úÎ3.-W      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWX$Remove duplicate elements and sort. &Powerset, ie. set of all all subsets. Two element subsets (cf [2] . powerset). Set expansion ($Serial Operator, of the form rRTMI. Modulo twelve.  Pitch class. &Map to pitch-class and reduce to set. Transpose by n. !Transpose so first element is n. All transpositions. Invert about n. Invert about first element. 3Composition of inversion about zero and transpose. Rotate left by n places. Rotate right by n places. All rotations. Modulo 12 multiplication M5 Serial operation. $The total set of serial operations.  !" Intervals to values, zero is n. # Integrate. $Morris INT operator. %Interval class. &Elements of p not in q 'Pitch classes not in set. (Is p a subsequence of q. )The standard t-matrix of p. *Interval class vector. +Is p a subset of q. ,Is p a superset of q. (  !"#$%&'()*+,(  !"#$%&'()*+,(  !"#$%&'()*+,-&Prime form rule requiring comparator. Y;Forte comparison (rightmost first then leftmost outwards). .Forte prime form. /3Rahn prime form (comparison is rightmost inwards). 0<Binary encoding prime form algorithm, equalivalent to Rahn. Z[-./0-./0-./01)The set-class table (Forte prime forms). 2+Lookup a set-class name given a set-class. 3+Lookup a set-class given a set-class name. 4List of set classes. 5Set class database. 1234512345123456Basic interval pattern. 7Cardinality filter 89'Combinations generator (cg == poweset) :"Powerset filtered by cardinality. ;Cyclic interval segment. <pcset complement. = Form cycle. >Diatonic implications. ?'Diatonic interval set to interval set. @Degree of intersection. A Forte name. Bp B* q is true iff p can embed q in sequence. CEmbedded segment search. D8Can the set-class q (under prime form algorithm pf) be  drawn from the pcset p. E/Can the set-class q be drawn from the pcset p. FInterval cycle filter. G%Interval class set to interval sets. H6Interval class set to interval sets, concise variant. IInterval-class segment. JInterval segment (INT). KImbrications. Lp L9 q gives the set-classes that can append to p to give q. MMatrix search. N Normalize. O&Normalize, retain duplicate elements. PPitch-class invariances. Q Relate sets. RRelate segments. S Subsets. TSuper set-class. 6789:;<=>?@ABCDEFGHIJKLMNOPQRST6789:;<=>?@ABCDEFGHIJKLMNOPQRST6789:;<=>?@ABCDEFGHIJKLMNOPQRST\]^U2Parse a Morris format serial operator descriptor. VUVUVUVV  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUV_      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghmt-0.2Music.Theory.PermutationsMusic.Theory.SetMusic.Theory.PitchMusic.Theory.PrimeMusic.Theory.TableMusic.Theory.PctMusic.Theory.Parse Music.Theory permutationssetpowersetdyadsseSROmod12pcpcsettn transposeTotranspositionsinvert invertSelftnirotate rotate_right rotationsmnm5all_Tnall_TnIall_RTnIall_TnMI all_RTnMI all_rRTnMIsrosrossro_Tnsro_TnIsro_RTnIsro_TnMI sro_RTnMIdx_dd_dxintic difference complement subsequencetmatrixicv is_subset is_superset cmp_prime forte_prime rahn_prime encode_primesc_tablesc_namescscssc_dbbipcfcggcgcg_rcisegcmplcycdimdisdoifnhas_essess has_sc_pfhas_scicficiici_cicsegisegimbissbmxsnrmnrm_rpcirsrsgsbspscrnrtnmipcoall_psn_ps forte_cmpencodedecodePis_charget_int