úΤi6      !"#$%&'()*+,-./012345&Marcel Fourné (hecc@bitrot.dyndns.org)None*Datatype for Curves on Binary Fields (F2) Datatype for Prime Curves NIST Prime Curve P-256 NIST Prime Curve P-384 NIST Prime Curve P-521 NIST Binary Field Curve K-283 NIST Binary Field Curve B-283      &Marcel Fourné (hecc@bitrot.dyndns.org)None"data of all Elliptic Curve Points Fall Elliptic Curves, the parameters being the BitLength L, A, B and P #get bitlength $get Curve parameter A %get Curve parameter B &get Curve parameter P 'get Curve order r (get contents of the curve )&generic getter, returning the x-value *&generic getter, returning the y-value +=generic getter, returning the z-value for points having them ,Ageneric getter, returning the a*z^4-value for points having them --generic getter, returning the affine x-value .-generic getter, returning the affine y-value /5add an elliptic point onto itself, base for padd a a 0generic5 verify, if generic ECP is on EC via getxA and getyA 60extended euclidean algorithm, recursive variant 1!computing the modular inverse of a 7 m 2add 2 elliptic points 3Rthis is a generic handle for Point Multiplication. The implementation may change. 4$binary representation of an integer  |taken from http: haskell.org haskellwikiFibonacci_primes_in_parallel & !"#$%&'()*+,-./061the number to invert  the modulus the inverted value 23849:;<=> !"#$%&'()*+,-./01234 "!#$%&'()*+,-.2/1304 "!#$%&'()*+,-./06123849:;<=>%Marcel Fourné (hecc@bitrot.dyndns.orgNone5555?       !"#$%&'()*+,-./0123456789:;<=>?@ABC hecc-0.4.0.1Codec.Crypto.ECC.StandardCurvesCodec.Crypto.ECC.BaseCodec.Crypto.ECC.ECDHStandardCurveF2stdcF_lstdcF_pstdcF_rstdcF_astdcF_bstdcF_xpstdcF_yp StandardCurvestdc_lstdc_pstdc_rstdc_astdc_bstdc_xpstdc_ypp256p384p521k283b283ECPFECPInfF2ECPInfIECPpF2ECPaF2ECPmjECPjECPpECPaECECbECi getBitLengthgetagetbgetpgetrgetCurvegetxgetygetzgetaz4getxAgetyApdoubleisonmodinvpaddpmulbinary basicecdheeuklbaseGHC.Realmod montgladder$fSerializeECPF $fShowECPF$fEqECPF $fSerializeEC$fShowEC$fEqEC