{-# OPTIONS_GHC -w #-}
{-# OPTIONS -fglasgow-exts -cpp #-}
{-# LANGUAGE TupleSections #-}
module HERMIT.ParserCore
    ( parseCore
    , parseCoreExprT
    , parse2BeforeT
    , parse3BeforeT
    , parse2beforeBiR
    , parse3beforeBiR
    , parse4beforeBiR
    , parse5beforeBiR
    , Token(..)
    , parseError
    , lexer
    ) where

import Control.Arrow
import Control.Monad.Reader
import Data.Char (isSpace, isDigit)
import qualified Data.Map as M

import HERMIT.Context
import HERMIT.External
import HERMIT.GHC
import HERMIT.Kure
import HERMIT.Monad
import HERMIT.Name
import HERMIT.Syntax (isCoreInfixIdChar, isCoreIdFirstChar, isCoreIdChar)

import Language.KURE.MonadCatch (prefixFailMsg)
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))

-- parser produced by Happy Version 1.19.4

newtype HappyAbsSyn t4 t5 t6 t7 t8 t9 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyIn5 :: t5 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9)
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t5
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut5 #-}
happyIn6 :: t6 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9)
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t6
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut6 #-}
happyIn7 :: t7 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9)
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t7
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut7 #-}
happyIn8 :: t8 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9)
happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t8
happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut8 #-}
happyIn9 :: t9 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9)
happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t9
happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut9 #-}
happyInTok :: (Token) -> (HappyAbsSyn t4 t5 t6 t7 t8 t9)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\xf8\xff\xf8\xff\xf8\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf5\xff\x00\x00\x00\x00\x00\x00\xf0\xff\xf6\xff\x00\x00\x00\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x0b\x00\x18\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\xfe\xff\xfc\xff\xf8\xff\xf7\xff\xf9\xff\x00\x00\xf4\xff\xf6\xff\xf5\xff\x00\x00\x00\x00\xfa\xff\xfd\xff\xfb\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x0c\x00\x0d\x00\x0d\x00\x0c\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x1c\x00\x22\x00\x1e\x00\x1c\x00\x20\x00\x1e\x00\xff\xff\x20\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x02\x00\x03\x00\x04\x00\x05\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x08\x00\x0e\x00\x10\x00\x08\x00\x0c\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x09\x00\xff\xff\x0a\x00\x09\x00\x0b\x00\x0a\x00\x00\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x0e\x00\x04\x00\x05\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 11) [
	(1 , happyReduce_1),
	(2 , happyReduce_2),
	(3 , happyReduce_3),
	(4 , happyReduce_4),
	(5 , happyReduce_5),
	(6 , happyReduce_6),
	(7 , happyReduce_7),
	(8 , happyReduce_8),
	(9 , happyReduce_9),
	(10 , happyReduce_10),
	(11 , happyReduce_11)
	]

happy_n_terms = 35 :: Int
happy_n_nonterms = 6 :: Int

happyReduce_1 = happySpecReduce_1  0# happyReduction_1
happyReduction_1 happy_x_1
	 =  case happyOut5 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (happy_var_1
	)}

happyReduce_2 = happySpecReduce_2  1# happyReduction_2
happyReduction_2 happy_x_2
	happy_x_1
	 =  case happyOut5 happy_x_1 of { happy_var_1 -> 
	case happyOut6 happy_x_2 of { happy_var_2 -> 
	happyIn5
		 (App happy_var_1 happy_var_2
	)}}

happyReduce_3 = happySpecReduce_1  1# happyReduction_3
happyReduction_3 happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	happyIn5
		 (happy_var_1
	)}

happyReduce_4 = happySpecReduce_3  2# happyReduction_4
happyReduction_4 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_2 of { happy_var_2 -> 
	happyIn6
		 (happy_var_2
	)}

happyReduce_5 = happyMonadReduce 2# 2# happyReduction_5
happyReduction_5 (happy_x_2 `HappyStk`
	happy_x_1 `HappyStk`
	happyRest) tk
	 = happyThen (( lookupName "()")
	) (\r -> happyReturn (happyIn6 r))

happyReduce_6 = happySpecReduce_1  2# happyReduction_6
happyReduction_6 happy_x_1
	 =  case happyOut9 happy_x_1 of { happy_var_1 -> 
	happyIn6
		 (happy_var_1
	)}

happyReduce_7 = happySpecReduce_1  2# happyReduction_7
happyReduction_7 happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	happyIn6
		 (happy_var_1
	)}

happyReduce_8 = happySpecReduce_1  2# happyReduction_8
happyReduction_8 happy_x_1
	 =  case happyOut8 happy_x_1 of { happy_var_1 -> 
	happyIn6
		 (happy_var_1
	)}

happyReduce_9 = happyMonadReduce 1# 3# happyReduction_9
happyReduction_9 (happy_x_1 `HappyStk`
	happyRest) tk
	 = happyThen (case happyOutTok happy_x_1 of { (Tinteger happy_var_1) -> 
	( mkIntExpr' happy_var_1)}
	) (\r -> happyReturn (happyIn7 r))

