), and so, classes "additive" (the underlying operation is addition-like) and "multiplicative" group classes are provided in vis 'Data.Group.Additive.AdditiveGroup' and 'Data.Group.Multiplicative.MultiplicativeGroup'. Categorically, 'Group's may be viewed single-object groupoids. -} -- | An alias to 'pow'. -- -- Similar to 'Data.Semigroup.stimes' from 'Data.Semigroup', but handles -- negative powers by using 'invert' appropriately. -- -- === __Examples:__ -- -- >>> gtimes 2 (Sum 3) -- Sum {getSum = 6} -- >>> gtimes (-3) (Sum 3) -- Sum {getSum = -9} -- gtimes :: (Group a, Integral n) => n -> a -> a gtimes = flip pow {-# inline gtimes #-} -- | 'Group' subtraction. -- -- This function denotes principled 'Group' subtraction, where -- @a `minus` b@ translates into @a <> invert b@. This is because -- subtraction as an operator is non-associative, but the operation -- described in terms of addition and inversion is. -- minus :: Group a => a -> a -> a minus a b = a <> invert b {-# inline minus #-} -- | Apply @('<>')@, commuting its arguments. When the group is abelian, -- @a <> b@ is identically @b <> a@. -- (><) :: Group a => a -> a -> a a >< b = b <> a {-# inline (><) #-} -- -------------------------------------------------------------------- -- -- Group conjugation -- | Conjugate an element of a group by another element. -- When the group is abelian, conjugation is the identity. -- -- Symbolically, this is \( (g,a) \mapsto gag^{-1} \). -- -- === __Examples__: -- -- >>> let x = Sum (3 :: Int) -- >>> conjugate x x -- Sum {getSum = 3} -- conjugate :: Group a => a -> a -> a conjugate g a = (g <> a) `minus` g {-# inline conjugate #-} -- | Apply an inverse conjugate to a conjugated element. -- -- @ -- unconjugate . conjugate = id -- conjugate . unconjugate = id -- @ -- -- === __Examples__: -- -- >>> let x = Sum (3 :: Int) -- >>> unconjugate x (conjugate x x) -- Sum {getSum = 3} -- unconjugate :: Group a => a -> a -> a unconjugate g a = invert g <> a <> g -- | Bidirectional pattern for conjugation by a group element -- -- __Note:__ When the underlying 'Group' is abelian, this -- pattern is the identity. -- pattern Conjugate :: Group a => (a,a) -> (a,a) pattern Conjugate t <- (\(g,a) -> (g, conjugate g a) -> t) where Conjugate (g,a) = (g, unconjugate g a) {-# complete Conjugate #-} -- | Bidirectional pattern for inverse elements. pattern Inverse :: (Group g) => g -> g pattern Inverse t <- (invert -> t) where Inverse g = invert g -- | Bidirectional pattern for the identity element. pattern IdentityElem :: (Eq m, Monoid m) => m pattern IdentityElem <- ((== mempty) -> True) where IdentityElem = mempty -- -------------------------------------------------------------------- -- -- Abelianization -- | Quotient a pair of group elements by their commutator. -- -- The of the quotient \( G / [G,G] \) forms an abelian group, and 'Abelianizer' -- forms a functor from the category of groups to the category of Abelian groups. -- This functor is left adjoint to the inclusion functor \( Ab \rightarrow Grp \), -- forming a monad in \( Grp \). -- data Abelianizer a = Quot | Commuted a deriving stock (Eq, Show) instance Functor Abelianizer where fmap _ Quot = Quot fmap f (Commuted a) = Commuted (f a) instance Applicative Abelianizer where pure = Commuted Quot <*> _ = Quot _ <*> Quot = Quot Commuted f <*> Commuted a = Commuted (f a) instance Monad Abelianizer where return = pure (>>) = (*>) Quot >>= _ = Quot Commuted a >>= f = f a instance Foldable Abelianizer where foldMap _ Quot = mempty foldMap f (Commuted a) = f a instance Traversable Abelianizer where traverse _ Quot = pure Quot traverse f (Commuted a) = Commuted <$> f a instance Semigroup g => Semigroup (Abelianizer g) where Quot <> t = t t <> Quot = t Commuted a <> Commuted b = Commuted (a <> b) instance Monoid g => Monoid (Abelianizer g) where mempty = Quot instance (Eq g, Group g) => Group (Abelianizer g) where invert Quot = Quot invert (Commuted IdentityElem) = Quot invert (Commuted a) = Commuted (invert a) -- | Take the commutator of two elements of a group. -- commutate :: Group g => g -> g -> g commutate g g' = g <> g' <> invert g <> invert g' {-# inline commutate #-} -- | Quotient a pair of group elements by their commutator. -- -- Ranging over the entire group, this operation constructs -- the quotient of the group by its commutator sub-group -- \( G / [G,G] \). -- abelianize :: (Eq g, Group g) => g -> g -> Abelianizer g abelianize g g' | x == mempty = Quot | otherwise = Commuted x where x = commutate g g' {-# inline abelianize #-} -- | A unidirectional pattern synonym for elements of a group -- modulo commutators which are __not__ the identity. -- pattern Abelianized :: (Eq g, Group g) => g -> (g,g) pattern Abelianized x <- (uncurry abelianize -> Commuted x) -- | A unidirectional pattern synonym for elements of a group -- modulo commutators which are the identity. -- pattern Quotiented :: (Eq g, Group g) => (g,g) pattern Quotiented <- (uncurry abelianize -> Quot) -- -------------------------------------------------------------------- -- -- Abelian (commutative) groups {- $abelian Commutative 'Group's. Instances of 'Abelian' satisfy the following laws: [Commutativity] @x <> y = y <> x@ -}