{-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TupleSections #-} module Haskoin.Store.Common ( Limits(..) , Start(..) , StoreReadBase(..) , StoreReadExtra(..) , StoreWrite(..) , StoreEvent(..) , PubExcept(..) , getActiveBlock , getActiveTxData , getDefaultBalance , getSpenders , xPubBalsTxs , xPubBalsUnspents , getTransaction , getNumTransaction , blockAtOrBefore , blockAtOrAfterMTP , deOffset , applyLimits , applyLimitsC , sortTxs , nub' , microseconds ) where import Conduit (ConduitT, dropC, mapC, takeC) import Control.DeepSeq (NFData) import Control.Exception (Exception) import Control.Monad (forM) import Control.Monad.Trans (lift) import Control.Monad.Trans.Maybe (MaybeT (..), runMaybeT) import Control.Monad.Trans.Reader (runReaderT) import Data.ByteString (ByteString) import Data.Default (Default (..)) import Data.Function (on) import qualified Data.HashSet as H import Data.Hashable (Hashable) import Data.IntMap.Strict (IntMap) import qualified Data.IntMap.Strict as I import Data.List (sortBy) import Data.Maybe (catMaybes) import Data.Serialize (Serialize (..)) import Data.Time.Clock.System (getSystemTime, systemNanoseconds, systemSeconds) import Data.Word (Word32, Word64) import GHC.Generics (Generic) import Haskoin (Address, BlockHash, BlockHeader (..), BlockHeight, BlockNode (..), KeyIndex, Network (..), OutPoint (..), RejectCode (..), Tx (..), TxHash (..), TxIn (..), XPubKey (..), deriveAddr, deriveCompatWitnessAddr, deriveWitnessAddr, firstGreaterOrEqual, headerHash, lastSmallerOrEqual, mtp, pubSubKey, txHash) import Haskoin.Node (Chain, Peer) import Haskoin.Store.Data (Balance (..), BlockData (..), DeriveType (..), Spender, Transaction (..), TxData (..), TxRef (..), UnixTime, Unspent (..), XPubBal (..), XPubSpec (..), XPubSummary (..), XPubUnspent (..), nullBalance, toTransaction, zeroBalance) import UnliftIO (MonadIO, liftIO) type DeriveAddr = XPubKey -> KeyIndex -> Address type Offset = Word32 type Limit = Word32 data Start = AtTx { atTxHash :: !TxHash } | AtBlock { atBlockHeight :: !BlockHeight } deriving (Eq, Show) data Limits = Limits { limit :: !Word32 , offset :: !Word32 , start :: !(Maybe Start) } deriving (Eq, Show) defaultLimits :: Limits defaultLimits = Limits { limit = 0, offset = 0, start = Nothing } instance Default Limits where def = defaultLimits class Monad m => StoreReadBase m where getNetwork :: m Network getBestBlock :: m (Maybe BlockHash) getBlocksAtHeight :: BlockHeight -> m [BlockHash] getBlock :: BlockHash -> m (Maybe BlockData) getTxData :: TxHash -> m (Maybe TxData) getSpender :: OutPoint -> m (Maybe Spender) getBalance :: Address -> m (Maybe Balance) getUnspent :: OutPoint -> m (Maybe Unspent) getMempool :: m [(UnixTime, TxHash)] class StoreReadBase m => StoreReadExtra m where getBalances :: [Address] -> m [Balance] getBalances as = zipWith f as <$> mapM getBalance as where f a Nothing = zeroBalance a f _ (Just b) = b getAddressesTxs :: [Address] -> Limits -> m [TxRef] getAddressTxs :: Address -> Limits -> m [TxRef] getAddressTxs a = getAddressesTxs [a] getAddressUnspents :: Address -> Limits -> m [Unspent] getAddressUnspents a = getAddressesUnspents [a] getAddressesUnspents :: [Address] -> Limits -> m [Unspent] getNumTxData :: Word64 -> m [TxData] xPubBals :: XPubSpec -> m [XPubBal] xPubBals xpub = do igap <- getInitialGap gap <- getMaxGap ext1 <- derive_until_gap gap 0 (take (fromIntegral igap) (aderiv 0 0)) if all (nullBalance . xPubBal) ext1 then return [] else do ext2 <- derive_until_gap gap 0 (aderiv 0 igap) chg <- derive_until_gap gap 1 (aderiv 1 0) return (ext1 <> ext2 <> chg) where aderiv m = deriveAddresses (deriveFunction (xPubDeriveType xpub)) (pubSubKey (xPubSpecKey xpub) m) xbalance m b n = XPubBal {xPubBalPath = [m, n], xPubBal = b} derive_until_gap _ _ [] = return [] derive_until_gap gap m as = do let (as1, as2) = splitAt (fromIntegral gap) as bs <- getBalances (map snd as1) let xbs = zipWith (xbalance m) bs (map fst as1) if all nullBalance bs then return xbs else (xbs <>) <$> derive_until_gap gap m as2 xPubSummary :: XPubSpec -> m XPubSummary xPubSummary xpub = do bs <- filter (not . nullBalance . xPubBal) <$> xPubBals xpub let ex = foldl max 0 [i | XPubBal {xPubBalPath = [0, i]} <- bs] ch = foldl max 0 [i | XPubBal {xPubBalPath = [1, i]} <- bs] uc = sum [ c | XPubBal {xPubBal = Balance {balanceUnspentCount = c}} <- bs ] xt = [b | b@XPubBal {xPubBalPath = [0, _]} <- bs] rx = sum [ r | XPubBal {xPubBal = Balance {balanceTotalReceived = r}} <- xt ] return XPubSummary { xPubSummaryConfirmed = sum (map (balanceAmount . xPubBal) bs) , xPubSummaryZero = sum (map (balanceZero . xPubBal) bs) , xPubSummaryReceived = rx , xPubUnspentCount = uc , xPubChangeIndex = ch , xPubExternalIndex = ex } xPubUnspents :: XPubSpec -> Limits -> m [XPubUnspent] xPubUnspents xpub limits = do xs <- filter positive <$> xPubBals xpub sortBy (compare `on` unsblock) . applyLimits limits <$> xUns limits xs where unsblock = unspentBlock . xPubUnspent positive XPubBal {xPubBal = Balance {balanceUnspentCount = c}} = c > 0 xPubTxs :: XPubSpec -> Limits -> m [TxRef] xPubTxs xpub limits = do bs <- xPubBals xpub let as = map (balanceAddress . xPubBal) bs getAddressesTxs as limits getMaxGap :: m Word32 getInitialGap :: m Word32 class StoreWrite m where setBest :: BlockHash -> m () insertBlock :: BlockData -> m () setBlocksAtHeight :: [BlockHash] -> BlockHeight -> m () insertTx :: TxData -> m () insertSpender :: OutPoint -> Spender -> m () deleteSpender :: OutPoint -> m () insertAddrTx :: Address -> TxRef -> m () deleteAddrTx :: Address -> TxRef -> m () insertAddrUnspent :: Address -> Unspent -> m () deleteAddrUnspent :: Address -> Unspent -> m () addToMempool :: TxHash -> UnixTime -> m () deleteFromMempool :: TxHash -> m () setBalance :: Balance -> m () insertUnspent :: Unspent -> m () deleteUnspent :: OutPoint -> m () getSpenders :: StoreReadBase m => TxHash -> m (IntMap Spender) getSpenders th = getActiveTxData th >>= \case Nothing -> return I.empty Just td -> I.fromList . catMaybes <$> mapM get_spender [0 .. length (txOut (txData td)) - 1] where get_spender i = fmap (i,) <$> getSpender (OutPoint th (fromIntegral i)) getActiveBlock :: StoreReadExtra m => BlockHash -> m (Maybe BlockData) getActiveBlock bh = getBlock bh >>= \case Just b | blockDataMainChain b -> return (Just b) _ -> return Nothing getActiveTxData :: StoreReadBase m => TxHash -> m (Maybe TxData) getActiveTxData th = getTxData th >>= \case Just td | not (txDataDeleted td) -> return (Just td) _ -> return Nothing getDefaultBalance :: StoreReadBase m => Address -> m Balance getDefaultBalance a = getBalance a >>= \case Nothing -> return $ zeroBalance a Just b -> return b xUns :: StoreReadExtra f => Limits -> [XPubBal] -> f [XPubUnspent] xUns limits bs = concat <$> mapM g bs where f p t = XPubUnspent {xPubUnspentPath = p, xPubUnspent = t} g b = map (f (xPubBalPath b)) <$> getAddressUnspents (balanceAddress (xPubBal b)) (deOffset limits) deriveAddresses :: DeriveAddr -> XPubKey -> Word32 -> [(Word32, Address)] deriveAddresses derive xpub start = map (\i -> (i, derive xpub i)) [start ..] deriveFunction :: DeriveType -> DeriveAddr deriveFunction DeriveNormal i = fst . deriveAddr i deriveFunction DeriveP2SH i = fst . deriveCompatWitnessAddr i deriveFunction DeriveP2WPKH i = fst . deriveWitnessAddr i xPubBalsUnspents :: StoreReadExtra m => [XPubBal] -> Limits -> m [XPubUnspent] xPubBalsUnspents bals limits = do let xs = filter positive bals applyLimits