module Numeric.LinearAlgebra.Tests.Properties (
dist, (|~|), (~:), Aprox((:~)),
zeros, ones,
square,
unitary,
hermitian,
wellCond,
positiveDefinite,
upperTriang,
upperHessenberg,
luProp,
invProp,
pinvProp,
detProp,
nullspaceProp,
bugProp,
svdProp1, svdProp1a, svdProp1b, svdProp2, svdProp3, svdProp4,
svdProp5a, svdProp5b, svdProp6a, svdProp6b, svdProp7,
eigProp, eigSHProp, eigProp2, eigSHProp2,
qrProp, rqProp, rqProp1, rqProp2, rqProp3,
hessProp,
schurProp1, schurProp2,
cholProp, exactProp,
expmDiagProp,
multProp1, multProp2,
subProp,
linearSolveProp, linearSolveProp2
) where
import Numeric.LinearAlgebra
import Numeric.LinearAlgebra.LAPACK
import Debug.Trace
import Test.QuickCheck(Arbitrary,arbitrary,coarbitrary,choose,vector
,sized,classify,Testable,Property
,quickCheckWith,maxSize,stdArgs,shrink)
trivial :: Testable a => Bool -> a -> Property
trivial = (`classify` "trivial")
dist :: (Normed c t, Num (c t)) => c t -> c t -> Double
dist a b = realToFrac r
where norm = pnorm Infinity
na = norm a
nb = norm b
nab = norm (ab)
mx = max na nb
mn = min na nb
r = if mn < peps
then mx
else nab/mx
infixl 4 |~|
a |~| b = a :~10~: b
data Aprox a = (:~) a Int
a :~n~: b = dist a b < 10^^(n)
square m = rows m == cols m
orthonormal m = ctrans m <> m |~| ident (cols m)
unitary m = square m && orthonormal m
hermitian m = square m && m |~| ctrans m
wellCond m = rcond m > 1/100
positiveDefinite m = minimum (toList e) > 0
where (e,_v) = eigSH m
upperTriang m = rows m == 1 || down == z
where down = fromList $ concat $ zipWith drop [1..] (toLists (ctrans m))
z = constant 0 (dim down)
upperHessenberg m = rows m < 3 || down == z
where down = fromList $ concat $ zipWith drop [2..] (toLists (ctrans m))
z = constant 0 (dim down)
zeros (r,c) = reshape c (constant 0 (r*c))
ones (r,c) = zeros (r,c) + 1
luProp m = m |~| p <> l <> u && f (det p) |~| f s
where (l,u,p,s) = lu m
f x = fromList [x]
invProp m = m <> inv m |~| ident (rows m)
pinvProp m = m <> p <> m |~| m
&& p <> m <> p |~| p
&& hermitian (m<>p)
&& hermitian (p<>m)
where p = pinv m
detProp m = s d1 |~| s d2
where d1 = det m
d2 = det' * det q
det' = product $ toList $ takeDiag r
(q,r) = qr m
s x = fromList [x]
nullspaceProp m = null nl `trivial` (null nl || m <> n |~| zeros (r,c)
&& orthonormal (fromColumns nl))
where nl = nullspacePrec 1 m
n = fromColumns nl
r = rows m
c = cols m rank m
bugProp m = m |~| u <> real d <> trans v && unitary' u && unitary' v
where (u,d,v) = fullSVD m
unitary' a = unitary a
svdProp1 m = m |~| u <> real d <> trans v && unitary u && unitary v
where (u,d,v) = fullSVD m
svdProp1a svdfun m = m |~| u <> real d <> trans v && unitary u && unitary v where
(u,s,v) = svdfun m
d = diagRect 0 s (rows m) (cols m)
svdProp1b svdfun m = unitary u && unitary v where
(u,_,v) = svdfun m
