{-# LANGUAGE TypeOperators #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE Trustworthy #-} -- coerce {-# LANGUAGE CPP #-} -- MProxy on ghc >= 8 {-# LANGUAGE EmptyCase #-} #if MIN_VERSION_base(4,9,0) {-# LANGUAGE DataKinds #-} -- Meta #endif {-# OPTIONS_GHC -Wno-unused-imports #-} -- Copyright (c) 2014, Eric Mertens -- -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are met: -- -- * Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- * Redistributions in binary form must reproduce the above -- copyright notice, this list of conditions and the following -- disclaimer in the documentation and/or other materials provided -- with the distribution. -- -- * Neither the name of Eric Mertens nor the names of other -- contributors may be used to endorse or promote products derived -- from this software without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -- | Unstable implementation details module Data.GenericTrie.Internal ( TrieKey(..) , ShowTrieKey(..) , Trie(..) , OrdKey(..) -- * Generic derivation implementation , genericTrieNull , genericTrieMap , genericTrieTraverse , genericTrieShowsPrec , genericInsert , genericLookup , genericDelete , genericMapMaybeWithKey , genericSingleton , genericEmpty , genericFoldWithKey , genericTraverseWithKey , genericTraverseMaybeWithKey , TrieRepDefault , GTrieKey(..) , GTrie(..) ) where import Control.Applicative (Applicative, liftA2) import Data.Char (chr, ord) import Data.Coerce (coerce) import Data.Foldable (Foldable) import Data.IntMap (IntMap) import Data.Map (Map) import Data.Maybe (isNothing) import Data.Traversable (Traversable,traverse) import Data.Word (Word) import GHC.Generics import qualified Data.Foldable as Foldable import qualified Data.IntMap as IntMap import qualified Data.Map as Map import Prelude import Data.Void (Void) import Numeric.Natural -- | Types that may be used as the key of a 'Trie'. -- -- For @data@ declarations, the instance can be automatically derived from -- a 'Generic' instance. class TrieKey k where -- | Type of the representation of tries for this key. type TrieRep k :: * -> * -- | Construct an empty trie trieEmpty :: Trie k a -- | Test for an empty trie trieNull :: Trie k a -> Bool -- | Lookup element from trie trieLookup :: k -> Trie k a -> Maybe a -- | Insert element into trie trieInsert :: k -> a -> Trie k a -> Trie k a -- | Delete element from trie trieDelete :: k -> Trie k a -> Trie k a -- | Construct a trie holding a single value trieSingleton :: k -> a -> Trie k a -- | Apply a function to all values stored in a trie trieMap :: (a -> b) -> Trie k a -> Trie k b -- | Traverse the values stored in a trie trieTraverse :: Applicative f => (a -> f b) -> Trie k a -> f (Trie k b) -- | Apply a function to the values of a 'Trie' and keep the elements -- of the trie that result in a 'Just' value. trieMapMaybeWithKey :: (k -> a -> Maybe b) -> Trie k a -> Trie k b -- | Fold a trie with a function of both key and value. trieFoldWithKey :: (k -> a -> r -> r) -> r -> Trie k a -> r -- | Traverse a trie with a function of both key and value. trieTraverseWithKey :: Applicative f => (k -> a -> f b) -> Trie k a -> f (Trie k b) -- | Traverse a trie with a function of both key and value, and keep the elements -- of the trie that result in a 'Just' value. trieTraverseMaybeWithKey :: Applicative f => (k -> a -> f (Maybe b)) -> Trie k a -> f (Trie k b) trieMergeWithKey :: (k -> a -> b -> Maybe c) -> (Trie k a -> Trie k c) -> (Trie k b -> Trie k c) -> Trie k a -> Trie k b -> Trie k c -- Defaults using 'Generic' type instance TrieRep k = TrieRepDefault k default trieEmpty :: ( TrieRep k ~ TrieRepDefault k) => Trie k a trieEmpty = genericEmpty default trieSingleton :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k) => k -> a -> Trie k a trieSingleton = genericSingleton default trieNull :: ( TrieRep k ~ TrieRepDefault k) => Trie k a -> Bool trieNull = genericTrieNull default trieLookup :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k) => k -> Trie k a -> Maybe a trieLookup = genericLookup default trieInsert :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k) => k -> a -> Trie k a -> Trie k a trieInsert = genericInsert default trieDelete :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k) => k -> Trie k a -> Trie k a trieDelete = genericDelete default trieMap :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k) => (a -> b) -> Trie k a -> Trie k b trieMap = genericTrieMap default trieTraverse :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k , Applicative f) => (a -> f b) -> Trie k a -> f (Trie k b) trieTraverse = genericTrieTraverse default trieMapMaybeWithKey :: ( GTrieKey (Rep k) , Generic k, TrieRep k ~ TrieRepDefault