limits <$> xUns limits xs where positive XPubBal {xPubBal = Balance {balanceUnspentCount = c}} = c > 0 xPubBalsTxs :: StoreReadExtra m => [XPubBal] -> Limits -> m [TxRef] xPubBalsTxs bals limits = do let as = map balanceAddress . filter (not . nullBalance) $ map xPubBal bals ts <- concat <$> mapM (\a -> getAddressTxs a (deOffset limits)) as let ts' = sortBy (flip compare `on` txRefBlock) (nub' ts) return $ applyLimits limits ts' getTransaction :: (Monad m, StoreReadBase m) => TxHash -> m (Maybe Transaction) getTransaction h = runMaybeT $ do d <- MaybeT $ getTxData h sm <- lift $ getSpenders h return $ toTransaction d sm getNumTransaction :: (Monad m, StoreReadExtra m) => Word64 -> m [Transaction] getNumTransaction i = do ds <- getNumTxData i forM ds $ \d -> do sm <- getSpenders (txHash (txData d)) return $ toTransaction d sm blockAtOrBefore :: (MonadIO m, StoreReadExtra m) => Chain -> UnixTime -> m (Maybe BlockData) blockAtOrBefore ch q = runMaybeT $ do net <- lift getNetwork x <- MaybeT $ liftIO $ runReaderT (lastSmallerOrEqual net f) ch MaybeT $ getBlock (headerHash (nodeHeader x)) where f x = let t = fromIntegral (blockTimestamp (nodeHeader x)) in return $ t `compare` q blockAtOrAfterMTP :: (MonadIO m, StoreReadExtra m) => Chain -> UnixTime -> m (Maybe BlockData) blockAtOrAfterMTP ch q = runMaybeT $ do net <- lift getNetwork x <- MaybeT $ liftIO $ runReaderT (firstGreaterOrEqual net f) ch MaybeT $ getBlock (headerHash (nodeHeader x)) where f x = do t <- fromIntegral <$> mtp x return $ t `compare` q -- | Events that the store can generate. data StoreEvent = StoreBestBlock !BlockHash | StoreMempoolNew !TxHash | StorePeerConnected !Peer | StorePeerDisconnected !Peer | StorePeerPong !Peer !Word64 | StoreTxAvailable !Peer ![TxHash] | StoreTxReject !Peer !TxHash !RejectCode !ByteString data PubExcept = PubNoPeers | PubReject RejectCode | PubTimeout | PubPeerDisconnected deriving (Eq, NFData, Generic, Serialize) instance Show PubExcept where show PubNoPeers = "no peers" show (PubReject c) = "rejected: " <> case c of RejectMalformed -> "malformed" RejectInvalid -> "invalid" RejectObsolete -> "obsolete" RejectDuplicate -> "duplicate" RejectNonStandard -> "not standard" RejectDust -> "dust" RejectInsufficientFee -> "insufficient fee" RejectCheckpoint -> "checkpoint" show PubTimeout = "peer timeout or silent rejection" show PubPeerDisconnected = "peer disconnected" instance Exception PubExcept applyLimits :: Limits -> [a] -> [a] applyLimits Limits {..} = applyLimit limit . applyOffset offset applyOffset :: Offset -> [a] -> [a] applyOffset = drop . fromIntegral applyLimit :: Limit -> [a] -> [a] applyLimit 0 = id applyLimit l = take (fromIntegral l) deOffset :: Limits -> Limits deOffset l = l { limit = limit l + offset l, offset = 0} applyLimitsC :: Monad m => Limits -> ConduitT i i m () applyLimitsC Limits {..} = applyOffsetC offset >> applyLimitC limit applyOffsetC :: Monad m => Offset -> ConduitT i i m () applyOffsetC = dropC . fromIntegral applyLimitC :: Monad m => Limit -> ConduitT i i m () applyLimitC 0 = mapC id applyLimitC l = takeC (fromIntegral l) sortTxs :: [Tx] -> [(Word32, Tx)] sortTxs txs = go [] thset $ zip [0 ..] txs where thset = H.fromList (map txHash txs) go [] _ [] = [] go orphans ths [] = go [] ths orphans go orphans ths ((i, tx):xs) = let ops = map (outPointHash . prevOutput) (txIn tx) orp = any (`H.member` ths) ops in if orp then go ((i, tx) : orphans) ths xs else (i, tx) : go orphans (txHash tx `H.delete` ths) xs nub' :: (Eq a, Hashable a) => [a] -> [a] nub' = H.toList . H.fromList microseconds :: MonadIO m => m Integer microseconds = let f t = toInteger (systemSeconds t) * 1000000 + toInteger (systemNanoseconds t) `div` 1000 in liftIO $ f <$> getSystemTime