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Abstract
Dataflow analysis and transformation of control-flow graphs is per-
vasive in optimizing compilers, but it is typically tightly interwo-
ven with the details of aparticular compiler. We describe Hoopl, a
reusable Haskell library that makes it unusually easy to define new
analyses and transformations forany compiler. Hoopl’s interface
is modular and polymorphic, and it offers unusually strong static
guarantees. The implementation is also far from routine: it encap-
sulates state-of-the-art algorithms (interleaved analysis and rewrit-
ing, dynamic error isolation), and it cleanly separates their tricky
elements so that they can be understood independently.

1. Introduction
A mature optimizing compiler for an imperative language includes
many analyses, the results of which justify the optimizer’s code-
improving transformations. Many of the most important analyses
and transformations—constant propagation, live-variable analysis,
inlining, sinking of loads, and so on—should be regarded as par-
ticular cases of a single general problem:dataflow analysis and
optimization. Dataflow analysis is over thirty years old, but a re-
cent, seminal paper by Lerner, Grove, and Chambers (2002) goes
further, describing a powerful but subtle way tointerleaveanalysis
and transformation so that each piggybacks on the other.

Because optimizations based on dataflow analysis share a common
intellectual framework, and because that framework is subtle, it
it tempting to try to build a single reusable library that embodies
the subtle ideas, while making it easy for clients to instantiate the
library for different situations. Tempting, but difficult. Although
some such frameworks exist, as we discuss in Section 6, they
have complex APIs and implementations, and none implements the
Lerner/Grove/Chambers technique.

In this paper we present Hoopl (short for “higher-order optimiza-
tion library”), a new Haskell library for dataflow analysis and opti-
mization. It has the following distinctive characteristics:

• Hoopl is purely functional. Perhaps surprisingly, code that ma-
nipulates control-flow graphs is easier to write, and far easier
to write correctly, when written in a purely functional style
(Ramsey and Dias 2005). When analysis and rewriting are in-
terleaved, so that rewriting must be donespeculatively, without
knowing whether the result of the rewrite will be retained or
discarded, the benefit of a purely functional style is intensified
(Sections 2 and 4.8).

• Hoopl is polymorphic. Just as a list library is polymorphic in the
list elements, so is Hoopl polymorphic, both in the nodes that
inhabit graphs, and in the dataflow facts that analyses compute
over these graphs (Section 4).

• The paper by Lerner, Grove, and Chambers is inspiring but ab-
stract. We articulate their ideas in a concrete but simple API that
hides a subtle implementation (Sections 3 and 4). You provide
a representation for assertions, a transfer function that trans-
forms assertions across a node, and a rewrite function that uses
a assertion to justify rewriting a node. Hoopl “lifts” these node-
level functions to work over control-flow graphs, sets up and
solves recursion equations, and interleaves rewriting with anal-
ysis. Designing good abstractions (data types, APIs) is surpris-
ingly hard; we have been through over a dozen significantly
different iterations, and we offer our API as a contribution.

• Analyses and transformations built on Hoopl are small, sim-
ple, and easy to get right because the client only has to per-
form local reasoning (“y is live beforex:=y+2”).1 Moreover,
Hoopl helps you write correct optimizations: it statically rules
out transformations that violate invariants of the control-flow
graph (Sections 3 and 4.3), and dynamically it can help find
the first transformation that introduces a fault in a test program
(Section 4.7).

• Hoopl implements subtle algorithms, including at least (a) in-
terleaved analysis and rewriting, (b) speculative rewriting,
(c) computing fixed points, and (d) dynamic fault isolation. Pre-
vious implementations of these algorithms—including three of
our own—are complicated and hard to understand, because the
tricky pieces are implemented all together, inseparably. A sig-
nificant contribution of this paper is a new way to structure the
implementation so that each tricky piece is handled in just one
place, separate from all the others (Section 5). The result is suf-
ficiently elegant that we emphasize the implementation as an
object of interest in its own right.

A working prototype of Hoopl will soon be available for download
at http://ghc.cs.tufts.edu/hoopl. It is no toy: an ancestor
of this library is part of the Glasgow Haskell Compiler, where it
optimizes the imperative C-- code in GHC’s back end. The new
design is far nicer, and it will be in GHC shortly.

