`      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W XYZ[\]^_Noned`Integral conversionaFloating conversionbObtain C value from Haskell c.dObtain Haskell c from C value.e#Convert a C enumeration to Haskell.f#Convert a Haskell enumeration to C.gMarshalling of numerals `abdefghiSafe0 ! "$#%'&(*)+.-,/32100/3210+.-,(*)%'&"$#!   Safeu_`ab_ab`None&'-.06;<=>?AFSTVdjklcdefghijk ihgfedcjkNone< !Allocate and initialize a vector.Allocate a nullPtr if Nothing)Allocate and initialize a pointer vector.-Create a igraph object and attach a finalizerOA graph is a simple graph if it does not contain loop edges and multiple edges.LThe edges are given in a vector, the first two elements define the first edge (the order is from , to for directed graphs). The vector should contain even number of integer numbers between zero and the number of vertices in the graph minus one (inclusive). If you also want to add new vertices, call igraph_add_vertices() first.delete vertices delete edges9Checks whether a (graph, vertex or edge) attribute existsQuery a string vertex attributeQuery a string edge attribute.Set a string edge attribute.*Set a string edge attribute for all edges. Number of rowsNumber of columnsBThe edges to add, the first two elements are the first edge, etc.The number of vertices in the graph, if smaller or equal to the highest vertex id in the edges vector it will be increased automatically. So it is safe to give 0 here.Whether to create a directed graph or not. If yes, then the first edge points from the first vertex id in edges to the second, etc.mThe graph object to convert.NSpecifies the details of how exactly the conversion is done. Possible values: IGRAPH_TO_DIRECTED_ARBITRARY: the number of edges in the graph stays the same, an arbitrarily directed edge is created for each undirected edge; IGRAPH_TO_DIRECTED_MUTUAL: two directed edges are created for each undirected edge, one in each direction.+The graph to which the edges will be added.The edges themselves. The attributes of the new edges.Attribute name AttributesAttribute name AttributesThe type of the attributeThe name of the attributeThe name of the attributeThe id of the queried vertexThe name of the attributeThe id of the queried edgeName of the attributegString vector, the new attribute values. The length of this vector must match the number of vertices.The name of the attributeThe id of the queried vertex!The (new) value of the attribute.Name of the attributedString vector, the new attribute values. The length of this vector must match the number of edges.Xuvwxyz{|}~X~}|{zyxwvuNone-FVF Mutable labeled graph.Create a new graph.&Return the number of nodes in a graph.&Return the number of edges in a graph.#Add nodes with labels to the graph.nReturn the label of given node.Delete nodes from the graph._Add edges with labels to the graph. If you also want to add new vertices, call addNodes first.Delete edges from the graph.Set node attribute.Set edge attribute.vertices' labelsNode idEdge id None-<FVb!#Graph with labeled nodes and edges.Is the graph directed or not.&Return the number of nodes in a graph.Return all nodes.  nodes gr == [0 .. nNodes gr - 1].&Return the number of edges in a graph.Return all edges.#Whether a edge exists in the graph.Return the label of given node.6Return all nodes that are associated with given label.Return the label of given edge.Find the edge by edge ID.Find the edge label by edge ID.