k) => (k -> a -> Maybe b) -> Trie k a -> Trie k b trieMapMaybeWithKey = genericMapMaybeWithKey default trieFoldWithKey :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k, Generic k) => (k -> a -> r -> r) -> r -> Trie k a -> r trieFoldWithKey = genericFoldWithKey default trieTraverseWithKey :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k, Generic k, Applicative f) => (k -> a -> f b) -> Trie k a -> f (Trie k b) trieTraverseWithKey = genericTraverseWithKey default trieTraverseMaybeWithKey :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k, Generic k, Applicative f) => (k -> a -> f (Maybe b)) -> Trie k a -> f (Trie k b) trieTraverseMaybeWithKey = genericTraverseMaybeWithKey default trieMergeWithKey :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k, Generic k ) => (k -> a -> b -> Maybe c) -> (Trie k a -> Trie k c) -> (Trie k b -> Trie k c) -> Trie k a -> Trie k b -> Trie k c trieMergeWithKey = genericMergeWithKey -- | A map from keys of type @k@, to values of type @a@. newtype Trie k a = MkTrie (TrieRep k a) class TrieKey k => ShowTrieKey k where -- | Show the representation of a trie trieShowsPrec :: Show a => Int -> Trie k a -> ShowS default trieShowsPrec :: ( Show a, GTrieKeyShow (Rep k) , TrieRep k ~ TrieRepDefault k) => Int -> Trie k a -> ShowS trieShowsPrec = genericTrieShowsPrec ------------------------------------------------------------------------------ -- Manually derived instances for base types ------------------------------------------------------------------------------ -- | 'Int' tries are implemented with 'IntMap'. instance TrieKey Int where type TrieRep Int = IntMap trieLookup k (MkTrie x) = IntMap.lookup k x trieInsert k v (MkTrie t) = MkTrie (IntMap.insert k v t) trieDelete k (MkTrie t) = MkTrie (IntMap.delete k t) trieEmpty = MkTrie IntMap.empty trieSingleton k v = MkTrie (IntMap.singleton k v) trieNull (MkTrie x) = IntMap.null x trieMap f (MkTrie x) = MkTrie (IntMap.map f x) trieTraverse f (MkTrie x) = fmap MkTrie (traverse f x) trieMapMaybeWithKey f (MkTrie x) = MkTrie (IntMap.mapMaybeWithKey f x) trieTraverseMaybeWithKey f (MkTrie x) = MkTrie . IntMap.mapMaybe id <$> IntMap.traverseWithKey f x trieFoldWithKey f z (MkTrie x) = IntMap.foldrWithKey f z x trieTraverseWithKey f (MkTrie x) = fmap MkTrie (IntMap.traverseWithKey f x) trieMergeWithKey f g h (MkTrie x) (MkTrie y) = MkTrie (IntMap.mergeWithKey f (coerce g) (coerce h) x y) {-# INLINABLE trieEmpty #-} {-# INLINABLE trieInsert #-} {-# INLINABLE trieLookup #-} {-# INLINABLE trieDelete #-} {-# INLINABLE trieSingleton #-} {-# INLINABLE trieFoldWithKey #-} {-# INLINABLE trieTraverse #-} {-# INLINABLE trieTraverseWithKey #-} {-# INLINABLE trieNull #-} {-# INLINABLE trieMap #-} {-# INLINABLE trieMergeWithKey #-} {-# INLINABLE trieMapMaybeWithKey #-} {-# INLINABLE trieTraverseMaybeWithKey #-} instance ShowTrieKey Int where trieShowsPrec p (MkTrie x) = showsPrec p x {-# INLINABLE trieShowsPrec #-} -- | 'Integer' tries are implemented with 'Map'. instance TrieKey Integer where type TrieRep Integer = Map Integer trieLookup k (MkTrie t) = Map.lookup k t trieInsert k v (MkTrie t) = MkTrie (Map.insert k v t) trieDelete k (MkTrie t) = MkTrie (Map.delete k t) trieEmpty = MkTrie Map.empty trieSingleton k v = MkTrie (Map.singleton k v) trieNull (MkTrie x) = Map.null x trieMap f (MkTrie x) = MkTrie (Map.map f x) trieTraverse f (MkTrie x) = fmap MkTrie (traverse f x) trieMapMaybeWithKey f (MkTrie x) = MkTrie (Map.mapMaybeWithKey f x) trieTraverseMaybeWithKey f (MkTrie x) = MkTrie <$> Map.traverseMaybeWithKey f x trieFoldWithKey f z (MkTrie x) = Map.foldrWithKey f z x trieTraverseWithKey f (MkTrie x) = fmap MkTrie (Map.traverseWithKey f x) trieMergeWithKey f g h (MkTrie x) (MkTrie y) = MkTrie (Map.mergeWithKey f (coerce g) (coerce h) x y) {-# INLINABLE trieEmpty #-} {-# INLINABLE trieInsert #-} {-# INLINABLE trieLookup #-} {-# INLINABLE trieDelete #-} {-# INLINABLE trieSingleton #-} {-# INLINABLE trieFoldWithKey #-} {-# INLINABLE trieTraverse #-} {-# INLINABLE trieTraverseWithKey #-} {-# INLINABLE trieTraverseMaybeWithKey #-} {-# INLINABLE trieNull #-} {-# INLINABLE trieMap #-} {-# INLINABLE trieMergeWithKey #-} {-# INLINABLE trieMapMaybeWithKey #-} instance ShowTrieKey Integer where trieShowsPrec p (MkTrie x) = showsPrec p x {-# INLINABLE trieShowsPrec #-} -- | 'Natural' tries are implemented with 'Map'. instance TrieKey Natural where type TrieRep Natural = Map Natural trieLookup k (MkTrie t) = Map.lookup k t trieInsert k v (MkTrie t) = MkTrie (Map.insert k v t) trieDelete k (MkTrie t) = MkTrie (Map.delete k t) trieEmpty = MkTrie Map.empty trieSingleton k v = MkTrie (Map.singleton k v) trieNull (MkTrie x) = Map.null x trieMap f (MkTrie x) = MkTrie (Map.map f x) trieTraverse f (MkTrie x) = fmap MkTrie (traverse f x) trieMapMaybeWithKey f (MkTrie x) = MkTrie (Map.mapMaybeWithKey f x) trieTraverseMaybeWithKey f (MkTrie x) = MkTrie <$> Map.traverseMaybeWithKey f x trieFoldWithKey f z (MkTrie x) = Map.foldrWithKey f z x trieTraverseWithKey f (MkTrie x) = fmap MkTrie (Map.traverseWithKey f x) trieMergeWithKey f g h (MkTrie x) (MkTrie y) = MkTrie (Map.mergeWithKey f (coerce g) (coerce h) x y) {-# INLINABLE trieEmpty #-} {-# INLINABLE trieInsert #-} {-# INLINABLE trieLookup #-} {-# INLINABLE trieDelete #-} {-# INLINABLE trieSingleton #-} {-# INLINABLE trieFoldWithKey #-} {-# INLINABLE trieTraverse #-} {-# INLINABLE trieTraverseWithKey #-} {-# INLINABLE trieTraverseMaybeWithKey #-} {-# INLINABLE trieNull #-} {-# INLINABLE trieMap #-} {-# INLINABLE trieMergeWithKey #-} {-# INLINABLE trieMapMaybeWithKey #-} instance ShowTrieKey Natural where trieShowsPrec p (MkTrie x) = showsPrec p x {-# INLINABLE trieShowsPrec #-} -- | 'Word' tries are implemented with 'IntMap'. instance TrieKey Word where type TrieRep Word = IntMap trieLookup k (MkTrie t) = IntMap.lookup (fromIntegral k) t trieDelete k (MkTrie t) = MkTrie (IntMap.delete (fromIntegral k) t) trieInsert k v (MkTrie t) = MkTrie (IntMap.insert (fromIntegral k) v t) trieEmpty = MkTrie IntMap.empty trieSingleton k v = MkTrie (IntMap.singleton (fromIntegral k) v) trieNull (MkTrie x) = IntMap.null x trieMap f (MkTrie x) = MkTrie (IntMap.map f x) trieTraverse f (MkTrie x) = fmap MkTrie (traverse f x) trieMapMaybeWithKey f (MkTrie x) = MkTrie (IntMap.mapMaybeWithKey (f . fromIntegral) x) trieTraverseMaybeWithKey f (MkTrie x) = MkTrie . IntMap.mapMaybe id <$> IntMap.traverseWithKey (f . fromIntegral) x trieFoldWithKey f z (MkTrie x) = IntMap.foldrWithKey (f . fromIntegral) z x trieTraverseWithKey f (MkTrie x) = fmap MkTrie (IntMap.traverseWithKey (f . fromIntegral) x) trieMergeWithKey f g h (MkTrie x) (MkTrie y) = MkTrie (IntMap.mergeWithKey (f . fromIntegral) (coerce g) (coerce h) x y) {-# INLINABLE trieEmpty #-} {-# INLINABLE trieInsert #-} {-# INLINABLE trieLookup #-} {-# INLINABLE trieDelete #-} {-# INLINABLE trieSingleton #-} {-# INLINABLE trieFoldWithKey #-} {-# INLINABLE trieTraverse #-} {-# INLINABLE trieTraverseWithKey #-} {-# INLINABLE trieTraverseMaybeWithKey #-} {-# INLINABLE trieNull #-} {-# INLINABLE trieMap #-} {-# INLINABLE trieMergeWithKey #-} {-# INLINABLE trieMapMaybeWithKey #-} instance ShowTrieKey Word where trieShowsPrec p (MkTrie x) = showParen (p > 10) (showString "fromList " . shows [(fromIntegral k :: Word, v) | (k,v) <- IntMap.toList x]) {-# INLINABLE trieShowsPrec #-} -- | 'Char' tries are implemented with 'IntMap'. instance TrieKey Char where type TrieRep Char = IntMap trieLookup k (MkTrie t) = IntMap.lookup (ord k) t trieDelete k (MkTrie t) = MkTrie (IntMap.delete (ord k) t) trieInsert k v (MkTrie t) = MkTrie (IntMap.insert (ord k) v t) trieEmpty = MkTrie IntMap.empty trieSingleton k v = MkTrie (IntMap.singleton (ord k) v) trieNull (MkTrie x) = IntMap.null x trieMap f (MkTrie x) = MkTrie (IntMap.map f x) trieTraverse f (MkTrie x) = fmap MkTrie (traverse f x) trieMapMaybeWithKey f (MkTrie x) = MkTrie (IntMap.mapMaybeWithKey (f . chr) x) trieTraverseMaybeWithKey f (MkTrie x) = MkTrie . IntMap.mapMaybe id <$> IntMap.traverseWithKey (f . chr) x trieFoldWithKey f z (MkTrie x) = IntMap.foldrWithKey (f . chr) z x trieTraverseWithKey f (MkTrie x) = fmap MkTrie (IntMap.traverseWithKey (f . chr) x) trieMergeWithKey f g h (MkTrie x) (MkTrie y) = MkTrie (IntMap.mergeWithKey (f . chr) (coerce g) (coerce h) x y) {-# INLINABLE trieEmpty #-} {-# INLINABLE trieInsert #-} {-# INLINABLE trieLookup #-} {-# INLINABLE trieDelete #-} {-# INLINABLE trieSingleton #-} {-# INLINABLE trieFoldWithKey #-} {-# INLINABLE trieTraverse #-} {-# INLINABLE trieTraverseWithKey #-} {-# INLINABLE trieTraverseMaybeWithKey #-} {-# INLINABLE trieNull #-} {-# INLINABLE trieMap #-} {-# INLINABLE trieMergeWithKey #-} {-# INLINABLE trieMapMaybeWithKey #-} instance ShowTrieKey Char where trieShowsPrec p (MkTrie x) = showsPrec p x {-# INLINABLE trieShowsPrec #-} -- | Tries indexed by 'OrdKey' will be represented as an ordinary 'Map' -- and the keys will be compared based on the 'Ord' instance for @k@. newtype OrdKey k = OrdKey { getOrdKey :: k } deriving (Read, Show, Eq, Ord) -- | 'OrdKey' tries are implemented with 'Map', this is -- intended for cases where it is better for some reason -- to force the use of a 'Map' than to use the generically -- derived structure. instance Ord k => TrieKey (OrdKey k) where type TrieRep (OrdKey k) = Map k trieLookup (OrdKey k) (MkTrie x) = Map.lookup k x trieInsert (OrdKey k) v (MkTrie x) = MkTrie (Map.insert k v x) trieDelete (OrdKey k) (MkTrie x) = MkTrie (Map.delete k x) trieEmpty = MkTrie Map.empty trieSingleton (OrdKey k) v = MkTrie (Map.singleton k v) trieNull (MkTrie x) = Map.null x trieMap f (MkTrie x) = MkTrie (Map.map f x) trieTraverse f (MkTrie x) = fmap MkTrie (traverse f x) trieMapMaybeWithKey f (MkTrie x) = MkTrie (Map.mapMaybeWithKey (f . OrdKey) x) trieTraverseMaybeWithKey f (MkTrie x) = MkTrie <$> Map.traverseMaybeWithKey (f . OrdKey) x trieFoldWithKey f z (MkTrie x) = Map.foldrWithKey (f . OrdKey) z x trieTraverseWithKey f (MkTrie x) = fmap MkTrie (Map.traverseWithKey (f . OrdKey) x) trieMergeWithKey f g h (MkTrie x) (MkTrie y) = MkTrie (Map.mergeWithKey (f . OrdKey) (coerce g) (coerce h) x y) {-# INLINABLE trieEmpty #-} {-# INLINABLE trieInsert #-} {-# INLINABLE trieLookup #-} {-# INLINABLE trieDelete #-} {-# INLINABLE trieSingleton #-} {-# INLINABLE trieFoldWithKey #-} {-# INLINABLE trieTraverse #-} {-# INLINABLE trieTraverseWithKey #-} {-# INLINABLE trieTraverseMaybeWithKey #-} {-# INLINABLE trieNull #-} {-# INLINABLE trieMap #-} {-# INLINABLE trieMergeWithKey #-} {-# INLINABLE trieMapMaybeWithKey #-} instance (Show k, Ord k) => ShowTrieKey (OrdKey k) where trieShowsPrec p (MkTrie x) = showsPrec p x {-# INLINABLE trieShowsPrec #-} ------------------------------------------------------------------------------ -- Automatically derived instances for common types ------------------------------------------------------------------------------ instance TrieKey Void instance TrieKey () instance TrieKey Bool instance TrieKey Ordering instance TrieKey k => TrieKey (Maybe k) instance (TrieKey a, TrieKey b) => TrieKey (Either a b) instance (TrieKey a, TrieKey b) => TrieKey (a,b) instance (TrieKey a, TrieKey b, TrieKey c) => TrieKey (a,b,c) instance (TrieKey a, TrieKey b, TrieKey c, TrieKey d) => TrieKey (a,b,c,d) instance (TrieKey a, TrieKey b, TrieKey c, TrieKey d, TrieKey e) => TrieKey (a,b,c,d,e) instance TrieKey k => TrieKey [k] ------------------------------------------------------------------------------ -- Generic 'TrieKey' method implementations ------------------------------------------------------------------------------ -- | Generic implementation of 'lookup'. This is the default implementation. genericLookup :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k ) => k -> Trie k a -> Maybe a genericLookup k t = gtrieLookup (from k) =<< unwrap t {-# INLINABLE genericLookup #-} -- | Generic implementation of 'trieNull'. This is the default implementation. genericTrieNull :: ( TrieRep k ~ TrieRepDefault k ) => Trie k a -> Bool genericTrieNull = isNothing . unwrap {-# INLINABLE genericTrieNull #-} -- | Generic implementation of 'singleton'. This is the default implementation. genericSingleton :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k ) => k -> a -> Trie k a genericSingleton k v = wrap $ Just $! gtrieSingleton (from k) v {-# INLINABLE genericSingleton #-} -- | Generic implementation of 'empty'. This is the default implementation. genericEmpty :: ( TrieRep k ~ TrieRepDefault k ) => Trie k a genericEmpty = MkTrie EmptyTrie {-# INLINABLE genericEmpty #-} -- | Generic implementation of 'insert'. This is the default implementation. genericInsert :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k ) => k -> a -> Trie k a -> Trie k a genericInsert k v m = wrap $ case unwrap m of Nothing -> Just $! gtrieSingleton (from k) v Just t -> Just $! gtrieInsert (from k) v t {-# INLINABLE genericInsert #-} -- | Generic implementation of 'delete'. This is the default implementation. genericDelete :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k ) => k -> Trie k a -> Trie k a genericDelete k m = wrap (gtrieDelete (from k) =<< unwrap m) {-# INLINABLE genericDelete #-} -- | Generic implementation of 'trieMap'. This is the default implementation. genericTrieMap :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k ) => (a -> b) -> Trie k a -> Trie k b genericTrieMap f x = wrap (fmap (gtrieMap f) $! unwrap x) {-# INLINABLE genericTrieMap #-} -- | Generic implementation of 'trieTraverse'. This is the default implementation. genericTrieTraverse :: ( GTrieKey (Rep k) , TrieRep k ~ TrieRepDefault k , Applicative f ) => (a -> f b) -> Trie k a -> f (Trie k b) genericTrieTraverse f x = fmap wrap (traverse (gtrieTraverse f) (unwrap x)) {-# INLINABLE genericTrieTraverse #-} -- | Generic implementation of 'trieShowsPrec'. This is the default implementation. genericTrieShowsPrec :: ( Show a, GTrieKeyShow (Rep k) , TrieRep k ~ TrieRepDefault k ) => Int -> Trie k a -> ShowS genericTrieShowsPrec p m = case unwrap m of Just x -> showsPrec p x Nothing -> showString "()" {-# INLINABLE genericTrieShowsPrec #-} -- | Generic implementation