-- | \"Sieves\" by Iannis Xenakis and John Rahn -- /Perspectives of New Music/ -- Vol. 28, No. 1 (Winter, 1990), pp. 58-78 module Music.Theory.Xenakis.Sieve where import qualified Data.List as L import Music.Theory.List -- | Synonym for 'Integer' type I = Integer -- | A Sieve. data Sieve = Empty -- ^ 'Empty' 'Sieve' | L (I,I) -- ^ Primitive 'Sieve' of /modulo/ and /index/ | Union Sieve Sieve -- ^ 'Union' of two 'Sieve's | Intersection Sieve Sieve -- ^ 'Intersection' of two 'Sieve's | Complement Sieve -- ^ 'Complement' of a 'Sieve' deriving (Eq,Show) -- | The 'Union' of a list of 'Sieve's, ie. 'foldl1' 'Union'. union :: [Sieve] -> Sieve union = foldl1 Union -- | The 'Intersection' of a list of 'Sieve's, ie. 'foldl1' 'Intersection'. intersection :: [Sieve] -> Sieve intersection = foldl1 Intersection -- | Unicode synonym for 'Union'. (∪) :: Sieve -> Sieve -> Sieve (∪) = Union -- | Unicode synonym for 'Intersection'. (∩) :: Sieve -> Sieve -> Sieve (∩) = Intersection -- | Synonym for 'Complement'. c :: Sieve -> Sieve c = Complement -- | Pretty-print sieve. Fully parenthesised. sieve_pp :: Sieve -> String sieve_pp s = case s of Empty -> "∅" L (p,q) -> concat [show p,".",show q] Union p q -> concat ["(",sieve_pp p," ∪ ",sieve_pp q,")"] Intersection p q -> concat ["(",sieve_pp p," ∩ ",sieve_pp q,")"] Complement p -> concat ["(∁ ",sieve_pp p,")"] -- | Variant of 'L', ie. 'curry' 'L'. -- -- > l 15 19 == L (15,19) l :: I -> I -> Sieve l = curry L -- | unicode synonym for 'l'. (⋄) :: I -> I -> Sieve (⋄) = l infixl 3 ∪ infixl 4 ∩ infixl 5 ⋄ -- | In a /normal/ 'Sieve' /m/ is '>' /i/. -- -- > normalise (L (15,19)) == L (15,4) -- > normalise (L (11,13)) == L (11,2) normalise :: Sieve -> Sieve normalise s = case s of Empty -> Empty L (m,i) -> L (m,i `mod` m) Union s0 s1 -> Union (normalise s0) (normalise s1) Intersection s0 s1 -> Intersection (normalise s0) (normalise s1) Complement s' -> Complement (normalise s') -- | Predicate to test if a 'Sieve' is /normal/. -- -- > is_normal (L (15,4)) == True -- > is_normal (L (11,13)) == False is_normal :: Sieve -> Bool is_normal s = s == normalise s -- | Predicate to determine if an 'I' is an element of the 'Sieve'. -- -- > map (element (L (3,1))) [1..4] == [True,False,False,True] -- > map (element (L (15,4))) [4,19 .. 49] == [True,True,True,True] element :: Sieve -> I -> Bool element s n = case s of Empty -> False L (m,i) -> n `mod` m == i `mod` m && n >= i Union s0 s1 -> element s0 n || element s1 n Intersection s0 s1 -> element s0 n && element s1 n Complement s' -> not (element s' n) -- > take 9 (i_complement [1,3..]) == [0,2..16] i_complement :: [I] -> [I] i_complement = let f x s = case s of [] -> [x ..] e:s' -> case compare x e of LT -> x : f (x + 1) s EQ -> f (x + 1) s' GT -> error "i_complement" in f 0 -- | Construct the sequence defined by a 'Sieve'. Note that building -- a sieve that contains an intersection clause