/* -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* > \brief \b DORGQR =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DORGQR + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER INFO, K, LDA, LWORK, M, N DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DORGQR generates an M-by-N real matrix Q with orthonormal columns, > which is defined as the first N columns of a product of K elementary > reflectors of order M > > Q = H(1) H(2) . . . H(k) > > as returned by DGEQRF. > \endverbatim Arguments: ========== > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix Q. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix Q. M >= N >= 0. > \endverbatim > > \param[in] K > \verbatim > K is INTEGER > The number of elementary reflectors whose product defines the > matrix Q. N >= K >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the i-th column must contain the vector which > defines the elementary reflector H(i), for i = 1,2,...,k, as > returned by DGEQRF in the first k columns of its array > argument A. > On exit, the M-by-N matrix Q. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The first dimension of the array A. LDA >= max(1,M). > \endverbatim > > \param[in] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (K) > TAU(i) must contain the scalar factor of the elementary > reflector H(i), as returned by DGEQRF. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. > \endverbatim > > \param[in] LWORK > \verbatim > LWORK is INTEGER > The dimension of the array WORK. LWORK >= max(1,N). > For optimum performance LWORK >= N*NB, where NB is the > optimal blocksize. > > If LWORK = -1, then a workspace query is assumed; the routine > only calculates the optimal size of the WORK array, returns > this value as the first entry of the WORK array, and no error > message related to LWORK is issued by XERBLA. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument has an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleOTHERcomputational ===================================================================== Subroutine */ int igraphdorgqr_(integer *m, integer *n, integer *k, doublereal * a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo; extern /* Subroutine */ int igraphdorg2r_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlarft_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); integer ldwork, lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nb = igraphilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1); lwkopt = max(1,*n) * nb; work[1] = (doublereal) lwkopt; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0 || *n > *m) { *info = -2; } else if (*k < 0 || *k > *n) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*lwork < max(1,*n) && ! lquery) { *info = -8; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DORGQR", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n <= 0) { work[1] = 1.; return 0; } nbmin = 2; nx = 0; iws = *n; if (nb > 1 && nb < *k) { /* Determine when to cross over from blocked to unblocked code. Computing MAX */ i__1 = 0, i__2 = igraphilaenv_(&c__3, "DORGQR", " ", m, n, k, &c_n1, ( ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); if (nx < *k) { /* Determine if workspace is large enough for blocked code. */ ldwork = *n; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = igraphilaenv_(&c__2, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < *k && nx < *k) { /* Use blocked code after the last block. The first kk columns are handled by the block method. */ ki = (*k - nx - 1) / nb * nb; /* Computing MIN */ i__1 = *k, i__2 = ki + nb; kk = min(i__1,i__2); /* Set A(1:kk,kk+1:n) to zero. */ i__1 = *n; for (j = kk + 1; j <= i__1; ++j) { i__2 = kk; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.; /* L10: */ } /* L20: */ } } else { kk = 0; } /* Use unblocked code for the last or only block. */ if (kk < *n) { i__1 = *m - kk; i__2 = *n - kk; i__3 = *k - kk; igraphdorg2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, & tau[kk + 1], &work[1], &iinfo); } if (kk > 0) { /* Use blocked code */ i__1 = -nb; for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) { /* Computing MIN */ i__2 = nb, i__3 = *k - i__ + 1; ib = min(i__2,i__3); if (i__ + ib <= *n) { /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ i__2 = *m - i__ + 1; igraphdlarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1], &ldwork); /* Apply H to A(i:m,i+ib:n) from the left */ i__2 = *m - i__ + 1; i__3 = *n - i__ - ib + 1; igraphdlarfb_("Left", "No transpose", "Forward", "Columnwise", & i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[ 1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, & work[ib + 1], &ldwork); } /* Apply H to rows i:m of current block */ i__2 = *m - i__ + 1; igraphdorg2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], & work[1], &iinfo); /* Set rows 1:i-1 of current block to zero */ i__2 = i__ + ib - 1; for (j = i__; j <= i__2; ++j) { i__3 = i__ - 1; for (l = 1; l <= i__3; ++l) { a[l + j * a_dim1] = 0.; /* L30: */ } /* L40: */ } /* L50: */ } } work[1] = (doublereal) iws; return 0; /* End of DORGQR */ } /* igraphdorgqr_ */