of 'mapMaybe'. This is the default implementation. genericMapMaybeWithKey :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k ) => (k -> a -> Maybe b) -> Trie k a -> Trie k b genericMapMaybeWithKey f x = wrap (gmapMaybeWithKey (f . to) =<< unwrap x) {-# INLINABLE genericMapMaybeWithKey #-} -- | Generic implementation of 'foldWithKey'. This is the default implementation. genericFoldWithKey :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k ) => (k -> a -> r -> r) -> r -> Trie k a -> r genericFoldWithKey f z m = case unwrap m of Nothing -> z Just x -> gfoldWithKey (f . to) z x {-# INLINABLE genericFoldWithKey #-} -- | Generic implementation of 'traverseWithKey'. This is the default implementation. genericTraverseWithKey :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k , Applicative f ) => (k -> a -> f b) -> Trie k a -> f (Trie k b) genericTraverseWithKey f m = fmap wrap (traverse (gtraverseWithKey (f . to)) (unwrap m)) {-# INLINABLE genericTraverseWithKey #-} -- | Generic implementation of 'traverseMaybeWithKey'. This is the default implementation. genericTraverseMaybeWithKey :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k , Applicative f ) => (k -> a -> f (Maybe b)) -> Trie k a -> f (Trie k b) genericTraverseMaybeWithKey f m = fmap (maybe (MkTrie EmptyTrie) wrap) (traverse (gtraverseMaybeWithKey (f . to)) (unwrap m)) {-# INLINABLE genericTraverseMaybeWithKey #-} -- | Generic implementation of 'mergeWithKey'. This is the default implementation. genericMergeWithKey :: ( GTrieKey (Rep k), Generic k , TrieRep k ~ TrieRepDefault k ) => (k -> a -> b -> Maybe c) -> (Trie k a -> Trie k c) -> (Trie k b -> Trie k c) -> Trie k a -> Trie k b -> Trie k c genericMergeWithKey f g h (MkTrie x) (MkTrie y) = case (x,y) of (EmptyTrie, EmptyTrie) -> MkTrie EmptyTrie (NonEmptyTrie{} , EmptyTrie) -> g (MkTrie x) (EmptyTrie, NonEmptyTrie{} ) -> h (MkTrie y) (NonEmptyTrie x', NonEmptyTrie y') -> wrap (gmergeWithKey (f . to) (aux g) (aux h) x' y') where aux k t = unwrap (k (MkTrie (NonEmptyTrie t))) {-# INLINABLE genericMergeWithKey #-} wrap :: TrieRep k ~ TrieRepDefault k1 => Maybe (GTrie (Rep k1) a) -> Trie k a wrap Nothing = MkTrie EmptyTrie wrap (Just t) = MkTrie (NonEmptyTrie t) unwrap :: TrieRep t ~ TrieRepDefault t2 => Trie t t1 -> Maybe (GTrie (Rep t2) t1) unwrap (MkTrie EmptyTrie) = Nothing unwrap (MkTrie (NonEmptyTrie t)) = Just t ------------------------------------------------------------------------------ -- Generic implementation class ------------------------------------------------------------------------------ -- | The default implementation of a 'TrieRep' is 'GTrie' wrapped in -- a 'Maybe'. This wrapping is due to the 'GTrie' being a non-empty -- trie allowing all the of the "emptiness" to be represented at the -- top level for any given generically implemented key. data TrieRepDefault k a = EmptyTrie | NonEmptyTrie !(GTrie (Rep k) a) -- | Mapping of generic representation of keys to trie structures. data family GTrie (f :: * -> *) a newtype instance GTrie (M1 i c f) a = MTrie (GTrie f a) data instance GTrie (f :+: g) a = STrieL !(GTrie f a) | STrieR !(GTrie g a) | STrieB !(GTrie f a) !(GTrie g a) newtype instance GTrie (f :*: g) a = PTrie (GTrie f (GTrie g a)) newtype instance GTrie (K1 i k) a = KTrie (Trie k a) newtype instance GTrie U1 a = UTrie a data instance GTrie V1 a instance GTrieKey f => Functor (GTrie f) where fmap = gtrieMap -- | TrieKey operations on Generic representations used to provide -- the default implementations of tries. class GTrieKey f where gtrieLookup :: f p -> GTrie f a -> Maybe a gtrieInsert :: f p -> a -> GTrie f a -> GTrie f a gtrieSingleton :: f p -> a -> GTrie f a gtrieDelete :: f p -> GTrie f a -> Maybe (GTrie f a) gtrieMap :: (a -> b) -> GTrie f a -> GTrie f b gtrieTraverse :: Applicative m => (a -> m b) -> GTrie f a -> m (GTrie f b) gmapMaybeWithKey :: (f p -> a -> Maybe b) -> GTrie f a -> Maybe (GTrie f b) gfoldWithKey :: (f p -> a -> r -> r) -> r -> GTrie f a -> r gtraverseWithKey :: Applicative m => (f p -> a -> m b) -> GTrie f a -> m (GTrie f b) gtraverseMaybeWithKey :: Applicative m => (f p -> a -> m (Maybe b)) -> GTrie f a -> m (Maybe (GTrie f b)) gmergeWithKey :: (f p -> a -> b -> Maybe c) -> (GTrie f a -> Maybe (GTrie f c)) -> (GTrie f b -> Maybe (GTrie f c)) -> GTrie f a -> GTrie f b -> Maybe (GTrie f c) -- | The 'GTrieKeyShow' class provides generic implementations -- of 'showsPrec'. This class is separate due to its implementation -- varying for different kinds of metadata. class GTrieKeyShow f where gtrieShowsPrec :: Show a => Int -> GTrie f a -> ShowS ------------------------------------------------------------------------------ -- Generic implementation