#Add nodes with labels to the graph.Delete nodes from the graph.#Add edges with labels to the graph.Delete edges from the graph.Create a empty graph.Create a graph."Create a graph from labeled edges..Create a graph from a stream of labeled edges.+Convert a mutable graph to immutable graph.[Convert a mutable graph to immutable graph. The original graph may not be used afterwards.Create a mutable graph.FCreate a mutable graph. The original graph may not be used afterwards.%Find all neighbors of the given node.4Find all nodes that have a link from the given node..Find all nodes that link to to the given node.)Apply a function to change nodes' labels.)Apply a function to change edges' labels.'Keep nodes that satisfy the constraint.'Keep edges that satisfy the constraint.Decides whether the input graph is a simple graph. A graph is a simple graph if it does not contain loop edges and multiple edges.Check whether the graph has at least one multiple edge. An edge is a multiple edge if there is another edge with the same head and tail vertices in the graph.vertices' labels.Nodes. Each will be assigned a ID from 0 to N.Labeled edges.Input, usually a file,deserialize the input into a stream of edgeso-a vector that is sufficient to hold all edges-cdef-fedcNone6;=d          None-l8#.Decides whether the graph is weakly connected.%,Decompose a graph into connected components.&@Checks whether a graph is a directed acyclic graph (DAG) or not.'6Calculate a possible topological sorting of the graph.(Calculate a possible topological sorting of the graph. If the graph is not acyclic (it has at least one cycle), a partial topological sort is returned.!The id of the source vertex.The id of the target vertex.!"#$%&'(!"#$%&'( None-uX)Every triple of vertices in a directed graph 003: A, B, C, the empty graph. 012: A->B, C, a graph with a single directed edge. 102: A -EB, C, a graph with a mutual connection between two vertices. 021D: A -B-gC, the binary out-tree. 021U: A->B<-C, the binary in-tree. 021C: A->B->C, the directed line. 111D: A -B<-C. 111U: A -B->C. 030T: A->B -C,A-C. Feed forward loop. 030C: A -B<-C,A- C. 201: A -B - C. 120D: A -B-C, A -C. 120U: A->B -C,A<-C. 120C: A->B->C, A - C. 210: A->B -C, A - C. 300: A -B -C, A -C, the complete graph.)*)* Noner09The base standard deviation of position change proposals1)The initial temperature for the annealing2.The cooling factor for the simulated annealing3+The Kamada-Kawai vertex attraction constant5{The maximum length of the move allowed for a vertex in a single iteration. A reasonable default is the number of vertices.6This parameter gives the area of the square on which the vertices will be placed. A reasonable default value is the number of vertices squared.78The cooling exponent. A reasonable default value is 1.5.8Determines the radius at which vertex-vertex repulsion cancels out attraction of adjacent vertices. A reasonable default value is area times the number of vertices.+,-./0123456789:;<<+,-./0123456789:; NoneV>,Determine whether two graphs are isomorphic.?|Creates a graph from the given isomorphism class. This function is implemented only for graphs with three or four vertices.=graph to be searched in smaller graph?+The number of vertices to add to the graph.The isomorphism class=>?@A=>?