module Network.DO.Pairing (Pairing(..)
, PairingM(..)
, (:+:), (:*:)
, pairEffect
, pairEffectM
, pairEffect'
, injr, injl
, injrl, injrr
, injrrl, injrrr
, injrrrl, injrrrr
) where
import Control.Comonad (Comonad, extract)
import Control.Comonad.Trans.Cofree (CofreeT, unwrap)
import Control.Monad.Trans.Free (FreeF (..), FreeT, liftF,
runFreeT)
import Data.Functor.Identity (Identity (..))
import Data.Functor.Product
import Data.Functor.Sum
type a :+: b = Sum a b
infixr 1 :+:
type a :*: b = Product a b
infixr 2 :*:
class (Functor f, Functor g) => Pairing f g where
pair :: (a -> b -> r) -> f a -> g b -> r
instance Pairing Identity Identity where
pair f (Identity a) (Identity b) = f a b
instance Pairing ((->) a) ((,) a) where
pair p f = uncurry (p . f)
instance Pairing ((,) a) ((->) a) where
pair p f g = p (snd f) (g (fst f))
class (Functor f, Functor g, Monad m) => PairingM f g m where
pairM :: (a -> b -> m r) -> f a -> g b -> m r
instance (Monad m) => PairingM ((,) (m a)) ((->) a) m where
pairM p (ma, b) g = ma >>= \ a -> p b (g a)
instance (Monad m, PairingM f h m, PairingM g k m) => PairingM (f :+: g) (h :*: k) m where
pairM p (InL f) (Pair h _) = pairM p f h
pairM p (InR g) (Pair _ k) = pairM p g k
instance (Monad m, PairingM h f m, PairingM k g m) => PairingM (h :*: k) (f :+: g) m where
pairM p (Pair h _) (InL f) = pairM p h f
pairM p (Pair _ k) (InR g) = pairM p k g
injl :: (Monad m, Functor f, Functor g) => f a -> FreeT (f :+: g) m a
injl = liftF . InL
injr :: (Monad m, Functor f, Functor g) => g a -> FreeT (f :+: g) m a
injr = liftF . InR
injrl :: (Monad m, Functor f, Functor g, Functor h) => g a -> FreeT (f :+: g :+: h) m a
injrl = liftF . InR . InL
injrr :: (Monad m, Functor f, Functor g, Functor h) => h a -> FreeT (f :+: g :+: h) m a
injrr = liftF . InR . InR
injrrl :: (Monad m, Functor f, Functor g, Functor h, Functor k) => h a -> FreeT (f :+: g :+: h :+: k) m a
injrrl = liftF . InR . InR . InL
injrrr :: (Monad m, Functor f, Functor g, Functor h, Functor k) => k a -> FreeT (f :+: g :+: h :+: k) m a
injrrr = liftF . InR . InR . InR
injrrrl :: (Monad m, Functor f, Functor g, Functor h, Functor k, Functor l) => k a -> FreeT (f :+: g :+: h :+: k :+: l) m a
injrrrl = liftF . InR . InR . InR . InL
injrrrr :: (Monad m, Functor f, Functor g, Functor h, Functor k, Functor l) => l a -> FreeT (f :+: g :+: h :+: k :+: l) m a
injrrrr = liftF . InR . InR . InR . InR
pairEffect :: (Pairing f g, Comonad w, Monad m)
=> (a -> b -> r) -> CofreeT f w a -> FreeT g m b -> m r
pairEffect p s c = do
mb <- runFreeT c
case mb of
Pure x -> return $ p (extract s) x
Free gs -> pair (pairEffect p) (unwrap s) gs
pairEffect' :: (Pairing f g, Comonad w, Monad m)
=> (a -> b -> m r) -> CofreeT f w a -> FreeT g m b -> m r
pairEffect' p s c = do
mb <- runFreeT c
case mb of
Pure x -> p (extract s) x
Free gs -> pair (pairEffect' p) (unwrap s) gs
pairEffectM :: (PairingM f g m, Comonad w)
=> (a -> b -> m r) -> CofreeT f w (m a) -> FreeT g m b -> m r
pairEffectM p s c = do
ma <- extract s
mb <- runFreeT c
case mb of
Pure x -> p ma x
Free gs -> pairM (pairEffectM p) (unwrap s) gs