for metadata ------------------------------------------------------------------------------ -- | Generic metadata is skipped in trie representation and operations. instance GTrieKey f => GTrieKey (M1 i c f) where gtrieLookup (M1 k) (MTrie x) = gtrieLookup k x gtrieInsert (M1 k) v (MTrie t)= MTrie (gtrieInsert k v t) gtrieSingleton (M1 k) v = MTrie (gtrieSingleton k v) gtrieDelete (M1 k) (MTrie x) = fmap MTrie (gtrieDelete k x) gtrieMap f (MTrie x) = MTrie (gtrieMap f x) gtrieTraverse f (MTrie x) = fmap MTrie (gtrieTraverse f x) gmapMaybeWithKey f (MTrie x) = fmap MTrie (gmapMaybeWithKey (f . M1) x) gfoldWithKey f z (MTrie x) = gfoldWithKey (f . M1) z x gtraverseWithKey f (MTrie x) = fmap MTrie (gtraverseWithKey (f . M1) x) gtraverseMaybeWithKey f (MTrie x) = fmap coerce (gtraverseMaybeWithKey (f . M1) x) gmergeWithKey f g h (MTrie x) (MTrie y) = fmap MTrie (gmergeWithKey (f . M1) (coerce g) (coerce h) x y) {-# INLINE gtrieLookup #-} {-# INLINE gtrieInsert #-} {-# INLINE gtrieSingleton #-} {-# INLINE gtrieDelete #-} {-# INLINE gtrieMap #-} {-# INLINE gmapMaybeWithKey #-} {-# INLINE gtrieTraverse #-} {-# INLINE gfoldWithKey #-} {-# INLINE gtraverseWithKey #-} {-# INLINE gtraverseMaybeWithKey #-} #if MIN_VERSION_base(4,9,0) data MProxy (c :: Meta) (f :: * -> *) a = MProxy #else data MProxy (c :: *) (f :: * -> *) a = MProxy #endif instance GTrieKeyShow f => GTrieKeyShow (M1 D d f) where gtrieShowsPrec p (MTrie x) = showsPrec p x instance (Constructor c, GTrieKeyShow f) => GTrieKeyShow (M1 C c f) where gtrieShowsPrec p (MTrie x) = showParen (p > 10) $ showString "Con " . shows (conName (MProxy :: MProxy c f ())) . showString " " . showsPrec 11 x instance GTrieKeyShow f => GTrieKeyShow (M1 S s f) where gtrieShowsPrec p (MTrie x) = showsPrec p x ------------------------------------------------------------------------------ -- Generic implementation for fields ------------------------------------------------------------------------------ checkNull :: TrieKey k => Trie k a -> Maybe (Trie k a) checkNull x | trieNull x = Nothing | otherwise = Just x -- | Generic fields are represented by tries of the field type. instance TrieKey k => GTrieKey (K1 i k) where gtrieLookup (K1 k) (KTrie x) = trieLookup k x gtrieInsert (K1 k) v (KTrie t) = KTrie (trieInsert k v t) gtrieSingleton (K1 k) v = KTrie (trieSingleton k v) gtrieDelete (K1 k) (KTrie t) = fmap KTrie (checkNull (trieDelete k t)) gtrieMap f (KTrie x) = KTrie (trieMap f x) gtrieTraverse f (KTrie x) = fmap KTrie (trieTraverse f x) gmapMaybeWithKey f (KTrie x) = fmap KTrie (checkNull (trieMapMaybeWithKey (f . K1) x)) gfoldWithKey f z (KTrie x) = trieFoldWithKey (f . K1) z x gtraverseWithKey f (KTrie x) = fmap KTrie (trieTraverseWithKey (f . K1) x) gtraverseMaybeWithKey f (KTrie x) = fmap (fmap KTrie . checkNull) (trieTraverseMaybeWithKey (f . K1) x) gmergeWithKey f g h (KTrie x) (KTrie y) = fmap KTrie (checkNull (trieMergeWithKey (f . K1) g' h' x y)) where g' t = case g (KTrie t) of Just (KTrie t') -> t' Nothing -> trieEmpty h' t = case h (KTrie t) of Just (KTrie t') -> t' Nothing -> trieEmpty {-# INLINE gtrieLookup #-} {-# INLINE gtrieInsert #-} {-# INLINE gtrieSingleton #-} {-# INLINE gtrieDelete #-} {-# INLINE gtrieMap #-} {-# INLINE gtrieTraverse #-} {-# INLINE gfoldWithKey #-} {-# INLINE gtraverseWithKey #-} {-# INLINE gtraverseMaybeWithKey #-} {-# INLINE gmergeWithKey #-} {-# INLINE gmapMaybeWithKey #-} instance ShowTrieKey k => GTrieKeyShow (K1 i k) where gtrieShowsPrec p (KTrie x) = showsPrec p x ------------------------------------------------------------------------------ -- Generic implementation for products ------------------------------------------------------------------------------ -- | Generic products are represented by tries of tries. instance (GTrieKey f, GTrieKey g) => GTrieKey (f :*: g) where gtrieLookup (i :*: j) (PTrie x) = gtrieLookup j =<< gtrieLookup i x gtrieInsert (i :*: j) v (PTrie t) = case gtrieLookup i t of Nothing -> PTrie (gtrieInsert i (gtrieSingleton j v) t) Just ti -> PTrie (gtrieInsert i (gtrieInsert j v ti) t) gtrieDelete (i :*: j) (PTrie t) = case gtrieLookup i t of Nothing -> Just (PTrie t) Just ti -> case gtrieDelete j ti of Nothing -> fmap PTrie $! gtrieDelete i t Just tj -> Just $! PTrie (gtrieInsert i tj t) gtrieSingleton (i :*: j) v = PTrie (gtrieSingleton i (gtrieSingleton j v)) gtrieMap f (PTrie x) = PTrie (gtrieMap (gtrieMap f) x) gtrieTraverse f (PTrie x) = fmap PTrie (gtrieTraverse (gtrieTraverse f) x) gmapMaybeWithKey f (PTrie x) = fmap PTrie (gmapMaybeWithKey (\i -> gmapMaybeWithKey (\j -> f (i:*:j))) x) gfoldWithKey f z (PTrie x) = gfoldWithKey (\i m r -> gfoldWithKey (\j -> f (i:*:j)) r m) z x gtraverseWithKey f (PTrie x) = fmap