{-# OPTIONS_GHC -w #-}
{-# OPTIONS -fglasgow-exts -cpp #-}
module HERMIT.Parser
    ( Script
    , parseScript
    , unparseScript
    , unparseExprH
    , ExprH(..)
    ) where

import Data.Char (isSpace)
import Data.List (intercalate)

import Control.Monad ((>=>))

import HERMIT.Syntax (isScriptInfixIdChar, isScriptIdFirstChar, isScriptIdChar)
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts

-- parser produced by Happy Version 1.19.0

newtype HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyIn5 :: t5 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t5
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut5 #-}
happyIn6 :: t6 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t6
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut6 #-}
happyIn7 :: t7 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t7
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut7 #-}
happyIn8 :: t8 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t8
happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut8 #-}
happyIn9 :: t9 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t9
happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut9 #-}
happyIn10 :: t10 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t10
happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut10 #-}
happyIn11 :: t11 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> t11
happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut11 #-}
happyInTok :: (Token) -> (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn t4 t5 t6 t7 t8 t9 t10 t11) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x0e\x00\x1e\x00\x0e\x00\x06\x00\x00\x00\x00\x00\xfd\xff\x01\x00\x00\x00\x1a\x00\x0e\x00\x1a\x00\x0e\x00\x49\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x09\x00\x00\x00\x00\x00\x02\x00\x00\x00\x1a\x00\x0e\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x45\x00\x00\x00\x3f\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\xff\x00\x00\x4d\x00\x39\x00\x48\x00\x33\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x2d\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\xfa\xff\x00\x00\xfa\xff\x00\x00\xfc\xff\xfb\xff\xf9\xff\xf4\xff\xf2\xff\x00\x00\xfa\xff\xe8\xff\xfa\xff\x00\x00\xed\xff\xee\xff\xea\xff\xef\xff\xf1\xff\xf0\xff\xf6\xff\xe7\xff\x00\x00\xe9\xff\xfd\xff\x00\x00\xf3\xff\x00\x00\xfa\xff\xfa\xff\xfe\xff\xf7\xff\xf8\xff\xf5\xff\xeb\xff\xec\xff\x00\x00\xe6\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x04\x00\x01\x00\x05\x00\x02\x00\x08\x00\x05\x00\x03\x00\x04\x00\x05\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x01\x00\x07\x00\x03\x00\x04\x00\x05\x00\x0e\x00\x06\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x01\x00\x03\x00\x04\x00\x05\x00\x05\x00\x07\x00\x03\x00\xff\xff\x09\x00\x0a\x00\x0b\x00\x0c\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x03\x00\x04\x00\x05\x00\xff\xff\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x1d\x00\x0a\x00\x1a\x00\x23\x00\x1e\x00\x0c\x00\x21\x00\x07\x00\x08\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x1c\x00\x0a\x00\x24\x00\x03\x00\x0b\x00\x0c\x00\xff\xff\x25\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x0a\x00\x15\x00\x07\x00\x08\x00\x0c\x00\x25\x00\x03\x00\x00\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x1f\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x20\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x14\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x18\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x1e\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x15\x00\x07\x00\x08\x00\x16\x00\x17\x00\x19\x00\x07\x00\x08\x00\x00\x00\x12\x00\x13\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 25) [
	(1 , happyReduce_1),
	(2 , happyReduce_2),
	(3 , happyReduce_3),
	(4 , happyReduce_4),
	(5 , happyReduce_5),
	(6 , happyReduce_6),
	(7 , happyReduce_7),
	(8 , happyReduce_8),
	(9 , happyReduce_9),
	(10 , happyReduce_10),
	(11 , happyReduce_11),
	(12 , happyReduce_12),
	(13 , happyReduce_13),
	(14 , happyReduce_14),
	(15 , happyReduce_15),
	(16 , happyReduce_16),
	(17 , happyReduce_17),
	(18 , happyReduce_18),
	(19 , happyReduce_19),
	(20 , happyReduce_20),
	(21 , happyReduce_21),
	(22 , happyReduce_22),
	(23 , happyReduce_23),
	(24 , happyReduce_24),
	(25 , happyReduce_25)
	]

happy_n_terms = 15 :: Int
happy_n_nonterms = 8 :: Int

happyReduce_1 = happySpecReduce_2  0# happyReduction_1
happyReduction_1 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_2 of { happy_var_2 -> 
	happyIn4
		 (CmdName "{" : happy_var_2
	)}