The API for Hoopl seems quite natural, but it requires relatively
sophisticated aspects of Haskell’s type system, such as higher-rank
polymorphism, GADTs, and type functions. As such, Hoopl offers
a compelling case study in the utility of these features.

2. Dataflow analysis & transformation by example
We begin by setting the scene, introducing some vocabulary, and
showing a small motivating example. A control-flow graph, per-

1 Using Hoopl, it is not necessary to have the more complex rule “if x is live
afterx:=y+2 theny is live before it,” because ifx is not live afterx:=y+2,
the assignmentx:=y+2 will be eliminated.
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haps representing the body of a procedure, is a collection ofba-
sic blocks—or just “blocks”. Each block is a sequence of instruc-
tions, beginning with a label and ending with a control-transfer in-
struction that branches to other blocks. The goal of dataflow op-
timization is to compute validassertions(or dataflow facts), then
use those assertions to justify code-improving transformations (or
rewrites) on acontrol-flow graph.

Consider a concrete example: constant propagation with constant
folding. On the left we have a basic block; in the middle we have
facts that hold between statements (ornodes) in the block; and at
the right we have the result of transforming the block based on the
assertions:

Before Facts After
------------{}-------------

x := 3+4 x := 7
----------{x=7}------------

z := x>5 z := True
-------{x=7, z=True}-------

if z goto L1
then goto L1
else goto L2

Constant propagation works from top to bottom. We start with the
empty fact. Given the empty fact and the nodex:=3+4 can we
make a (constant-folding) transformation? Yes! We can replace the
node withx:=7. Now, given this transformed node, and the original
fact, what fact flows out of the bottom of the transformed node?
The fact{x=7}. Given the fact{x=7} and the nodez:=x>5, can
we make a transformation? Yes: constant propagation can replace
the node withz:=7>5. Now, can we do another transformation?
Yes: constant folding can replace the node withz:=True. And so
the process continues to the end of the block, where we can replace
the conditional branch with an unconditional one,goto L1.

The example above is simple because the program has only
straightline code; when programs have loops, dataflow analysis
gets more complicated. For example, consider the following graph,
where we assumeL1 is the entry point:

L1: x=3; y=4; if z then goto L2 else goto L3
L2: x=7; goto L3
L3: ...

Because control flows toL3 from two places, we mustjoin the facts
coming from those two places. All paths toL3 produce the facty=4,
so we can conclude that this fact holds atL3. But depending on the
the path toL3, x may have different values, so we conclude “x=⊤”,
meaning that there is no single value held byx at L3.2 The final
result of joining the dataflow facts that flow toL3 is the new fact
x=⊤ ∧ y=4 ∧ z=⊤.

Interleaved transformation and analysis. Our exampleinter-
leavestransformation and analysis. Interleaving makes it far easier
to write effective analyses. If, instead, wefirst analyzed the block
and then transformed it, the analysis would have to “predict” the
transformations. For example, given the incoming fact{x=7} and
the instructionz:=x>5, a pure analysis could produce the outgoing
fact {x=7, z=True} by simplifying x>5 to True. But the subse-
quent transformation must performexactly the same simplification
when it transforms the instruction toz:=True! If instead wefirst
rewrite the node toz:=True, andthenapply the transfer function
to the new node, the transfer function becomes laughably simple:
it merely has to see if the right hand side is a constant (you can
see actual code in Section 4.6). The gain is even more compelling

2 In this examplex really does vary atL3, but in general the analysis might
be conservative.

if there are a number of interacting analyses and/or transforma-
tions; for more substantial examples, consult Lerner, Grove, and
Chambers (2002).

Forwards and backwards. Constant propagation worksforwards,
and a fact is typically an assertion about the program state (such
as “variablex holds value7”). Some useful analyses workback-
wards. A prime example is live-variable analysis, where a fact takes
the form “variablex is live” and is an assertion about thecontinu-
ation of a program point. For example, the fact “x is live” at a pro-
gram point P is an assertion thatx is used on some program path
starting at P. The accompanying transformation is called dead-code
elimination; if x is not live, this transformation replaces the node
x:=e with a no-op.