@A None-VFFReturn the Star graph. The center node is always associated with id 0.G0Creates a ring graph, a one dimensional lattice.I6Generates a random graph with a given degree sequence.JBRandomly rewires a graph while preserving the degree distribution.E$The number of vertices in the graph.%Whether to include self-edges (loops)FThe number of nodesH self-loopI Out degree In degreeJ%Number of rewiring trials to perform. BCDEFGHIJ EFGBCDHIJ None"#-EN&number of iterations, default is 10000Onumber of spins, default is 25Pthe temperature at the startQ'the algorithm stops at this temperatureR.the cooling factor for the simulated annealingS%the gamma parameter of the algorithm.T Communities.WeightsW node weightsCommunity finding algorithms KLMNOPQRSTUVW TWKLMNOPQRSUVNone%XbMinimum and maximum size of the cliques to be returned. No bound will be used if negative or zerocliques represented by node idsZbMinimum and maximum size of the cliques to be returned. No bound will be used if negative or zerocliques represented by node idsXYZ[XYZ[None\The normalized closeness centrality of a node is the average length of the shortest path between the node and all other nodes in the graph.]Betweenness centrality^Eigenvector centrality_+Google's PageRank algorithm, with option to\verticesoptional edge weights whether to normalize the results_WNode weights or reset probability. If provided, the personalized PageRank will be used Edge weights#damping factor, usually around 0.85\]^_\]^_None?!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_p !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~       !"#$%&'()*+,-./ 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^_`abcdefghijklmnopqrstuvwxyz+haskell-igraph-0.7.0-28bZ7LxlsbjHs79mtNetQJ IGraph.TypesIGraph.Internal.ConstantsIGraph.Internal.InitializationIGraph.InternalIGraph.MutableIGraphIGraph.Exporter.GEXFIGraph.Algorithms.StructureIGraph.Algorithms.MotifIGraph.Algorithms.LayoutIGraph.Algorithms.IsomorphismIGraph.Algorithms.GeneratorsIGraph.Algorithms.CommunityIGraph.Algorithms.CliqueIGraph.Algorithms.CentralityIGraph.Internal.C2HSIGraph.AlgorithmsEdgeTypeDUEquals_6989586621679077654DegseqIgraphDegseqSimpleIgraphDegseqVlIgraphDegseqSimpleNoMultipleStarMode IgraphStarOut IgraphStarInIgraphStarUndirectedIgraphStarMutualRewiringIgraphRewiringSimpleIgraphRewiringSimpleLoops ErdosRenyiIgraphErdosRenyiGnpIgraphErdosRenyiGnm PagerankAlgoIgraphPagerankAlgoPowerIgraphPagerankAlgoArpackIgraphPagerankAlgoPrpack Connectedness IgraphWeak IgraphStrongSubgraphImplementationIgraphSubgraphAutoIgraphSubgraphCopyAndDeleteIgraphSubgraphCreateFromScratchAttributeElemtypeIgraphAttributeGraphIgraphAttributeVertexIgraphAttributeEdgeSpinglassImplementationIgraphSpincommImpOrigIgraphSpincommImpNegSpincommUpdateIgraphSpincommUpdateSimpleIgraphSpincommUpdateConfig ToDirectedIgraphToDirectedArbitraryIgraphToDirectedMutual EdgeOrderTypeIgraphEdgeorderIdIgraphEdgeorderFromIgraphEdgeorderToNeimode IgraphOutIgraphIn IgraphAll IgraphTotal $fEnumNeimode$fEnumEdgeOrderType$fEnumToDirected$fEnumSpincommUpdate$fEnumSpinglassImplementation$fEnumAttributeElemtype$fEnumSubgraphImplementation$fEnumConnectedness$fEnumPagerankAlgo$fEnumErdosRenyi$fEnumRewiring$fEnumStarMode $fEnumDegseq $fShowNeimode $fEqNeimode$fShowEdgeOrderType$fEqEdgeOrderType$fEqToDirected$fShowSpincommUpdate$fEqSpincommUpdate$fShowSpinglassImplementation$fEqSpinglassImplementation$fShowAttributeElemtype$fEqAttributeElemtype$fShowSubgraphImplementation$fReadSubgraphImplementation$fEqSubgraphImplementation$fEqConnectedness$fShowPagerankAlgo$fReadPagerankAlgo$fEqPagerankAlgo$fShowErdosRenyi$fReadErdosRenyi$fEqErdosRenyi$fShowRewiring$fReadRewiring $fEqRewiring$fShowStarMode$fReadStarMode $fEqStarMode $fShowDegseq $fReadDegseq $fEqDegseqHasInithaskelligraphInit'_ igraphInithaskelligraphInitLEdgeEdgeLNodeNode SEdgeTypeUSym0DSym0 vertexAttredgeAttr$fSerializeEdgeType$fSingIEdgeTypeU$fSingIEdgeTypeD$fSDecideEdgeType $fSEqEdgeType$fSingKindEdgeType $fPEqEdgeType $fEqEdgeType$fGenericEdgeType ArpackOptAttributeRecord EdgeIterator EdgeSelectorVertexIteratorVertexSelectorMatrixBSVectorBSLen VectorPtrVector allocaVector allocaVectorNwithList withListMaybetoListigraphVectorCopyToigraphVectorNulligraphVectorFill igraphVectorEigraphVectorSetigraphVectorTailigraphVectorSizeallocaVectorPtrallocaVectorPtrNwithPtrstoListsigraphVectorPtrEigraphVectorPtrSetigraphVectorPtrSize toByteStringwithByteStringallocaBSVectorNwithByteStrings bsvectorSet allocaMatrix allocaMatrixN withRowLists toRowLists toColumnListsigraphMatrixNulligraphMatrixFill igraphMatrixEigraphMatrixSetigraphMatrixCopyToigraphMatrixNrowigraphMatrixNcol withIGraph allocaIGraph mkLabelToIdinitializeNullAttributeaddIGraphFinalizer igraphNew igraphCopy igraphCreateigraphIsSimpleigraphHasMultiplewithVerticesAllwithVerticesAdjwithVerticesVectorwithVerticesListiterateVerticesiterateVerticesC withEdgesAllwithEdgeIdsVectorwithEdgeIdsList iterateEdges iterateEdgesC igraphVcount igraphEcount igraphGetEid igraphEdgeigraphAddVertices igraphAddEdgeigraphAddEdgesigraphDeleteVerticesigraphDeleteEdgeswithAttr withBSAttrigraphHaskellAttributeHasAttrigraphHaskellAttributeVASigraphHaskellAttributeEASigraphHaskellAttributeVASSetigraphHaskellAttributeVASSetvigraphHaskellAttributeEASSetigraphHaskellAttributeEASSetvallocaArpackOptMGraph_mgraph _mlabelToNodenewnNodesnEdgesaddNodesdelNodesaddEdgesdelEdges setNodeAttr setEdgeAttrGraph_graph _labelToNode isDirectednodeslabNodesedgeslabEdgeshasEdgenodeLabgetNodesedgeLab getEdgeByEidgetEdgeLabByEidemptymkGraphfromLabeledEdgesfromLabeledEdges'freeze unsafeFreezethaw unsafeThaw neighborssucprenmapemapnfilterefilterisSimple hasMultiple$fSerializeGraphEdgeAttr _edgeLabel _edgeColour _edgeWeight_edgeArrowLength _edgeZindexNodeAttr_size _nodeColour _nodeLabel _positionX _positionY _nodeZindexdefaultNodeAttributesdefaultEdgeAttributes genXMLTree writeGEXF$fSerializeAlphaColour$fSerializeNodeAttr $fOrdNodeAttr$fSerializeEdgeAttr $fOrdEdgeAttr$fShowNodeAttr$fReadNodeAttr $fEqNodeAttr$fGenericNodeAttr$fShowEdgeAttr$fReadEdgeAttr $fEqEdgeAttr$fGenericEdgeAttrgetShortestPathinducedSubgraph isConnectedisStronglyConnected decomposeisDagtopSort topSortUnsafetriad triadCensus LayoutMethod KamadaKawaiLGLkk_seedkk_nIterkk_sigma kk_startTemp kk_coolFactkk_const lgl_nIter lgl_maxdeltalgl_area lgl_coolexplgl_repulserad lgl_cellsizedefaultKamadaKawai defaultLGL getLayoutgetSubisomorphisms isomorphicisoclassCreate isoclass3 isoclass4ErdosRenyiModelGNPGNMfullstarringerdosRenyiGamedegreeSequenceGamerewireCommunityMethodLeadingEigenvector Spinglass_nIter_nSpins _startTemp _stopTemp _coolFact_gamma modularitydefaultLeadingEigenvectordefaultSpinglass findCommunitycliqueslargestCliquesmaximalCliques cliqueNumber closeness betweennesseigenvectorCentralitypagerankcIntConv cFloatConv cFromBoolghc-prim GHC.TypesBoolcToBoolcToEnum cFromEnum peekIntConvpeekBool peekFloatConv'singletons-2.4.1-8FfJG9T21BDGPfdI5rRqPaData.Singletons.InternalSingSDSUigraphToDirecteddeserializeGraph