happyReduce_2 = happySpecReduce_2  0# happyReduction_2
happyReduction_2 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_2 of { happy_var_2 -> 
	happyIn4
		 (CmdName "}" : happy_var_2
	)}

happyReduce_3 = happySpecReduce_1  0# happyReduction_3
happyReduction_3 happy_x_1
	 =  case happyOut5 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (happy_var_1
	)}

happyReduce_4 = happySpecReduce_1  1# happyReduction_4
happyReduction_4 happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	happyIn5
		 (happy_var_1
	)}

happyReduce_5 = happySpecReduce_0  1# happyReduction_5
happyReduction_5  =  happyIn5
		 ([]
	)

happyReduce_6 = happySpecReduce_1  2# happyReduction_6
happyReduction_6 happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	happyIn6
		 ([happy_var_1]
	)}

happyReduce_7 = happySpecReduce_3  2# happyReduction_7
happyReduction_7 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	case happyOut4 happy_x_3 of { happy_var_3 -> 
	happyIn6
		 ([happy_var_1, CmdName "}"] ++ happy_var_3
	)}}

happyReduce_8 = happySpecReduce_3  2# happyReduction_8
happyReduction_8 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	case happyOut4 happy_x_3 of { happy_var_3 -> 
	happyIn6
		 (happy_var_1 : happy_var_3
	)}}

happyReduce_9 = happySpecReduce_2  2# happyReduction_9
happyReduction_9 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_2 of { happy_var_2 -> 
	happyIn6
		 (happy_var_2
	)}

happyReduce_10 = happySpecReduce_3  3# happyReduction_10
happyReduction_10 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut8 happy_x_1 of { happy_var_1 -> 
	case happyOutTok happy_x_2 of { (InfixOp happy_var_2) -> 
	case happyOut7 happy_x_3 of { happy_var_3 -> 
	happyIn7
		 (AppH (AppH (CmdName happy_var_2) happy_var_1) happy_var_3
	)}}}

happyReduce_11 = happySpecReduce_1  3# happyReduction_11
happyReduction_11 happy_x_1
	 =  case happyOut8 happy_x_1 of { happy_var_1 -> 
	happyIn7
		 (happy_var_1
	)}

happyReduce_12 = happySpecReduce_2  4# happyReduction_12
happyReduction_12 happy_x_2
	happy_x_1
	 =  case happyOut8 happy_x_1 of { happy_var_1 -> 
	case happyOut9 happy_x_2 of { happy_var_2 -> 
	happyIn8
		 (AppH happy_var_1 happy_var_2
	)}}

happyReduce_13 = happySpecReduce_1  4# happyReduction_13
happyReduction_13 happy_x_1
	 =  case happyOut9 happy_x_1 of { happy_var_1 -> 
	happyIn8
		 (happy_var_1
	)}

happyReduce_14 = happySpecReduce_2  5# happyReduction_14
happyReduction_14 happy_x_2
	happy_x_1
	 =  case happyOutTok happy_x_2 of { (Ident happy_var_2) -> 
	happyIn9
		 (SrcName happy_var_2
	)}

happyReduce_15 = happySpecReduce_2  5# happyReduction_15
happyReduction_15 happy_x_2
	happy_x_1
	 =  case happyOutTok happy_x_2 of { (InfixOp happy_var_2) -> 
	happyIn9
		 (SrcName happy_var_2
	)}

happyReduce_16 = happySpecReduce_2  5# happyReduction_16
happyReduction_16 happy_x_2
	happy_x_1
	 =  case happyOutTok happy_x_2 of { (Quote happy_var_2) -> 
	happyIn9
		 (SrcName happy_var_2
	)}

happyReduce_17 = happySpecReduce_1  5# happyReduction_17
happyReduction_17 happy_x_1
	 =  case happyOutTok happy_x_1 of { (Quote happy_var_1) -> 
	happyIn9
		 (CmdName happy_var_1
	)}

happyReduce_18 = happySpecReduce_1  5# happyReduction_18
happyReduction_18 happy_x_1
	 =  case happyOutTok happy_x_1 of { (CoreString happy_var_1) -> 
	happyIn9
		 (CoreH happy_var_1
	)}

happyReduce_19 = happySpecReduce_3  5# happyReduction_19
happyReduction_19 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut10 happy_x_2 of { happy_var_2 -> 
	happyIn9
		 (ListH happy_var_2
	)}