3. Representing control-flow graphs
Hoopl is a library that makes it easy to define dataflow analyses, and
transformations driven by these analyses, on control-flow graphs.
Graphs are composed from smaller units, which we discuss from
the bottom up:

• A nodeis defined by Hoopl’s client; Hoopl knows nothing about
the representation of nodes (Section 3.2).

• A basicblock is a sequence of nodes (Section 3.3).

• A graph is an arbitrarily complicated control-flow graph, com-
posed from basic blocks (Section 3.4).

3.1 Shapes: Open and closed

Nodes, blocks, and graphs share important properties in common.
In particular, each can beopen or closed at entryandopen or closed
at exit. An openpoint is one at which control may implicitly “fall
through;” to transfer control at aclosedpoint requires an explicit
control-transfer instruction. For example,

• A shift-left instruction is open on entry (because control can
fall into it from the preceding instruction), and open on exit
(because control falls through to the next instruction).

• An unconditional branch is open on entry, but closed on exit
(because control cannot fall through to the next instruction).

• A label is closed on entry (because in Hoopl we do not allow
control to fall through into a branch target), but open on exit.

These examples concern nodes, but the same classification applies
to blocks and graphs. For example the block

x:=7; y:=x+2; goto L

is open on entry and closed on exit. This is the block’sshape,
which we often abbreviate “open/closed;” we may refer to an
“open/closed block.”

The shape of a thing determines that thing’s control-flow properties.
In particular, whenever E is a node, block, or graph,

• If E is open at the entry, it has a unique predecessor; if it is
closed, it may have arbitrarily many predecessors—or none.

• If E is open at the exit, it has a unique successor; if it is closed,
it may have arbitrarily many successors—or none.

3.2 Nodes

The primitive constituents of a Hoopl control-flow graph arenodes,
which are defined by the client. Typically, a node might represent a
machine instruction, such as an assignment, a call, or a conditional
branch. But Hoopl’s graph representation is polymorphic in the
node type, so each client can define nodes as it likes. Because they
contain nodes defined by the client, graphs can include arbitrary
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data Node e x where
LabelNode :: Label -> Node C O
Assign :: Var -> Expr -> Node O O
Store :: Expr -> Expr -> Node O O
Branch :: Label -> Node O C
CondBranch :: Expr -> Label -> Label -> Node O C
-- ... more constructors ...

Figure 1. A typical node type as it might be defined by a client

client-specified data, including (say) C statements, method calls in
an object-oriented language, or whatever.

Hoopl knowsat compile timewhether a node is open or closed
at entry and exit: the type of a node has kind*->*->*, where
the two type parameters are type-level flags, one for entry and
one for exit. Such a type parameter may be instantiated only with
typeO (for open) or typeC (for closed). As an example, Figure 1
shows a typical node type as it might be written by one of Hoopl’s
clients. The type parameters are writtene and x, for entry and
exit respectively. The type is a generalized algebraic data type; the
syntax gives the type of each constructor. For example, constructor
LabelNode takes aLabel and returns a node of typeNode C O,
where the “C” says “closed at entry” and the “O” says “open at
exit”. The typesLabel, O, andC are defined by Hoopl (Figure 2).

Similarly, anAssign node takes a variable and an expression, and
returns aNode open at both entry and exit; theStore node is
similar. The typesVar andExpr are private to the client, and Hoopl
knows nothing of them. Finally, the control-transfer nodesBranch
andCondBranch are open at entry and closed at exit.

Nodes closed on entry are the only targets of control transfers;
nodes open on entry and exit never perform control transfers; and
nodes closed on exit always perform control transfers3. Because of
the position each type of node occupies in a basic block, we often
call themfirst, middle, andlast nodes respectively.

3.3 Blocks

Hoopl combines the client’s nodes into blocks and graphs, which,
unlike the nodes, are defined by Hoopl (Figure 2). ABlock is
parameterized over the node typen as well as over the same flag
types that make it open or closed at entry and exit.

TheBUnit constructor lifts a node to become a block;BCat con-
catenates blocks in sequence. It makes sense to concatenate blocks
only when control can fall through from the first to the second;
therefore, two blocks may be concatenated only if each block is
open at the point of concatenation. This restriction is enforced by
the type ofBCat, whose first argument must be open on exit, and
whose second argument must be open on entry. It is statically im-
possible, for example, to concatenate aBranch immediately be-
fore anAssign. Indeed, theBlock type statically guarantees that
any closed/closedBlock—which compiler writers normally call a
“basic block”—consists of exactly one closed/open node (such as
Label in Figure 1), followed by zero or more open/open nodes
(Assign or Store), and terminated with exactly one open/closed
node (Branch or CondBranch). Using GADTs to enforce these in-
variants is one of Hoopl’s innovations.