svdProp2 thinSVDfun m = m |~| u <> diag (real s) <> trans v && orthonormal u && orthonormal v && dim s == min (rows m) (cols m)
where (u,s,v) = thinSVDfun m
svdProp3 m = (m |~| u <> real (diag s) <> trans v
&& orthonormal u && orthonormal v)
where (u,s,v) = compactSVD m
svdProp4 m' = m |~| u <> real (diag s) <> trans v
&& orthonormal u && orthonormal v
&& (dim s == r || r == 0 && dim s == 1)
where (u,s,v) = compactSVD m
m = fromBlocks [[m'],[m']]
r = rank m'
svdProp5a m = all (s1|~|) [s2,s3,s4,s5,s6] where
s1 = svR m
s2 = svRd m
(_,s3,_) = svdR m
(_,s4,_) = svdRd m
(_,s5,_) = thinSVDR m
(_,s6,_) = thinSVDRd m
svdProp5b m = all (s1|~|) [s2,s3,s4,s5,s6] where
s1 = svC m
s2 = svCd m
(_,s3,_) = svdC m
(_,s4,_) = svdCd m
(_,s5,_) = thinSVDC m
(_,s6,_) = thinSVDCd m
svdProp6a m = s |~| s' && v |~| v' && s |~| s'' && u |~| u'
where (u,s,v) = svdR m
(s',v') = rightSVR m
(u',s'') = leftSVR m
svdProp6b m = s |~| s' && v |~| v' && s |~| s'' && u |~| u'
where (u,s,v) = svdC m
(s',v') = rightSVC m
(u',s'') = leftSVC m
svdProp7 m = s |~| s' && u |~| u' && v |~| v' && s |~| s'''
where (u,s,v) = svd m
(s',v') = rightSV m
(u',_s'') = leftSV m
s''' = singularValues m
eigProp m = complex m <> v |~| v <> diag s
where (s, v) = eig m
eigSHProp m = m <> v |~| v <> real (diag s)
&& unitary v
&& m |~| v <> real (diag s) <> ctrans v
where (s, v) = eigSH m
eigProp2 m = fst (eig m) |~| eigenvalues m
eigSHProp2 m = fst (eigSH m) |~| eigenvaluesSH m
qrProp m = q <> r |~| m && unitary q && upperTriang r
where (q,r) = qr m
rqProp m = r <> q |~| m && unitary q && upperTriang' r
where (r,q) = rq m
rqProp1 m = r <> q |~| m
where (r,q) = rq m
rqProp2 m = unitary q
where (_r,q) = rq m
rqProp3 m = upperTriang' r
where (r,_q) = rq m
upperTriang' r = upptr (rows r) (cols r) * r |~| r
where upptr f c = buildMatrix f c $ \(r',c') -> if r't > c' then 0 else 1
where t = fc
hessProp m = m |~| p <> h <> ctrans p && unitary p && upperHessenberg h
where (p,h) = hess m
schurProp1 m = m |~| u <> s <> ctrans u && unitary u && upperTriang s
where (u,s) = schur m
schurProp2 m = m |~| u <> s <> ctrans u && unitary u && upperHessenberg s
where (u,s) = schur m
cholProp m = m |~| ctrans c <> c && upperTriang c
where c = chol m
exactProp m = chol m == chol (m+0)
expmDiagProp m = expm (logm m) :~ 7 ~: complex m
where logm = matFunc log
mulH a b = fromLists [[ doth ai bj | bj <- toColumns b] | ai <- toRows a ]
where doth u v = sum $ zipWith (*) (toList u) (toList v)
multProp1 p (a,b) = (a <> b) :~p~: (mulH a b)
multProp2 p (a,b) = (ctrans (a <> b)) :~p~: (ctrans b <> ctrans a)
linearSolveProp f m = f m m |~| ident (rows m)
linearSolveProp2 f (a,x) = not wc `trivial` (not wc || a <> f a b |~| b)
where q = min (rows a) (cols a)
b = a <> x
wc = rank a == q
subProp m = m == (trans . fromColumns . toRows) m