Copyright | (C) Frank Staals |
---|---|

License | see the LICENSE file |

Maintainer | Frank Staals |

Safe Haskell | None |

Language | Haskell2010 |

\(O(n\log n)\) time algorithm algorithm to compute the Euclidean minimum spanning tree of a set of \(n\) points in \(\mathbb{R}^2\).

## Synopsis

- euclideanMST :: (Ord r, Fractional r) => NonEmpty (Point 2 r :+ p) -> Tree (Point 2 r :+ p)

# Documentation

euclideanMST :: (Ord r, Fractional r) => NonEmpty (Point 2 r :+ p) -> Tree (Point 2 r :+ p) Source #

Computes the Euclidean Minimum Spanning Tree. We compute the Delaunay Triangulation (DT), and then extract the EMST. Hence, the same restrictions apply as for the DT:

pre: the input is a *SET*, i.e. contains no duplicate points. (If the input does contain duplicate points, the implementation throws them away)

running time: \(O(n \log n)\)