happyReduce_20 = happySpecReduce_3  5# happyReduction_20
happyReduction_20 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut7 happy_x_2 of { happy_var_2 -> 
	happyIn9
		 (happy_var_2
	)}

happyReduce_21 = happySpecReduce_1  5# happyReduction_21
happyReduction_21 happy_x_1
	 =  case happyOutTok happy_x_1 of { (Ident happy_var_1) -> 
	happyIn9
		 (CmdName happy_var_1
	)}

happyReduce_22 = happySpecReduce_1  6# happyReduction_22
happyReduction_22 happy_x_1
	 =  case happyOut11 happy_x_1 of { happy_var_1 -> 
	happyIn10
		 (happy_var_1
	)}

happyReduce_23 = happySpecReduce_0  6# happyReduction_23
happyReduction_23  =  happyIn10
		 ([]
	)

happyReduce_24 = happySpecReduce_1  7# happyReduction_24
happyReduction_24 happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	happyIn11
		 ([happy_var_1]
	)}

happyReduce_25 = happySpecReduce_3  7# happyReduction_25
happyReduction_25 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	case happyOut11 happy_x_3 of { happy_var_3 -> 
	happyIn11
		 (happy_var_1 : happy_var_3
	)}}

happyNewToken action sts stk [] =
	happyDoAction 14# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
	let cont i = happyDoAction i tk action sts stk tks in
	case tk of {
	ParenLeft -> cont 1#;
	ParenRight -> cont 2#;
	ScopeStart -> cont 3#;
	ScopeEnd -> cont 4#;
	ListStart -> cont 5#;
	ListDelim -> cont 6#;
	ListEnd -> cont 7#;
	StmtEnd -> cont 8#;
	Tick -> cont 9#;
	CoreString happy_dollar_dollar -> cont 10#;
	Quote happy_dollar_dollar -> cont 11#;
	Ident happy_dollar_dollar -> cont 12#;
	InfixOp happy_dollar_dollar -> cont 13#;
	_ -> happyError' (tk:tks)
	}

happyError_ 14# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)

happyThen :: () => Either String a -> (a -> Either String b) -> Either String b
happyThen = (>>=)
happyReturn :: () => a -> Either String a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> Either String a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> Either String a
happyError' = parseError

parser tks = happySomeParser where
  happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


parseError :: [Token] -> Either String a
parseError ts = Left $ "Parse error: " ++ show ts

-- | A simple expression language AST, for things parsed from 'String' or JSON structures.
data ExprH
    = SrcName String                -- ^ Variable names (refers to source code).
    | CmdName String                -- ^ Commands (to be looked up in 'HERMIT.Dictionary').
    | AppH ExprH ExprH              -- ^ Application.
    | CoreH String                  -- ^ Core Fragment
    | ListH [ExprH]                 -- ^ List of expressions
    deriving (Eq, Show)

data Token
    = ParenLeft
    | ParenRight
    | ScopeStart
    | ScopeEnd
    | ListStart
    | ListDelim
    | ListEnd
    | StmtEnd
    | Tick
    | CoreString String
    | Quote String
    | Ident String
    | InfixOp String
    deriving (Eq, Show)

lexError :: String -> Either String a
lexError msg = Left ("Lexer error: " ++ msg)

lexer :: String -> Either String [Token]
lexer []           = Right []
lexer ('\n':cs)    = fmap (StmtEnd:)    $ lexer cs
lexer (';' :cs)    = fmap (StmtEnd:)    $ lexer cs
lexer ('(' :cs)    = fmap (ParenLeft:)  $ lexer cs
lexer (')' :cs)    = fmap (ParenRight:) $ lexer cs
lexer ('{' :cs)    = fmap (ScopeStart:) $ lexer cs
lexer ('}' :cs)    = fmap (ScopeEnd:)   $ lexer cs
lexer ('\'':cs)    = fmap (Tick:)       $ lexer cs
lexer ('\"':cs)    = do (str,cs') <- lexString cs
                        fmap (Quote str:) $ lexer cs'
lexer ('[':'|':cs) = do (str,cs') <- lexCore cs
                        fmap (CoreString str:) $ lexer cs'
lexer ('-':'-':cs) = let (_,s') = span (/= '\n') cs in lexer s'
lexer ('[' :cs)    = fmap (ListStart:)  $ lexer cs
lexer (',' :cs)    = fmap (ListDelim:)  $ lexer cs
lexer (']' :cs)    = fmap (ListEnd:)    $ lexer cs
lexer s@(c:cs)     | isSpace             c = lexer cs
                   | isScriptIdFirstChar c = let (i,s') = span isScriptIdChar s
                                              in fmap (Ident i:) $ lexer s'
                   | isScriptInfixIdChar c = let (op,s') = span isScriptInfixIdChar s
                                              in fmap (InfixOp op:) $ lexer s'
lexer s            = lexError $ "no match on " ++ s