happyReduce_10 = happyMonadReduce 1# 4# happyReduction_10
happyReduction_10 (happy_x_1 `HappyStk`
	happyRest) tk
	 = happyThen (case happyOutTok happy_x_1 of { (Tstring happy_var_1) -> 
	( lift $ mkStringExpr happy_var_1)}
	) (\r -> happyReturn (happyIn8 r))

happyReduce_11 = happyMonadReduce 1# 5# happyReduction_11
happyReduction_11 (happy_x_1 `HappyStk`
	happyRest) tk
	 = happyThen (case happyOutTok happy_x_1 of { (Tname happy_var_1) -> 
	( lookupName happy_var_1)}
	) (\r -> happyReturn (happyIn9 r))

happyNewToken action sts stk [] =
	happyDoAction 34# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
	let cont i = happyDoAction i tk action sts stk tks in
	case tk of {
	Tforall -> cont 1#;
	Trec -> cont 2#;
	Tlet -> cont 3#;
	Tin -> cont 4#;
	Tcase -> cont 5#;
	Tof -> cont 6#;
	Tcast -> cont 7#;
	Tnote -> cont 8#;
	Texternal -> cont 9#;
	Tlocal -> cont 10#;
	Twild -> cont 11#;
	Toparen -> cont 12#;
	Tcparen -> cont 13#;
	Tobrace -> cont 14#;
	Tcbrace -> cont 15#;
	Thash -> cont 16#;
	Teq -> cont 17#;
	Tcolon -> cont 18#;
	Tcoloncolon -> cont 19#;
	Tcoloneqcolon -> cont 20#;
	Tstar -> cont 21#;
	Tarrow -> cont 22#;
	Tlambda -> cont 23#;
	Tat -> cont 24#;
	Tdot -> cont 25#;
	Tquestion -> cont 26#;
	Tsemicolon -> cont 27#;
	Tname happy_dollar_dollar -> cont 28#;
	Tcname happy_dollar_dollar -> cont 29#;
	Tinteger happy_dollar_dollar -> cont 30#;
	Trational happy_dollar_dollar -> cont 31#;
	Tstring happy_dollar_dollar -> cont 32#;
	Tchar happy_dollar_dollar -> cont 33#;
	_ -> happyError' (tk:tks)
	}

happyError_ 34# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)

happyThen :: () => CoreParseM a -> (a -> CoreParseM b) -> CoreParseM b
happyThen = (>>=)
happyReturn :: () => a -> CoreParseM a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> CoreParseM a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> CoreParseM a
happyError' = parseError

parser tks = happySomeParser where
  happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


mkIntExpr' :: Integer -> CoreParseM CoreExpr
mkIntExpr' i = do
    dflags <- lift getDynFlags
    return $ mkIntExpr dflags i

lookupName :: String -> CoreParseM CoreExpr
lookupName nm = do
    vset <- ask
    v <- lift $ prefixFailMsg (nm ++ " lookup: ") $ findId (parseName nm) vset
    return $ varToCoreExpr v

type CoreParseM a = ReaderT VarSet HermitM a

parseError :: Monad m => [Token] -> m a
parseError ts = fail $ "core parse error: " ++ show ts

data Token
    = Tforall
    | Trec
    | Tlet
    | Tin
    | Tcase
    | Tof
    | Tcast
    | Tnote
    | Texternal
    | Tlocal
    | Twild --
    | Toparen --
    | Tcparen --
    | Tobrace
    | Tcbrace
    | Thash
    | Teq
    | Tcolon --
    | Tcoloncolon --
    | Tcoloneqcolon
    | Tstar
    | Tarrow
    | Tdoublearrow
    | Tlambda --
    | Tat
    | Tdot
    | Tquestion
    | Tsemicolon
    | Tname String
    | Tcname String
    | Tinteger Integer
    | Trational Float
    | Tstring String
    | Tchar Char
    deriving (Eq, Show)

lexer :: String -> Either String [Token]
lexer []           = Right []
lexer ('_' :cs)    = fmap (Twild:)        $ lexer cs
lexer ('(' :cs)    = fmap (Toparen:)      $ lexer cs
lexer (')' :cs)    = fmap (Tcparen:)      $ lexer cs
lexer (':':':':cs) = fmap (Tcoloncolon:)  $ lexer cs
-- lexer (':' :cs)    = fmap (Tcolon:)       $ lexer cs
lexer ('\\':cs)    = fmap (Tlambda:)      $ lexer cs
lexer ('-':'>':cs) = fmap (Tarrow:)       $ lexer cs
lexer ('=':'>':cs) = fmap (Tdoublearrow:) $ lexer cs
lexer ('\"':cs)    = let (str,rest) = span (/='\"') cs
                     in case rest of
                           ('\"':cs') -> fmap (Tstring str:) $ lexer cs'
                           _          -> Left "lexer: no matching quote"
lexer s@(c:cs) | isSpace           c = lexer cs
               | isDigit           c = let (i,s') = span isDigit s
                                         in fmap (Tinteger (read i):) $ lexer s'
               | isCoreIdFirstChar c = let (i,s') = span isCoreIdChar s
                                         in fmap (Tname i:) $ lexer s'
               | isCoreInfixIdChar c = let (op,s') = span isCoreInfixIdChar s
                                         in fmap (Tname op:) $ lexer s'
lexer s            = Left $ "lexer: no match on " ++ s

