/* mpfr_frac -- Fractional part of a floating-point number. Copyright 2002-2004, 2006-2015 Free Software Foundation, Inc. Contributed by the AriC and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Optimization note: it is not a good idea to call mpfr_integer_p, as some cases will take longer (the number may be parsed twice). */ int mpfr_frac (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode) { mpfr_exp_t re, ue; mpfr_prec_t uq; mp_size_t un, tn, t0; mp_limb_t *up, *tp, k; int sh; mpfr_t tmp; mpfr_ptr t; int inex; MPFR_SAVE_EXPO_DECL (expo); /* Special cases */ if (MPFR_UNLIKELY(MPFR_IS_NAN(u))) { MPFR_SET_NAN(r); MPFR_RET_NAN; } else if (MPFR_UNLIKELY(MPFR_IS_INF(u) || mpfr_integer_p (u))) { MPFR_SET_SAME_SIGN(r, u); MPFR_SET_ZERO(r); MPFR_RET(0); /* zero is exact */ } ue = MPFR_GET_EXP (u); if (ue <= 0) /* |u| < 1 */ return mpfr_set (r, u, rnd_mode); /* Now |u| >= 1, meaning that an overflow is not possible. */ uq = MPFR_PREC(u); un = (uq - 1) / GMP_NUMB_BITS; /* index of most significant limb */ un -= (mp_size_t) (ue / GMP_NUMB_BITS); /* now the index of the MSL containing bits of the fractional part */ up = MPFR_MANT(u); sh = ue % GMP_NUMB_BITS; k = up[un] << sh; /* the first bit of the fractional part is the MSB of k */ if (k != 0) { int cnt; count_leading_zeros(cnt, k); /* first bit 1 of the fractional part -> MSB of the number */ re = -cnt; sh += cnt; MPFR_ASSERTN (sh < GMP_NUMB_BITS); k <<= cnt; } else { re = sh - GMP_NUMB_BITS; /* searching for the first bit 1 (exists since u isn't an integer) */ while (up[--un] == 0) re -= GMP_NUMB_BITS; MPFR_ASSERTN(un >= 0); k = up[un]; count_leading_zeros(sh, k); re -= sh; k <<= sh; } /* The exponent of r will be re */ /* un: index of the limb of u that contains the first bit 1 of the FP */ t = (mp_size_t) (MPFR_PREC(r) - 1) / GMP_NUMB_BITS < un ? (mpfr_init2 (tmp, (un + 1) * GMP_NUMB_BITS), tmp) : r; /* t has enough precision to contain the fractional part of u */ /* If we use a temporary variable, we take the non-significant bits of u into account, because of the mpn_lshift below. */ MPFR_SET_SAME_SIGN(t, u); /* Put the fractional part of u into t */ tn = (MPFR_PREC(t) - 1) / GMP_NUMB_BITS; MPFR_ASSERTN(tn >= un); t0 = tn - un; tp = MPFR_MANT(t); if (sh == 0) MPN_COPY_DECR(tp + t0, up, un + 1); else /* warning: un may be 0 here */ tp[tn] = k | ((un) ? mpn_lshift (tp + t0, up, un, sh) : (mp_limb_t) 0); if (t0 > 0) MPN_ZERO(tp, t0); MPFR_SAVE_EXPO_MARK (expo); if (t != r) { /* t is tmp */ MPFR_EXP (t) = 0; /* should be re, but not necessarily in the range */ inex = mpfr_set (r, t, rnd_mode); /* no underflow */ mpfr_clear (t); MPFR_EXP (r) += re; } else { /* There may be remaining non-significant bits in t (= r). */ int carry; MPFR_EXP (r) = re; carry = mpfr_round_raw (tp, tp, (mpfr_prec_t) (tn + 1) * GMP_NUMB_BITS, MPFR_IS_NEG (r), MPFR_PREC (r), rnd_mode, &inex); if (carry) { tp[tn] = MPFR_LIMB_HIGHBIT; MPFR_EXP (r) ++; } } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inex, rnd_mode); }