PTrie (gtraverseWithKey (\i -> gtraverseWithKey (\j -> f (i :*: j))) x) gtraverseMaybeWithKey f (PTrie x) = fmap (fmap PTrie) (gtraverseMaybeWithKey (\i -> gtraverseMaybeWithKey (\j -> f (i :*: j))) x) gmergeWithKey f g h (PTrie x) (PTrie y) = fmap PTrie $! gmergeWithKey (\i -> gmergeWithKey (\j -> f (i:*:j)) (g' i) (h' i)) (coerce g) (coerce h) x y where g' i t = do PTrie t' <- g (PTrie (gtrieSingleton i t)) gtrieLookup i t' h' i t = do PTrie t' <- h (PTrie (gtrieSingleton i t)) gtrieLookup i t' {-# INLINE gtrieLookup #-} {-# INLINE gtrieInsert #-} {-# INLINE gtrieDelete #-} {-# INLINE gtrieSingleton #-} {-# INLINE gtrieMap #-} {-# INLINE gtrieTraverse #-} {-# INLINE gfoldWithKey #-} {-# INLINE gtraverseWithKey #-} {-# INLINE gtraverseMaybeWithKey #-} {-# INLINE gmergeWithKey #-} {-# INLINE gmapMaybeWithKey #-} instance (GTrieKeyShow f, GTrieKeyShow g) => GTrieKeyShow (f :*: g) where gtrieShowsPrec p (PTrie x) = showsPrec p x ------------------------------------------------------------------------------ -- Generic implementation for sums ------------------------------------------------------------------------------ -- | Generic sums are represented by up to a pair of sub-tries. instance (GTrieKey f, GTrieKey g) => GTrieKey (f :+: g) where gtrieLookup (L1 k) (STrieL x) = gtrieLookup k x gtrieLookup (L1 k) (STrieB x _) = gtrieLookup k x gtrieLookup (R1 k) (STrieR y) = gtrieLookup k y gtrieLookup (R1 k) (STrieB _ y) = gtrieLookup k y gtrieLookup _ _ = Nothing gtrieInsert (L1 k) v (STrieL x) = STrieL (gtrieInsert k v x) gtrieInsert (L1 k) v (STrieR y) = STrieB (gtrieSingleton k v) y gtrieInsert (L1 k) v (STrieB x y) = STrieB (gtrieInsert k v x) y gtrieInsert (R1 k) v (STrieL x) = STrieB x (gtrieSingleton k v) gtrieInsert (R1 k) v (STrieR y) = STrieR (gtrieInsert k v y) gtrieInsert (R1 k) v (STrieB x y) = STrieB x (gtrieInsert k v y) gtrieSingleton (L1 k) v = STrieL (gtrieSingleton k v) gtrieSingleton (R1 k) v = STrieR (gtrieSingleton k v) gtrieDelete (L1 k) (STrieL x) = fmap STrieL $! gtrieDelete k x gtrieDelete (L1 _) (STrieR y) = Just $! STrieR y gtrieDelete (L1 k) (STrieB x y) = case gtrieDelete k x of Nothing -> Just $! STrieR y Just x' -> Just $! STrieB x' y gtrieDelete (R1 _) (STrieL x) = Just $! STrieL x gtrieDelete (R1 k) (STrieR y) = fmap STrieR $! gtrieDelete k y gtrieDelete (R1 k) (STrieB x y) = case gtrieDelete k y of Nothing -> Just $! STrieL x Just y' -> Just $! STrieB x y' gtrieMap f (STrieB x y) = STrieB (gtrieMap f x) (gtrieMap f y) gtrieMap f (STrieL x) = STrieL (gtrieMap f x) gtrieMap f (STrieR y) = STrieR (gtrieMap f y) gtrieTraverse f (STrieB x y) = liftA2 STrieB (gtrieTraverse f x) (gtrieTraverse f y) gtrieTraverse f (STrieL x) = fmap STrieL (gtrieTraverse f x) gtrieTraverse f (STrieR y) = fmap STrieR (gtrieTraverse f y) gmapMaybeWithKey f (STrieL x) = fmap STrieL $! gmapMaybeWithKey (f . L1) x gmapMaybeWithKey f (STrieR y) = fmap STrieR $! gmapMaybeWithKey (f . R1) y gmapMaybeWithKey f (STrieB x y) = case (gmapMaybeWithKey (f . L1) x, gmapMaybeWithKey (f . R1) y) of (Nothing, Nothing) -> Nothing (Just x', Nothing) -> Just $! STrieL x' (Nothing, Just y') -> Just $! STrieR y' (Just x', Just y') -> Just $! STrieB x' y' gtraverseMaybeWithKey f (STrieL x) = fmap STrieL <$> gtraverseMaybeWithKey (f . L1) x gtraverseMaybeWithKey f (STrieR y) = fmap STrieR <$> gtraverseMaybeWithKey (f . R1) y gtraverseMaybeWithKey f (STrieB x y) = liftA2 finish (gtraverseMaybeWithKey (f . L1) x) (gtraverseMaybeWithKey (f . R1) y) where finish Nothing Nothing = Nothing finish (Just x') Nothing = Just $! STrieL x' finish Nothing (Just y') = Just $! STrieR y' finish (Just x') (Just y') = Just $! STrieB x' y' gfoldWithKey f z (STrieL x) = gfoldWithKey (f . L1) z x gfoldWithKey f z (STrieR y) = gfoldWithKey (f . R1) z y gfoldWithKey f z (STrieB x y) = gfoldWithKey (f . L1) (gfoldWithKey (f . R1) z y) x gtraverseWithKey f (STrieL x) = fmap STrieL (gtraverseWithKey (f . L1) x) gtraverseWithKey f (STrieR y) = fmap STrieR (gtraverseWithKey (f . R1) y) gtraverseWithKey f (STrieB x y) = liftA2 STrieB (gtraverseWithKey (f . L1) x) (gtraverseWithKey (f . R1) y) gmergeWithKey f g h x0 y0 = case (split x0, split y0) of ((xl,xr),(yl,yr)) -> build (mergel xl yl) (merger xr yr) where split (STrieL x) = (Just x, Nothing) split (STrieR y) = (Nothing, Just y) split (STrieB x y) = (Just x, Just y) build (Just x) (Just y) = Just (STrieB x y) build (Just x) Nothing = Just (STrieL x) build Nothing (Just y) = Just (STrieR y) build Nothing Nothing = Nothing mergel Nothing Nothing = Nothing mergel (Just x) Nothing = gl x mergel Nothing (Just y) = hl y mergel (Just x) (Just y) = gmergeWithKey (f . L1) gl hl x y merger Nothing Nothing = Nothing merger (Just