{-# OPTIONS_GHC -fglasgow-exts #-} ----------------------------------------------------------------------------- {- | Module : Numeric.LinearAlgebra.Algorithms Copyright : (c) Alberto Ruiz 2006-7 License : GPL-style Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional Portability : uses ffi A generic interface for some common functions. Using it we can write higher level algorithms and testing properties both for real and complex matrices. In any case, the specific functions for particular base types can also be explicitly imported from "Numeric.LinearAlgebra.LAPACK". -} ----------------------------------------------------------------------------- module Numeric.LinearAlgebra.Algorithms ( -- * Linear Systems linearSolve, inv, pinv, pinvTol, det, rank, rcond, -- * Matrix factorizations -- ** Singular value decomposition svd, full, economy, --thin, -- ** Eigensystems eig, eigSH, -- ** QR qr, -- ** Cholesky chol, -- ** Hessenberg hess, -- ** Schur schur, -- * Matrix functions expm, sqrtm, matFunc, -- * Nullspace nullspacePrec, nullVector, -- * Norms Normed(..), NormType(..), -- * Misc ctrans, eps, i, -- * Util haussholder, unpackQR, unpackHess, Field(linearSolveSVD,lu,eigSH',cholSH) ) where import Data.Packed.Internal hiding (fromComplex, toComplex, comp, conj) import Data.Packed import qualified Numeric.GSL.Matrix as GSL import Numeric.GSL.Vector import Numeric.LinearAlgebra.LAPACK as LAPACK import Complex import Numeric.LinearAlgebra.Linear import Data.List(foldl1') -- | Auxiliary typeclass used to define generic computations for both real and complex matrices. class (Normed (Matrix t), Linear Matrix t) => Field t where -- | Singular value decomposition using lapack's dgesvd or zgesvd. svd :: Matrix t -> (Matrix t, Vector Double, Matrix t) lu :: Matrix t -> (Matrix t, Matrix t, [Int], t) -- | Solution of a general linear system (for several right-hand sides) using lapacks' dgesv and zgesv. -- See also other versions of linearSolve in "Numeric.LinearAlgebra.LAPACK". linearSolve :: Matrix t -> Matrix t -> Matrix t linearSolveSVD :: Matrix t -> Matrix t -> Matrix t -- | Eigenvalues and eigenvectors of a general square matrix using lapack's dgeev or zgeev. -- -- If @(s,v) = eig m@ then @m \<> v == v \<> diag s@ eig :: Matrix t -> (Vector (Complex Double), Matrix (Complex Double)) -- | Similar to eigSH without checking that the input matrix is hermitian or symmetric. eigSH' :: Matrix t -> (Vector Double, Matrix t) -- | Similar to chol without checking that the input matrix is hermitian or symmetric. cholSH :: Matrix t -> Matrix t -- | QR factorization using lapack's dgeqr2 or zgeqr2. -- -- If @(q,r) = qr m@ then @m == q \<> r@, where q is unitary and r is upper triangular. qr :: Matrix t -> (Matrix t, Matrix t) -- | Hessenberg factorization using lapack's dgehrd or zgehrd. -- -- If @(p,h) = hess m@ then @m == p \<> h \<> ctrans p@, where p is unitary -- and h is in upper Hessenberg form. hess :: Matrix t -> (Matrix t, Matrix t) -- | Schur factorization using lapack's dgees or zgees. -- -- If @(u,s) = schur m@ then @m == u \<> s \<> ctrans u@, where u is unitary -- and s is a Shur matrix. A complex Schur matrix is upper triangular. A real Schur matrix is -- upper triangular in 2x2 blocks. -- -- \"Anything that the Jordan decomposition can do, the Schur decomposition -- can do better!