3 To obey these invariants, a node for a conditional-branch instruction,
which typically either transfers controlor falls through, must be represented
as a two-target conditional branch, with the fall-through path in a separate
block. This representation is standard (Appel 1998), and itcosts nothing in
practice: such code is easily sequentialized without superfluous branches.

data O -- Open
data C -- Closed

data Block n e x where
BUnit :: n e x -> Block n e x
BCat :: Block n e O -> Block n O x -> Block n e x

data Graph n e x where
GNil :: Graph n O O
GUnit :: Block n O O -> Graph n O O
GMany :: MaybeO e (Block n O C)

-> Body n
-> MaybeO x (Block n C O)
-> Graph n e x

data Body n where
BodyEmpty :: Body n
BodyUnit :: Block n C C -> Body n
BodyCat :: Body n -> Body n -> Body n

data MaybeO ex t where
JustO :: t -> MaybeO O t
NothingO :: MaybeO C t

newtype Label = Label Int

class Edges n where
entryLabel :: n C x -> Label
successors :: n e C -> [Label]

Figure 2. The block and graph types defined by Hoopl

3.4 Graphs

Hoopl composes blocks into graphs, which are also defined in
Figure 2. LikeBlock, the data typeGraph is parameterized over
both nodesn and its open/closed shape (e and x). It has three
constructors. The first two deal with the base cases of open/open
graphs: an empty graph is represented byGNil while a single-block
graph is represented byGUnit.

More general graphs are represented byGMany, which has three
fields: an optional entry sequence, a body, and an optional exit
sequence.

• If the graph is open at the entry, it contains an entry sequence of
typeBlock n O C. We could represent this sequence as a value
of type Maybe (Block n O C), but we can do better: a value
of Maybe type requires adynamictest, but we knowstatically,
at compile time, that the sequence is present if and only if
the graph is open at the entry. We express our compile-time
knowledge by using the typeMaybeO e (Block n O C), a type-
indexed version ofMaybe which is also defined in Figure 2: the
typeMaybeO O a is isomorphic toa, while the typeMaybeO C a
is isomorphic to().

• The body of the graph is a collection of closed/closed blocks.
To be able to concatenate bodies in constant time, we introduce
the representationBody n.

• The exit sequence is dual to the entry sequence, and like the
entry sequence, its presence or absence is deducible from the
static type of the graph.

Graphs concatenate nicely, in constant time. Unlike blocks, two
graphs may be concatenated not only when they are both open at
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data FwdPass n f
= FwdPass { fp_lattice :: DataflowLattice f

, fp_transfer :: FwdTransfer n f
, fp_rewrite :: FwdRewrite n f }

------- Lattice ----------
data DataflowLattice a = DataflowLattice
{ fact_bot :: a
, fact_extend :: a -> a -> (ChangeFlag, a) }

data ChangeFlag = NoChange | SomeChange

------- Transfers ----------
type FwdTransfer n f
= forall e x. n e x -> Fact e f -> Fact x f

------- Rewrites ----------
type FwdRewrite n f
= forall e x. n e x -> Fact e f

-> Maybe (FwdRes n f e x)

data FwdRes n f e x
= FwdRes (AGraph n e x) (FwdRewrite n f)

------- Fact-like things -------
type family Fact x f :: *
type instance Fact O f = f
type instance Fact C f = FactBase f

------- FactBase -------
type FactBase f = LabelMap f
-- A finite mapping from Labels to facts f

