module Internal.Chain (
optimiseMult,
) where
import Data.Maybe
import Internal.Matrix
import Internal.Numeric
import qualified Data.Array.IArray as A
optimiseMult :: Product t => [Matrix t] -> Matrix t
optimiseMult = chain
type Matrices a = A.Array Int (Matrix a)
type Sizes = A.Array Int (Int,Int)
type Cost = A.Array Int (A.Array Int (Maybe Int))
type Indexes = A.Array Int (A.Array Int (Maybe ((Int,Int),(Int,Int))))
update :: A.Array Int (A.Array Int a) -> (Int,Int) -> a -> A.Array Int (A.Array Int a)
update a (r,c) e = a A.// [(r,(a A.! r) A.// [(c,e)])]
newWorkSpaceCost :: Int -> A.Array Int (A.Array Int (Maybe Int))
newWorkSpaceCost n = A.array (1,n) $ map (\i -> (i, subArray i)) [1..n]
where subArray i = A.listArray (1,i) (repeat Nothing)
newWorkSpaceIndexes :: Int -> A.Array Int (A.Array Int (Maybe ((Int,Int),(Int,Int))))
newWorkSpaceIndexes n = A.array (1,n) $ map (\i -> (i, subArray i)) [1..n]
where subArray i = A.listArray (1,i) (repeat Nothing)
matricesToSizes :: [Matrix a] -> Sizes
matricesToSizes ms = A.listArray (1,length ms) $ map (\m -> (rows m,cols m)) ms
chain :: Product a => [Matrix a] -> Matrix a
chain [] = error "chain: zero matrices to multiply"
chain [m] = m
chain [ml,mr] = ml `multiply` mr
chain ms = let ln = length ms
ma = A.listArray (1,ln) ms
mz = matricesToSizes ms
i = chain_cost mz
in chain_paren (ln,ln) i ma
chain_cost :: Sizes -> Indexes
chain_cost mz = let (_,u) = A.bounds mz
cost = newWorkSpaceCost u
ixes = newWorkSpaceIndexes u
(_,_,i) = foldl chain_cost' (mz,cost,ixes) (order u)
in i
chain_cost' :: (Sizes,Cost,Indexes) -> (Int,Int) -> (Sizes,Cost,Indexes)
chain_cost' sci@(mz,cost,ixes) (r,c)
| c == 1 = let cost' = update cost (r,c) (Just 0)
ixes' = update ixes (r,c) (Just ((r,c),(r,c)))
in (mz,cost',ixes')
| otherwise = minimum_cost sci (r,c)
minimum_cost :: (Sizes,Cost,Indexes) -> (Int,Int) -> (Sizes,Cost,Indexes)
minimum_cost sci fu = foldl (smaller_cost fu) sci (fulcrum_order fu)
smaller_cost :: (Int,Int) -> (Sizes,Cost,Indexes) -> ((Int,Int),(Int,Int)) -> (Sizes,Cost,Indexes)
smaller_cost (r,c) (mz,cost,ixes) ix@((lr,lc),(rr,rc)) =
let op_cost = fromJust ((cost A.! lr) A.! lc)
+ fromJust ((cost A.! rr) A.! rc)
+ fst (mz A.! (lrlc+1))
* snd (mz A.! lc)
* snd (mz A.! rr)
cost' = (cost A.! r) A.! c
in case cost' of
Nothing -> let cost'' = update cost (r,c) (Just op_cost)
ixes'' = update ixes (r,c) (Just ix)
in (mz,cost'',ixes'')
Just ct -> if op_cost < ct then
let cost'' = update cost (r,c) (Just op_cost)
ixes'' = update ixes (r,c) (Just ix)
in (mz,cost'',ixes'')
else (mz,cost,ixes)
fulcrum_order (r,c) = let fs' = zip (repeat r) [1..(c1)]
in map (partner (r,c)) fs'
partner (r,c) (a,b) = ((rb, cb), (a,b))
order 0 = []
order n = order (n1) ++ zip (repeat n) [1..n]
chain_paren :: Product a => (Int,Int) -> Indexes -> Matrices a -> Matrix a
chain_paren (r,c) ixes ma = let ((lr,lc),(rr,rc)) = fromJust $ (ixes A.! r) A.! c
in if lr == rr && lc == rc then (ma A.! lr)
else (chain_paren (lr,lc) ixes ma) `multiply` (chain_paren (rr,rc) ixes ma)