lexString :: String -> Either String (String,String)
lexString ('\"':cs)      = Right ([],cs)
lexString ('\\':'\"':cs) = do (c',r) <- lexString cs
                              return ('"':c',r)
lexString (c:cs)         = do (c',r) <- lexString cs
                              return (c:c',r)
lexString []             = lexError "no matching quote"

lexCore :: String -> Either String (String,String)
lexCore ('|':']':rest) = Right ([],rest)
lexCore (c:cs)         = do (c',r) <- lexCore cs
                            return (c:c',r)
lexCore []             = lexError "no closing |]"

---------------------------------------------

-- | Use ghci Parser.hs to run this test function.
test = do
    ln <- getLine
    case ln of
        "quit" -> return ()
        _      -> do print $ lexer ln
                     print $ parseScript ln
                     test

type Script = [ExprH]

parseScript :: String -> Either String Script
parseScript = lexer >=> parser

---------------------------------------------

unparseScript :: Script -> String
unparseScript = intercalate " ; " . map unparseExprH

unparseExprH :: ExprH -> String
unparseExprH (SrcName nm)
    | nm /= "" && (all isScriptInfixIdChar nm || isScriptIdFirstChar (head nm) && all isScriptIdChar (tail nm)) = "'" ++ nm
    | otherwise = "'\"" ++ concatMap escape nm ++ "\""
        where escape '\"' = "\\\""
              escape c    = [c]
unparseExprH (CmdName nm)
    | nm == "{"             = "{ "
    | nm == "}"             = " }"
    | all isScriptIdChar nm = nm
    | otherwise             = show nm     -- with quotes
unparseExprH (AppH (AppH (CmdName nm) e1) e2)
    | all isScriptInfixIdChar nm
    = unparseAtom e1 ++ " " ++ nm ++ " " ++ unparseAtom e2
unparseExprH (AppH e1 e2) = unparseExprH e1 ++ " " ++ unparseAtom e2
unparseExprH (CoreH s)    = "[|" ++ s ++ "|]"
unparseExprH (ListH es)   = "[" ++ intercalate "," (map unparseExprH es) ++ "]"

unparseAtom :: ExprH -> String
unparseAtom e@(AppH {}) = "(" ++ unparseExprH e ++ ")"
unparseAtom e           = unparseExprH e

---------------------------------------------
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 

{-# LINE 13 "templates/GenericTemplate.hs" #-}





#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
{-# LINE 45 "templates/GenericTemplate.hs" #-}


data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList





{-# LINE 66 "templates/GenericTemplate.hs" #-}

{-# LINE 76 "templates/GenericTemplate.hs" #-}

{-# LINE 85 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
	happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
	(happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
	= {- nothing -}


	  case action of
		0#		  -> {- nothing -}
				     happyFail i tk st
		-1# 	  -> {- nothing -}
				     happyAccept i tk st
		n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

				     (happyReduceArr Happy_Data_Array.! rule) i tk st
				     where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
		n		  -> {- nothing -}


				     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = indexShortOffAddr happyActOffsets st
         off_i  = (off Happy_GHC_Exts.+# i)
	 check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
		  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st


indexShortOffAddr (HappyA# arr) off =
	Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#





data HappyAddr = HappyA# Happy_GHC_Exts.Addr#




-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 169 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
	 sts1@((HappyCons (st1@(action)) (_))) ->
        	let r = fn stk in  -- it doesn't hurt to always seq here...
       		happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = indexShortOffAddr happyGotoOffsets st1
             off_i = (off Happy_GHC_Exts.+# nt)
             new_state = indexShortOffAddr happyTable off_i



          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where off = indexShortOffAddr happyGotoOffsets st
         off_i = (off Happy_GHC_Exts.+# nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--	trace "failing" $ 
        happyError_ i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
						(saved_tok `HappyStk` _ `HappyStk` stk) =
--	trace ("discarding state, depth " ++ show (length stk))  $
	happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail  i tk (action) sts stk =
--      trace "entering error recovery" $
	happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--	happySeq = happyDoSeq
-- otherwise it emits
-- 	happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.