Figure 3. Hoopl API data types

the point of concatenation but also when they are both closed—and
not in the other two cases:

gCat :: Graph n e a -> Graph n a x -> Graph n e x
gCat GNil g2 = g2
gCat g1 GNil = g1

gCat (GUnit b1) (GUnit b2) = GUnit (b1 ‘BCat‘ b2)

gCat (GUnit b) (GMany (JustO e) bs x)
= GMany (JustO (b ‘BCat‘ e)) bs x

gCat (GMany e bs (JustO x)) (GUnit b2)
= GMany e bs (JustO (x ‘BCat‘ b2))

gCat (GMany e1 bs1 (JustO x1)) (GMany (JustO e2) bs2 x2)
= GMany e1 (bs1 ‘BodyCat‘ b ‘BodyCat‘ bs2) x2
where b = BodyUnit (x1 ‘BCat‘ e2)

gCat (GMany e1 bs1 NothingO) (GMany NothingO bs2 x2)
= GMany e1 (bs1 ‘BodyCat‘ bs2) x2

This definition illustrates the power of GADTs: the pattern match-
ing is exhaustive, and all the open/closed invariants are statically
checked. For example, consider the second-last equation forgCat.
Since the exit link of the first argument isJustO x1, we know that
type parametera is O, and hence the entry link of the second argu-
ment must beJustO e2. Moreover, blockx1 must be closed/open,
and blocke2 must be open/closed. We can therefore concatenate
them withBCat to produce a closed/closed block, which is added
to theBody of the result.

We have carefully crafted the types so that ifBCat andBodyCat
are considered as associative operators, every graph has a unique
representation. To guarantee uniqueness,GUnit is restricted to
open/open blocks. IfGUnit were more accommodating, there
would be more than one way to represent some graphs, and it
wouldn’t be obvious to a client which representation to choose—or
if the choice made a difference.

3.5 Labels and successors

If Hoopl knows nothing about nodes, how can it know where
a control transfer goes, or what is theLabel at the start of a
block? To answer such questions, the standard Haskell idiom is to
define a type class whose methods provide exactly the operations
needed; Hoopl’s type class, calledEdges, is given in Figure 2.
The entryLabel method takes a first node (one closed on entry,
Section 3.2) and returns itsLabel; thesuccessors method takes
a last node (closed on exit) and returns theLabels to which it can
transfer control. A middle node, which is open at both entry and
exit, cannot refer to anyLabels, so no corresponding interrogation
function is needed.

A node type defined by a client must be an instance ofEdges.
In Figure 1, the client’s instance declaration forNode would be

instance Edges Node where
entryLabel (LabelNode l) = l
successors (Branch b) = [b]
successors (CondBranch e b1 b2) = [b1,b2]

Again, the pattern matching for both functions is exhaustive, and
the compiler statically checks this fact. Here,entryLabel cannot
be applied to anAssign or Branch node, and any attempt to define
a case forAssign or Branch would result in a type error.

While it is required for the client to provide this information about
nodes, it is very convenient for Hoopl to get the same information
about blocks. For its own internal use, Hoopl provides this instance
declaration for theBlock type:

instance Edges n => Edges (Block n) where
entryLabel (BUnit n) = entryLabel n
entryLabel (BCat b _) = entryLabel b
successors (BUnit n) = successors n
successors (BCat _ b) = successors b

Because the functionsentryLabel andsuccessors are used to
track control flowwithin a graph, Hoopl does not need to ask for the
entry label or successors of aGraph itself. Indeed,Graph cannot
be an instance ofEdges, because even if aGraph is closed at the
entry, it does not have a unique entry label.

4. Using Hoopl to analyze and transform graphs
Now that we have graphs, how do we optimize them? Hoopl makes
it easy for a client to build a new dataflow analysis and optimiza-
tion. The client must supply the following pieces:

• A node type(Section 3.2). Hoopl supplies theBlock andGraph
types that let the client build control-flow graphs out of nodes.

• A data type of factsand some operations over those facts (Sec-
tion 4.1). Each analysis uses facts that are specific to that par-
ticular analysis, which Hoopl accommodates by being polymor-
phic in the fact type.

• A transfer functionthat takes a node and returns afact trans-
former, which takes a fact flowing into the node and returns the
transformed fact that flows out of the node (Section 4.2).

• A rewrite functionthat takes a node and an input fact, and
which returns eitherNothing or (Just g) whereg is a graph
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Specified Implemented
Part of optimizer by by How many

Control-flow graphs US US One
Nodes in a
control-flow graph

YOU YOU One type per
intermediate language

Dataflow factF YOU YOU One type per logic
Lattice operations US YOU One set per logic

Transfer functions US YOU One per analysis
Rewrite functions US YOU One per transformation

Solve-and-rewrite
functions

US US Two (forward, backward)

Table 4. Parts of an optimizer built with Hoopl

that should replace the node. The ability to replace anodeby
a graph that may include internal control flow is crucial for
many code-improving transformations. We discuss the rewrite
function in Sections 4.3 and 4.4.