that has no elements -- gives @_|_@. -- -- > let {d = [0,2,4,5,7,9,11] -- > ;r = d ++ map (+ 12) d} -- > in take 14 (build (union (map (l 12) d))) == r build :: Sieve -> [I] build s = let u_f = map head . L.group i_f = let g [x,_] = [x] g _ = [] in concatMap g . L.group in case s of Empty -> [] L (m,i) -> [i, i+m ..] Union s0 s1 -> u_f (merge (build s0) (build s1)) Intersection s0 s1 -> i_f (merge (build s0) (build s1)) Complement s' -> i_complement (build s') {- | Variant of 'build' that gives the first /n/ places of the 'reduce' of 'Sieve'. > buildn 6 (union (map (l 8) [0,3,6])) == [0,3,6,8,11,14] > buildn 12 (L (3,2)) == [2,5,8,11,14,17,20,23,26,29,32,35] > buildn 9 (L (8,0)) == [0,8,16,24,32,40,48,56,64] > buildn 3 (L (3,2) ∩ L (8,0)) == [8,32,56] > buildn 12 (L (3,1) ∪ L (4,0)) == [0,1,4,7,8,10,12,13,16,19,20,22] > buildn 14 (5⋄4 ∪ 3⋄2 ∪ 7⋄3) == [2,3,4,5,8,9,10,11,14,17,19,20,23,24] > buildn 6 (3⋄0 ∪ 4⋄0) == [0,3,4,6,8,9] > buildn 8 (5⋄2 ∩ 2⋄0 ∪ 7⋄3) == [2,3,10,12,17,22,24,31] > buildn 12 (5⋄1 ∪ 7⋄2) == [1,2,6,9,11,16,21,23,26,30,31,36] > buildn 10 (3⋄2 ∩ 4⋄7 ∪ 6⋄9 ∩ 15⋄18) == [3,11,23,33,35,47,59,63,71,83] > let {s = 3⋄2∩4⋄7∩6⋄11∩8⋄7 ∪ 6⋄9∩15⋄18 ∪ 13⋄5∩8⋄6∩4⋄2 ∪ 6⋄9∩15⋄19 > ;s' = 24⋄23 ∪ 30⋄3 ∪ 104⋄70} > in buildn 16 s == buildn 16 s' > buildn 10 (24⋄23 ∪ 30⋄3 ∪ 104⋄70) == [3,23,33,47,63,70,71,93,95,119] > let r = [2,3,4,5,8,9,10,11,14,17,19,20,23,24,26,29,31] > in buildn 17 (5⋄4 ∪ 3⋄2 ∪ 7⋄3) == r > let r = [0,1,3,6,9,10,11,12,15,16,17,18,21,24,26,27,30] > in buildn 17 (5⋄1 ∪ 3⋄0 ∪ 7⋄3) == r > let r = [0,2,3,4,6,7,9,11,12,15,17,18,21,22,24,25,27,30,32] > in buildn 19 (5⋄2 ∪ 3⋄0 ∪ 7⋄4) == r Agon et. al. p.155 > let {a = c (13⋄3 ∪ 13⋄5 ∪ 13⋄7 ∪ 13⋄9) > ;b = 11⋄2 > ;c' = c (11⋄4 ∪ 11⋄8) > ;d = 13⋄9 > ;e = 13⋄0 ∪ 13⋄1 ∪ 13⋄6 > ;f = (a ∩ b) ∪ (c' ∩ d) ∪ e} > in buildn 13 f == [0,1,2,6,9,13,14,19,22,24,26,27,32] > differentiate [0,1,2,6,9,13,14,19,22,24,26,27,32] == [1,1,4,3,4,1,5,3,2,2,1,5] > import Music.Theory.Pitch > let {n = [0,1,2,6,9,13,14,19,22,24,26,27,32] > ;r = "C C𝄲 C♯ D♯ E𝄲 F𝄰 G A𝄲 B C C♯ C𝄰 E"} > in unwords (map (pitch_class_pp . pc24et_to_pitch . (`mod` 24)) n) == r Jonchaies > let s = map (17⋄) [0,1,4,5,7,11,12,16] > in differentiate (buildn 25 (union s)) Nekuïa > let s = [24⋄0,14⋄2,22⋄3,31⋄4,28⋄7,29⋄9,19⋄10,25⋄13,24⋄14,26⋄17,23⋄21 > ,24⋄10,30⋄9,35⋄17,29⋄24,32⋄25,30⋄29,26⋄21,30⋄17,31⋄16] > in differentiate (buildn 24 (union s)) Major scale: > let s = (c(3⋄2) ∩ 4⋄0) ∪ (c(3⋄1) ∩ 4⋄1) ∪ (3⋄2 ∩ 4⋄2) ∪ (c(3⋄0) ∩ 4⋄3) > in buildn 7 s == [0,2,4,5,7,9,11] Nomos Alpha: let {s = (c (13⋄3 ∪ 13⋄5 ∪ 13⋄7 ∪ 13⋄9) ∩ 11⋄2) ∪ (c (11⋄4 ∪ 11⋄8) ∩ 13⋄9) ∪ (13⋄0 ∪ 13⋄1 ∪ 13⋄6) ;r = [0,1,2,6,9,13,14,19,22,24,26,27,32,35,39,40,45,52,53,58,61,65,66,71,78,79,84,87,90,91,92,97]} in buildn 32 s == r /Psappha/ (Flint): > let {s = union [(8⋄0∪8⋄1∪8⋄7)∩(5⋄1∪5⋄3) > ,(8⋄0∪8⋄1∪8⋄2)∩5⋄0 > ,8⋄3∩(5⋄0∪5⋄1∪5⋄2∪5⋄3∪5⋄4) > ,8⋄4∩(5⋄0∪5⋄1∪5⋄2∪5⋄3∪5⋄4) > ,(8⋄5∪8⋄6)∩(5⋄2∪5⋄3∪5⋄4) > ,8⋄1∩5⋄2 > ,8⋄6∩5⋄1] > ;r = [0,1,3,4,6,8,10,11,12 > ,13,14,16,17,19,20,22,23,25 > ,27,28,29,31,33,35,36,37,38]} > in buildn 27 s == r À R. (Hommage à Maurice Ravel) (Squibbs, 1996) > let {s = union [8⋄0∩(11⋄0∪11⋄4∪11⋄5∪11⋄6∪11⋄10) > ,8⋄1∩(11⋄2∪11⋄3∪11⋄6∪11⋄7∪11⋄9) > ,8⋄2∩(11⋄0∪11⋄1∪11⋄2∪11⋄3∪11⋄5∪11⋄10) > ,8⋄3∩(11⋄1∪11⋄2∪11⋄3∪11⋄4∪11⋄10) > ,8⋄4∩(11⋄0∪11⋄4∪11⋄8) > ,8⋄5∩(11⋄0∪11⋄2∪11⋄3∪11⋄7∪11⋄9∪11⋄10) > ,8⋄6∩(11⋄1∪11⋄3∪11⋄5∪11⋄7∪11⋄8∪11⋄9) > ,8⋄7∩(11⋄1∪11⋄3∪11⋄6∪11⋄7∪11⋄8∪11⋄10)] > ;r = [0,2,3,4,7,9,10,13,14,16 > ,17,21,23,25,29,30,32,34,35,38 > ,39,43,44,47,48,52,53,57,58,59 > ,62,63,66,67,69,72,73,77,78,82 > ,86,87]} > in buildn 42 s == r -} buildn :: Int -> Sieve -> [I] buildn n = take n . build . reduce -- | Standard differentiation function. -- -- > differentiate [1,3,6,10] == [2,3,4] -- > differentiate [0,2,4,5,7,9,11,12] == [2,2,1,2,2,2,1] differentiate :: (Num a) => [a] -> [a] differentiate x = zipWith (-) (tail x) x -- | Euclid's algorithm for computing the greatest common divisor. -- -- > euclid 1989 867 == 51 euclid :: (Integral a) => a -> a -> a euclid i j = let k = i `mod` j in if k == 0 then j else euclid j k -- | Bachet De Méziriac's algorithm. -- -- > de_meziriac 15 4 == 3 && euclid 15 4 == 1 de_meziriac :: (Integral a) => a -> a -> a de_meziriac i j = let f t = if (t * i) `mod` j /= 1 then f (t + 1) else t in if j == 1 then 1 else f 1 -- | Attempt to reduce the 'Intersection' of two 'L' nodes to a -- singular 'L' node. -- -- > reduce_intersection (3,2) (4,7) == Just (12,11) -- > reduce_intersection (12,11) (6,11) == Just (12,11) -- > reduce_intersection (12,11) (8,7) == Just (24,23) reduce_intersection :: (Integral t) => (t,t) -> (t,t) -> Maybe (t,t) reduce_intersection (m1,i1) (m2,i2) = let d = euclid m1 m2 i1' = i1 `mod` m1 i2' = i2 `mod` m2 c1 = m1 `div` d c2 = m2 `div` d m3 = d * c1 * c2 t = de_meziriac c1 c2 i3 = (i1' + t * (i2' - i1') * c1) `mod` m3 in if d /= 1 && (i1' - i2') `mod` d /= 0 then Nothing else Just (m3,i3) -- | Reduce the number of nodes at a 'Sieve'. -- -- > reduce (L (3,2) ∪ Empty) == L (3,2) -- > reduce (L (3,2) ∩ Empty) == L (3,2) -- > reduce (L (3,2) ∩ L (4,7)) == L (12,11) -- > reduce (L (6,9) ∩ L (15,18)) == L (30,3) -- -- > let s = 3⋄2∩4⋄7∩6⋄11∩8⋄7 ∪ 6⋄9∩15⋄18 ∪ 13⋄5∩8⋄6∩4⋄2 ∪ 6⋄9∩15⋄19 -- > in reduce s == (24⋄23 ∪ 30⋄3 ∪ 104⋄70) -- -- > putStrLn $ sieve_pp (reduce s) -- -- > let s = 3⋄2∩4⋄7∩6⋄11∩8⋄7 ∪ 6⋄9∩15⋄18 ∪ 13⋄5∩8⋄6∩4⋄2 ∪ 6⋄9∩15⋄19 -- > in reduce s == (24⋄23 ∪ 30⋄3 ∪ 104⋄70) reduce :: Sieve -> Sieve reduce s = let f g s1 s2 = let s1' = reduce s1 s2' = reduce s2 s' = g s1' s2' in if s1 == s1' && s2 == s2' then s' else reduce s' in case s of Empty -> Empty L _ -> s Union s1 Empty -> s1 Union s1 s2 -> f Union s1 s2 Intersection s1 Empty -> s1 Intersection (L p) (L q) -> maybe Empty L (reduce_intersection p q) Intersection s1 s2 -> f Intersection s1 s2 Complement s' -> Complement (reduce s')