{-# LANGUAGE TypeFamilies #-} {- | Counterparts to functions in "Math.HiddenMarkovModel.Private" that normalize interim results. We need to do this in order to prevent to round very small probabilities to zero. -} module Math.HiddenMarkovModel.Normalized where import qualified Math.HiddenMarkovModel.Public.Distribution as Distr import Math.HiddenMarkovModel.Private (T(..), Trained(..), emission, biscaleTransition, revealGen, sumTransitions) import Math.HiddenMarkovModel.Utility (normalizeFactor, normalizeProb) import qualified Numeric.LAPACK.Matrix as Matrix import qualified Numeric.LAPACK.Vector as Vector import Numeric.LAPACK.Matrix ((-*#), (#*|)) import Numeric.LAPACK.Vector (Vector) import qualified Numeric.Netlib.Class as Class import qualified Control.Functor.HT as Functor import qualified Data.Array.Comfort.Storable as StorableArray import qualified Data.Array.Comfort.Shape as Shape import qualified Data.NonEmpty.Class as NonEmptyC import qualified Data.NonEmpty as NonEmpty import qualified Data.Foldable as Fold import Data.Traversable (Traversable) {- $setup >>> import qualified Data.NonEmpty as NonEmpty -} {- | Logarithm of the likelihood to observe the given sequence. We return the logarithm because the likelihood can be so small that it may be rounded to zero in the choosen number type. -} logLikelihood :: (Distr.EmissionProb typ, Shape.C sh, Eq sh, Floating prob, Class.Real prob, Distr.Emission typ prob ~ emission, Traversable f) => T typ sh prob -> NonEmpty.T f emission -> prob logLikelihood hmm = Fold.sum . fmap (log . fst) . alpha hmm alpha :: (Distr.EmissionProb typ, Shape.C sh, Eq sh, Class.Real prob, Distr.Emission typ prob ~ emission, Traversable f) => T typ sh prob -> NonEmpty.T f emission -> NonEmpty.T f (prob, Vector sh prob) alpha hmm (NonEmpty.Cons x xs) = let normMulEmiss y = normalizeFactor . Vector.mul (emission hmm y) in NonEmpty.scanl (\(_,alphai) xi -> normMulEmiss xi (transition hmm #*| alphai)) (normMulEmiss x (initial hmm)) xs beta :: (Distr.EmissionProb typ, Shape.C sh, Eq sh, Class.Real prob, Distr.Emission typ prob ~ emission, Traversable f, NonEmptyC.Reverse f) => T typ sh prob -> f (prob, emission) -> NonEmpty.T f (Vector sh prob) beta hmm = nonEmptyScanr (\(ci,xi) betai -> Vector.scale (recip ci) $ Vector.mul (emission hmm xi) betai -*# transition hmm) (Vector.one $ StorableArray.shape $ initial hmm) alphaBeta :: (Distr.EmissionProb typ, Shape.C sh, Eq sh, Class.Real prob, Distr.Emission typ prob ~ emission, Traversable f, NonEmptyC.Zip f, NonEmptyC.Reverse f) => T typ sh prob -> NonEmpty.T f emission -> (NonEmpty.T f (prob, Vector sh prob), NonEmpty.T f (Vector sh prob)) alphaBeta hmm xs = let calphas = alpha hmm xs in (calphas, beta hmm $ NonEmpty.tail $ NonEmptyC.zip (fmap fst calphas) xs) xiFromAlphaBeta :: (Distr.EmissionProb typ, Shape.C sh, Eq sh, Class.Real prob, Distr.Emission typ prob ~ emission, Traversable f, NonEmptyC.Zip f) => T typ sh prob -> NonEmpty.T f emission -> NonEmpty.T f (prob, Vector sh prob) -> NonEmpty.T f (Vector sh prob) -> f (Matrix.Square sh prob) xiFromAlphaBeta hmm xs calphas betas = let (cs,alphas) = Functor.unzip calphas in NonEmptyC.zipWith4 (\x alpha0 c1 beta1 -> Matrix.scale (recip c1) $ biscaleTransition hmm x alpha0 beta1) (NonEmpty.tail xs) (NonEmpty.init alphas) (NonEmpty.tail cs) (NonEmpty.tail betas) zetaFromAlphaBeta :: (Shape.C sh, Eq sh, Class.Real prob, NonEmptyC.Zip f) => NonEmpty.T f (prob, Vector sh prob) -> NonEmpty.T f (Vector sh prob) -> NonEmpty.T f (Vector sh prob) zetaFromAlphaBeta calphas betas = NonEmptyC.zipWith (Vector.mul . snd) calphas betas {- | Reveal the state sequence that led most likely to the observed sequence of emissions. It is found using the Viterbi algorithm. -} reveal :: (Distr.EmissionProb typ, Shape.InvIndexed sh, Eq sh, Shape.Index sh ~ state, Distr.Emission typ prob ~ emission, Class.Real prob, Traversable f) => T typ sh prob -> NonEmpty.T f emission -> NonEmpty.T f state reveal = revealGen normalizeProb {- | Variant of NonEmpty.scanr with less stack consumption. prop> \x xs -> nonEmptyScanr (-) x xs == NonEmpty.scanr (-) x (xs::[Int]) -} nonEmptyScanr :: (Traversable f, NonEmptyC.Reverse f) => (a -> b -> b) -> b -> f a -> NonEmpty.T f b nonEmptyScanr f x = NonEmptyC.reverse . NonEmpty.scanl (flip f) x . NonEmptyC.reverse {- | Consider a superposition of all possible state sequences weighted by the likelihood to produce the observed emission sequence. Now train the model with respect to all of these sequences with respect to the weights. This is done by the Baum-Welch algorithm. -} trainUnsupervised :: (Distr.Estimate typ, Shape.C sh, Eq sh, Class.Real prob, Distr.Emission typ prob ~ emission) => T typ sh prob -> NonEmpty.T [] emission -> Trained typ sh prob trainUnsupervised hmm xs = let (alphas, betas) = alphaBeta hmm xs zetas = zetaFromAlphaBeta alphas betas zeta0 = NonEmpty.head zetas in Trained { trainedInitial = zeta0, trainedTransition = sumTransitions hmm $ xiFromAlphaBeta hmm xs alphas betas, trainedDistribution = Distr.accumulateEmissionVectors $ NonEmptyC.zip xs zetas }