\" (Van Loan) schur :: Matrix t -> (Matrix t, Matrix t) -- | Conjugate transpose. ctrans :: Matrix t -> Matrix t instance Field Double where svd = svdR lu = GSL.luR linearSolve = linearSolveR linearSolveSVD = linearSolveSVDR Nothing ctrans = trans eig = eigR eigSH' = eigS cholSH = cholS qr = GSL.unpackQR . qrR hess = unpackHess hessR schur = schurR instance Field (Complex Double) where svd = svdC lu = GSL.luC linearSolve = linearSolveC linearSolveSVD = linearSolveSVDC Nothing ctrans = conj . trans eig = eigC eigSH' = eigH cholSH = cholH qr = unpackQR . qrC hess = unpackHess hessC schur = schurC -- | Eigenvalues and Eigenvectors of a complex hermitian or real symmetric matrix using lapack's dsyev or zheev. -- -- If @(s,v) = eigSH m@ then @m == v \<> diag s \<> ctrans v@ eigSH :: Field t => Matrix t -> (Vector Double, Matrix t) eigSH m | m `equal` ctrans m = eigSH' m | otherwise = error "eigSH requires complex hermitian or real symmetric matrix" -- | Cholesky factorization of a positive definite hermitian or symmetric matrix using lapack's dpotrf or zportrf. -- -- If @c = chol m@ then @m == c \<> ctrans c@. chol :: Field t => Matrix t -> Matrix t chol m | m `equal` ctrans m = cholSH m | otherwise = error "chol requires positive definite complex hermitian or real symmetric matrix" square m = rows m == cols m det :: Field t => Matrix t -> t det m | square m = s * (product $ toList $ takeDiag $ u) | otherwise = error "det of nonsquare matrix" where (_,u,_,s) = lu m -- | Inverse of a square matrix using lapacks' dgesv and zgesv. inv :: Field t => Matrix t -> Matrix t inv m | square m = m `linearSolve` ident (rows m) | otherwise = error "inv of nonsquare matrix" -- | Pseudoinverse of a general matrix using lapack's dgelss or zgelss. pinv :: Field t => Matrix t -> Matrix t pinv m = linearSolveSVD m (ident (rows m)) -- | A version of 'svd' which returns an appropriate diagonal matrix with the singular values. -- -- If @(u,d,v) = full svd m@ then @m == u \<> d \<> trans v@. full :: Element t => (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, Matrix Double, Matrix t) full svd' m = (u, d ,v) where (u,s,v) = svd' m d = diagRect s r c r = rows m c = cols m -- | A version of 'svd' which returns only the nonzero singular values and the corresponding rows and columns of the rotations. -- -- If @(u,s,v) = economy svd m@ then @m == u \<> diag s \<> trans v@. economy :: Element t => (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, Vector Double, Matrix t) economy svd' m = (u', subVector 0 d s, v') where (u,s,v) = svd' m sl@(g:_) = toList s s' = fromList . filter (>tol) $ sl t = 1 tol = (fromIntegral (max r c) * g * t * eps) r = rows m c = cols m d = dim s' u' = takeColumns d u v' = takeColumns d v -- | The machine precision of a Double: @eps = 2.22044604925031e-16@ (the value used by GNU-Octave). eps :: Double eps = 2.22044604925031e-16 -- | The imaginary unit: @i = 0.0 :+ 1.0@ i :: Complex Double i = 0:+1 -- matrix product mXm :: (Num t, Field t) => Matrix t -> Matrix t -> Matrix t mXm = multiply -- matrix - vector product mXv :: (Num t, Field t) => Matrix t -> Vector t -> Vector t mXv m v = flatten $ m `mXm` (asColumn v) -- vector - matrix product vXm :: (Num t, Field t) => Vector t -> Matrix t -> Vector t vXm v m = flatten $ (asRow v) `mXm` m --------------------------------------------------------------------------- norm2 :: Vector Double -> Double norm2 = toScalarR Norm2 norm1 :: Vector Double -> Double norm1 = toScalarR AbsSum data NormType = Infinity | PNorm1 | PNorm2 -- PNorm Int pnormRV PNorm2 = norm2 pnormRV PNorm1 = norm1 pnormRV Infinity = vectorMax . vectorMapR Abs --pnormRV _ = error "pnormRV not yet defined" pnormCV PNorm2 = norm2 . asReal pnormCV PNorm1 = norm1 . liftVector magnitude pnormCV Infinity = vectorMax . liftVector magnitude --pnormCV _ = error "pnormCV not yet defined" pnormRM PNorm2 m = head (toList s) where (_,s,_) = svdR m pnormRM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (vectorMapR Abs) m pnormRM Infinity m = vectorMax $ liftMatrix (vectorMapR Abs) m `mXv` constant 1 (cols m) --pnormRM _ _ = error "p norm not yet defined" pnormCM PNorm2 m = head (toList s) where (_,s,_) = svdC m pnormCM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (liftVector magnitude) m pnormCM Infinity m = vectorMax $ liftMatrix (liftVector magnitude) m `mXv` constant 1 (cols m) --pnormCM _ _ = error "p norm not yet defined" -- | Objects which have a p-norm. -- Using it you can define convenient shortcuts: -- -- @norm2 x = pnorm PNorm2 x@ -- -- @frobenius m = norm2 . flatten $ m@ class Normed t where pnorm :: NormType -> t -> Double instance Normed (Vector Double) where pnorm = pnormRV instance Normed (Vector (Complex Double)) where pnorm = pnormCV instance Normed (Matrix Double) where pnorm = pnormRM instance Normed (Matrix (Complex Double)) where pnorm = pnormCM ----------------------------------------------------------------------- -- | The nullspace of a matrix from its SVD decomposition. nullspacePrec :: Field t => Double -- ^ relative tolerance in 'eps' units -> Matrix t -- ^ input matrix -> [Vector t] -- ^ list of unitary vectors spanning the nullspace nullspacePrec t m = ns where (_,s,v) = svd m sl@(g:_) = toList s tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps) rank' = length (filter (> g*tol) sl) ns = drop rank' $ toRows $ ctrans v -- | The nullspace of a matrix, assumed to be one-dimensional, with default tolerance (shortcut for @last . nullspacePrec 1@). nullVector :: Field t => Matrix t -> Vector t nullVector = last . nullspacePrec 1 ------------------------------------------------------------------------ {- Pseudoinverse of a real matrix with the desired tolerance, expressed as a multiplicative factor of the default tolerance used by GNU-Octave (see 'pinv'). @\> let m = 'fromLists' [[1,0, 0] ,[0,1, 0] ,[0,0,1e-10]] \ \> 'pinv' m 1. 0. 0. 0. 1. 0. 0. 0. 10000000000. \ \> pinvTol 1E8 m 1. 0. 0. 0. 1. 0. 0. 0. 1.@ -} --pinvTol :: Double -> Matrix Double -> Matrix Double pinvTol t m = v' `mXm` diag s' `mXm` trans u' where (u,s,v) = svdR m sl@(g:_) = toList s s' = fromList . map rec $ sl rec x = if x < g*tol then 1 else 1/x tol = (fromIntegral (max r c) * g * t * eps) r = rows m c = cols m d = dim s u' = takeColumns d u v' = takeColumns d v --------------------------------------------------------------------- -- many thanks, quickcheck! haussholder :: (Field a) => a -> Vector a -> Matrix a haussholder tau v = ident (dim v) `sub` (tau `scale` (w `mXm` ctrans w)) where w = asColumn v zh k v = fromList $ replicate (k-1) 0 ++ (1:drop k xs) where xs = toList v zt 0 v = v zt k v = join [subVector 0 (dim v - k) v, constant 0 k] unpackQR :: (Field t) => (Matrix t, Vector t) -> (Matrix t, Matrix t) unpackQR (pq, tau) = (q,r) where cs = toColumns pq m = rows pq n = cols pq mn = min m n r = fromColumns $ zipWith zt ([m-1, m-2 .. 