x) Nothing = gr x merger Nothing (Just y) = hr y merger (Just x) (Just y) = gmergeWithKey (f . R1) gr hr x y gl t = do STrieL t' <- g (STrieL t) return t' gr t = do STrieR t' <- g (STrieR t) return t' hl t = do STrieL t' <- h (STrieL t) return t' hr t = do STrieR t' <- h (STrieR t) return t' {-# INLINE gtrieLookup #-} {-# INLINE gtrieInsert #-} {-# INLINE gtrieDelete #-} {-# INLINE gtrieSingleton #-} {-# INLINE gtrieTraverse #-} {-# INLINE gtrieMap #-} {-# INLINE gfoldWithKey #-} {-# INLINE gtraverseWithKey #-} {-# INLINE gtraverseMaybeWithKey #-} {-# INLINE gmergeWithKey #-} {-# INLINE gmapMaybeWithKey #-} instance (GTrieKeyShow f, GTrieKeyShow g) => GTrieKeyShow (f :+: g) where gtrieShowsPrec p (STrieB x y) = showParen (p > 10) $ showString "STrieB " . showsPrec 11 x . showString " " . showsPrec 11 y gtrieShowsPrec p (STrieL x) = showParen (p > 10) $ showString "STrieL " . showsPrec 11 x gtrieShowsPrec p (STrieR y) = showParen (p > 10) $ showString "STrieR " . showsPrec 11 y ------------------------------------------------------------------------------ -- Generic implementation for units ------------------------------------------------------------------------------ -- | Tries of constructors without fields are represented by a single value. instance GTrieKey U1 where gtrieLookup _ (UTrie x) = Just x gtrieInsert _ v _ = UTrie v gtrieDelete _ _ = Nothing gtrieSingleton _ = UTrie gtrieMap f (UTrie x) = UTrie (f x) gtrieTraverse f (UTrie x) = fmap UTrie (f x) gmapMaybeWithKey f (UTrie x) = fmap UTrie $! f U1 x gtraverseMaybeWithKey f (UTrie x) = fmap (fmap UTrie) $! f U1 x gfoldWithKey f z (UTrie x) = f U1 x z gtraverseWithKey f (UTrie x) = fmap UTrie (f U1 x) gmergeWithKey f _ _ (UTrie x) (UTrie y) = fmap UTrie $! f U1 x y {-# INLINE gtrieLookup #-} {-# INLINE gtrieInsert #-} {-# INLINE gtrieDelete #-} {-# INLINE gtrieSingleton #-} {-# INLINE gtrieTraverse #-} {-# INLINE gtrieMap #-} {-# INLINE gfoldWithKey #-} {-# INLINE gtraverseWithKey #-} {-# INLINE gtraverseMaybeWithKey #-} {-# INLINE gmergeWithKey #-} {-# INLINE gmapMaybeWithKey #-} instance GTrieKeyShow U1 where gtrieShowsPrec p (UTrie x) = showsPrec p x ------------------------------------------------------------------------------ -- Generic implementation for empty types ------------------------------------------------------------------------------ -- | Tries of types without constructors are represented by an empty type. instance GTrieKey V1 where -- Why is this represented by an empty type? One might expect it would -- be represented by a unit type, as there is exactly one total function -- from any empty type to any other type. First, remember that -- TrieRepDefault offers an EmptyTrie constructor. So a TrieMap Void x -- will be represented by that. Next, note that while the generic Rep -- types can be put together in arbitrary ways, derived Generic instances (which -- are the only ones that matter) are always structured as sums of products, -- and only use V1 at the outermost level. That is, V1 will only appear in a -- generic representation if it is the only thing there (aside from M1 -- wrappers). In particular, the only GTrie types that contain V1 are ones -- for empty types, which are adequately represented by EmptyTrie. Indeed, -- if we offered an inhabited GTrie for a Void type, we'd run into trouble, -- because then we'd falsely claim that the TrieMap from Void isn't null! gtrieLookup _ t = case t of gtrieInsert _ _ t = case t of gtrieDelete _ t = case t of gtrieSingleton k _ = case k of gtrieMap _ t = case t of gtrieTraverse _ t = case t of gmapMaybeWithKey _ t = case t of gfoldWithKey _ _ t = case t of gtraverseWithKey _ t = case t of gtraverseMaybeWithKey _ t = case t of gmergeWithKey _ _ _ t _ = case t of {-# INLINE gtrieLookup #-} {-# INLINE gtrieInsert #-} {-# INLINE gtrieDelete #-} {-# INLINE gtrieSingleton #-} {-# INLINE gtrieMap #-} {-# INLINE gtrieTraverse #-} {-# INLINE gfoldWithKey #-} {-# INLINE gtraverseWithKey #-} {-# INLINE gtraverseMaybeWithKey #-} {-# INLINE gmergeWithKey #-} {-# INLINE gmapMaybeWithKey #-} instance GTrieKeyShow V1 where gtrieShowsPrec _ _ = showString "()" ------------------------------------------------------------------------------ -- Various instances for Trie ------------------------------------------------------------------------------ instance (Show a, ShowTrieKey k) => Show (Trie k a) where showsPrec = trieShowsPrec instance (Show a, GTrieKeyShow f) => Show (GTrie f a) where showsPrec = gtrieShowsPrec instance TrieKey k => Functor (Trie k) where fmap = trieMap instance TrieKey k => Foldable (Trie k) where foldr f = trieFoldWithKey (\_ -> f) instance TrieKey k => Traversable (Trie k) where traverse = trieTraverse