---------------------------------------------

parseCore :: ReadBindings c => CoreString -> c -> HermitM CoreExpr
parseCore (CoreString s) c =
    case lexer s of
        Left msg -> fail msg
        Right tokens ->
            -- Since we are comparing occurrence names, only take the
            -- most recently defined (deepest) when variables shadow each other.
            let comb v1@(_,d1) v2@(_,d2) = if d1 > d2 then v1 else v2
                vars = mkVarSet . map fst . M.elems
                     $ M.mapKeysWith comb getOccString
                     $ M.mapWithKey (\k -> (k,) . hbDepth)
                     $ hermitBindings c
            in runReaderT (parser tokens) vars

---------------------------------------------

-- These should probably go somewhere else.

-- | Parse a 'CoreString' to a 'CoreExpr', using the current context.
parseCoreExprT :: (ReadBindings c, HasHermitMEnv m, HasLemmas m, LiftCoreM m)
               => CoreString -> Transform c m a CoreExpr
parseCoreExprT cs = contextonlyT $ embedHermitM . parseCore cs

parse2BeforeT :: (ReadBindings c, HasHermitMEnv m, HasLemmas m, LiftCoreM m)
              => (CoreExpr -> CoreExpr -> Translate c m a b)
              -> CoreString -> CoreString -> Translate c m a b
parse2BeforeT f s1 s2 = parseCoreExprT s1 &&& parseCoreExprT s2 >>= uncurry f

parse3BeforeT :: (ReadBindings c, HasHermitMEnv m, HasLemmas m, LiftCoreM m)
              => (CoreExpr -> CoreExpr -> CoreExpr -> Translate c m a b)
              -> CoreString -> CoreString -> CoreString -> Translate c m a b
parse3BeforeT f s1 s2 s3 = (parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3 >>= (uncurry . uncurry $ f)

parse2beforeBiR :: (CoreExpr -> CoreExpr -> BiRewriteH a)
                -> CoreString -> CoreString -> BiRewriteH a
parse2beforeBiR f s1 s2 = beforeBiR (parseCoreExprT s1 &&& parseCoreExprT s2) (uncurry f)

parse3beforeBiR :: (CoreExpr -> CoreExpr -> CoreExpr -> BiRewriteH a)
                -> CoreString -> CoreString -> CoreString -> BiRewriteH a
parse3beforeBiR f s1 s2 s3 = beforeBiR ((parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3) ((uncurry.uncurry) f)

parse4beforeBiR :: (CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr -> BiRewriteH a)
                -> CoreString -> CoreString -> CoreString -> CoreString -> BiRewriteH a
parse4beforeBiR f s1 s2 s3 s4 = beforeBiR (((parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3) &&& parseCoreExprT s4) ((uncurry.uncurry.uncurry) f)

parse5beforeBiR :: (CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr -> BiRewriteH a)
                -> CoreString -> CoreString -> CoreString -> CoreString -> CoreString -> BiRewriteH a
parse5beforeBiR f s1 s2 s3 s4 s5 = beforeBiR ((((parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3) &&& parseCoreExprT s4) &&& parseCoreExprT s5) ((uncurry.uncurry.uncurry.uncurry) f)

---------------------------------------------
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 10 "<command-line>" #-}
# 1 "/usr/include/stdc-predef.h" 1 3 4

# 17 "/usr/include/stdc-predef.h" 3 4










































{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 

{-# LINE 13 "templates/GenericTemplate.hs" #-}





-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
{-# LINE 46 "templates/GenericTemplate.hs" #-}


data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList





{-# LINE 67 "templates/GenericTemplate.hs" #-}

{-# LINE 77 "templates/GenericTemplate.hs" #-}

{-# LINE 86 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}


          case action of
                0#           -> {- nothing -}
                                     happyFail i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}


                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = indexShortOffAddr happyActOffsets st
         off_i  = (off Happy_GHC_Exts.+# i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st


indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#





data HappyAddr = HappyA# Happy_GHC_Exts.Addr#




-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 170 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = indexShortOffAddr happyGotoOffsets st1
             off_i = (off Happy_GHC_Exts.+# nt)
             new_state = indexShortOffAddr happyTable off_i



          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where off = indexShortOffAddr happyGotoOffsets st
         off_i = (off Happy_GHC_Exts.+# nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail  i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.