These requirements are summarized in Table 4. Because facts,
transfer functions, and rewrite functions work closely together, we
represent their combination as a single record of typeFwdPass
(Figure 3). The elements ofFwdPass are, and must be, polymor-
phic functions—Hoopl must use higher-rank types.

Given a node typen and aFwdPass, a client can ask Hoopl to
analyze and rewrite a closed/closed graph represented asBody n:

analyzeAndRewriteFwd
:: Edges n -- Access to flow edges
=> FwdPass n f -- Lattice, transfer,

-- and rewrite functions
-> Body n -- Input body
-> FactBase f -- Input fact(s)
-> FuelMonad (Body n, -- Result body

FactBase f) -- ...and its facts

Given aFwdPass, the analyze-and-rewrite function transforms a
Body into an optimizedBody. As its type shows, this function is
polymorphic in the types of nodesn and factsf; these types are
determined entirely by the client.

As well as taking and returning aBody, the function also takes input
facts (theFactBase) and produces output facts. AFactBase is
simply a finite mapping fromLabel to facts. The outputFactBase
maps eachLabel in the Body to its fact; if the Label is not
in the domain of theFactBase, its fact is the bottom element
of the lattice. Similarly the inputFactBase supplies any facts
that hold on entry to theBody. For example, in our constant-
propagation example from Section 2, if theBody represents the
body of a procedure with parametersx, y, z, we would map the
entry Label to a fact x=⊤ ∧ y=⊤ ∧ z=⊤, to specify that the
procedure’s parameters may not be constants.

The client’s model of howanalyzeAndRewriteFwd works is as
follows: Hoopl walks forward over each block in the graph. At
each node, Hoopl applies the rewrite function to the node and the
incoming fact. If the rewrite function returnsNothing, the node is
retained as part of the output graph, the transfer function is used
to compute the downstream fact, and Hoopl moves on to the next
node. But if the rewrite function returns(Just g), indicating that
it wants to rewrite the node to the replacement graphg, then Hoopl
recursively analyzes and rewritesg before moving on to the next
node. A node following a rewritten node seesup-to-datefacts; that
is, its input fact is computed by analyzing the replacement graph.

In this section we flesh out theinterfacetoanalyzeAndRewriteFwd,
leaving the implementation for Section 5.

4.1 Dataflow lattices

For each analysis or transformation, the client must define a type
of dataflow facts. A dataflow fact often represents an assertion
about a program point,4 but in general, dataflow analysis establishes
properties ofpaths:

• An assertion about all pathsto a program point is established
by a forwards analysis. For example the assertion “x = 3” at
point P claims that variablex holds value3 at P, regardless of
the path by which P is reached.

• An assertion about all pathsfroma program point is established
by abackwards analysis. For example, the assertion “x is dead”
at point P claims that no path from P uses variablex.

A set of dataflow facts must form a lattice, and Hoopl must know
(a) the bottom element of the lattice and (b) how to take the least
upper bound (join) of two elements. To ensure that analysis termi-
nates, it is enough if every fact has a finite number of distinct facts
above it, so that repeated joins eventually reach a fixed point.

In practice, joins are computed at labels. Iffid is the fact currently
associated with the labelid , and if a transfer function propagates
a new factfnew into the labelid , the dataflow engine replacesfid

with the joinfnew ⊔ fid . Furthermore, the dataflow engine wants
to know if fnew ⊔ fid = fid , because if not, the analysis has not
reached a fixed point.

The bottom element and join operation of a lattice of facts of typef
are stored in a value of typeDataflowLattice f (Figure 3). As
noted in the previous paragraph, Hoopl needs to know when the
result of a join is equal to one of the arguments joined. Because
this information is often available very cheaply at the time when
the join is computed, Hoopl does not require a separate equality
test on facts (which might be expensive). Instead, Hoopl requires
that fact_extend return aChangeFlag as well as the least up-
per bound. TheChangeFlag should beNoChange if the result is
the same as the first argument (the old fact), andSomeChange if
the result differs. (Functionfact_extend is not symmetric in its
arguments.)