1] ++ repeat 0) cs vs = zipWith zh [1..mn] cs hs = zipWith haussholder (toList tau) vs q = foldl1' mXm hs unpackHess :: (Field t) => (Matrix t -> (Matrix t,Vector t)) -> Matrix t -> (Matrix t, Matrix t) unpackHess hf m | rows m == 1 = ((1><1)[1],m) | otherwise = (uH . hf) m uH (pq, tau) = (p,h) where cs = toColumns pq m = rows pq n = cols pq mn = min m n h = fromColumns $ zipWith zt ([m-2, m-3 .. 1] ++ repeat 0) cs vs = zipWith zh [2..mn] cs hs = zipWith haussholder (toList tau) vs p = foldl1' mXm hs -------------------------------------------------------------------------- -- | Reciprocal of the 2-norm condition number of a matrix, computed from the SVD. rcond :: Field t => Matrix t -> Double rcond m = last s / head s where (_,s',_) = svd m s = toList s' -- | Number of linearly independent rows or columns. rank :: Field t => Matrix t -> Int rank m | pnorm PNorm1 m < eps = 0 | otherwise = dim s where (_,s,_) = economy svd m {- expm' m = case diagonalize (complex m) of Just (l,v) -> v `mXm` diag (exp l) `mXm` inv v Nothing -> error "Sorry, expm not yet implemented for non-diagonalizable matrices" where exp = vectorMapC Exp -} diagonalize m = if rank v == n then Just (l,v) else Nothing where n = rows m (l,v) = if m `equal` ctrans m then let (l',v') = eigSH m in (real l', v') else eig m -- | Generic matrix functions for diagonalizable matrices. For instance: -- -- @logm = matFunc log@ -- matFunc :: Field t => (Complex Double -> Complex Double) -> Matrix t -> Matrix (Complex Double) matFunc f m = case diagonalize (complex m) of Just (l,v) -> v `mXm` diag (liftVector f l) `mXm` inv v Nothing -> error "Sorry, matFunc requires a diagonalizable matrix" -------------------------------------------------------------- golubeps :: Integer -> Integer -> Double golubeps p q = a * fromIntegral b / fromIntegral c where a = 2^^(3-p-q) b = fact p * fact q c = fact (p+q) * fact (p+q+1) fact n = product [1..n] epslist = [ (fromIntegral k, golubeps k k) | k <- [1..]] geps delta = head [ k | (k,g) <- epslist, g x n' = n |+| (c' .* x') d' = d |+| (((-1)^k * c') .* x') (_,_,_,nf,df) = iterate work (1,1,eye,eye,eye) !! q f = linearSolve df nf msq x = x <> x (<>) = multiply v */ x = scale (recip x) v (.*) = scale (|+|) = add {- | Matrix exponential. It uses a direct translation of Algorithm 11.3.1 in Golub & Van Loan, based on a scaled Pade approximation. -} expm :: Field t => Matrix t -> Matrix t expm = expGolub -------------------------------------------------------------- {- | Matrix square root. Currently it uses a simple iterative algorithm described in Wikipedia. It only works with invertible matrices that have a real solution. For diagonalizable matrices you can try @matFunc sqrt@. @m = (2><2) [4,9 ,0,4] :: Matrix Double@ @\>sqrtm m (2><2) [ 2.0, 2.25 , 0.0, 2.0 ]@ -} sqrtm :: Field t => Matrix t -> Matrix t sqrtm = sqrtmInv sqrtmInv x = fst $ fixedPoint $ iterate f (x, ident (rows x)) where fixedPoint (a:b:rest) | pnorm PNorm1 (fst a |-| fst b) < eps = a | otherwise = fixedPoint (b:rest) fixedPoint _ = error "fixedpoint with impossible inputs" f (y,z) = (0.5 .* (y |+| inv z), 0.5 .* (inv y |+| z)) (.*) = scale (|+|) = add (|-|) = sub