4.2 The transfer function

A forward transfer function is presented with the dataflow fact(s)
on the edge(s) coming into a node, and it computes dataflow fact(s)
on the outgoing edge(s). In a forward analysis, the dataflow engine
starts with the fact at the beginning of a block and applies the
transfer function to successive nodes in that block until eventually
the transfer function for the last node computes the facts that are
propagated to the block’s successors. For example, consider this
graph, with entry atL1:

L1: x=3; goto L2
L2: y=x+4; x=x-1;

if x>0 then goto L2 else return

A forward analysis starts with the bottom fact{} at every label.
AnalyzingL1 propagates this fact forward, by applying the transfer
function successively to the nodes ofL1, emerging with the fact
{x=3} for L2. This new fact is joined with the existing (bottom)
fact for L2. Now the analysis propagatesL2’s fact forward, again
using the transfer function, this time emerging with a new fact
{x=2, y=7} for L2. Again, the new fact is joined with the existing
fact forL2, and the process is iterated until the facts for each label
reach a fixed point.

But wait! What is thetypeof the transfer function? If the node is
open at exit, the transfer function produces a single fact. But what

4 In Hoopl, a program point is simply an edge in a control-flow graph.
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type AGraph n e x
= [Label] -> (Graph n e x, [Label])

withLabels :: Int -> ([Label] -> AGraph n e x)
-> AGraph n e x

withLabels n fn = \ls -> fn (take n ls) (drop n ls)

mkIfThenElse :: Expr -> AGraph Node O O
-> AGraph Node O O -> AGraph Node O O

mkIfThenElse p t e
= withLabels 3 $ \[l1,l2,l3] ->
gUnitOC (BUnit (CondBranch p l1 l2)) ‘gCat‘
mkLabel l1 ‘gCat‘ t ‘gCat‘ mkBranch l3 ‘gCat‘
mkLabel l2 ‘gCat‘ e ‘gCat‘ mkBranch l3 ‘gCat‘
mkLabel l3

mkLabel l = gUnitCO (BUnit (LabelNode l))
mkBranch l = gUnitOC (BUnit (Branch l))
gUnitOC b = GMany (JustO b) BodyEmpty NothingO
gUnitCO b = GMany NothingO BodyEmpty (JustO b)

Figure 5. TheAGraph type and example constructions

if the node isclosedon exit? In that case the transfer function must
produce a list of (Label,fact) pairs, one for each outgoing edge.
So the type of the transfer function’s result depends on the shape
of the node’s exit.Fortunately, this dependency can be expressed
precisely, at compile time, by Haskell’s (recently added)indexed
type families. The relevant Hoopl definitions are given in Figure 3.
A forward transfer function, of type (FwdTransfer n f), is a func-
tion polymorphic ine andx. It takes a node of type (n e x) and a
fact of typef, and it produces an outgoing “fact-like thing” of type
(Fact x f). The type constructorFact should be thought of as a
type-level function; its signature is given in thetype family dec-
laration, while its definition is given by twotype instance dec-
larations. The first declaration says that the fact-like thing coming
out of a nodeopenat the exit is just a factf. The second declaration
says that the fact-like thing coming out of a nodeclosedat the exit
is a mapping fromLabel to facts.

We have ordered the arguments such that if

transfer_fn :: FwdTransfer n f
node :: n e x

then(transfer_fn node) is a predicate transformer:

transfer_fn node :: Fact e f -> Fact x f

4.3 The rewrite function

We compute dataflow facts in order to enable code-improving
transformations. In our constant-propagation example, the dataflow
facts may enable us to simplify an expression by performing con-
stant folding, or to turn a conditional branch into an unconditional
one. Similarly, a liveness analysis may allow us to replace a dead
assignment with a no-op.

A FwdPass therefore includes arewriting function, whose type,
FwdRewrite, is given in Figure 3. A rewriting function takes a
node and a fact, and optionally returns. . . what? At first one might
expect that rewriting should return a new node, but that is not
enough: We might want to remove a node by rewriting it to the
empty graph, or more ambitiously, we might want to replace a
high-level operation with a tree of conditional branches or a loop,
which would entail introducing new blocks with internal control
flow. In general, a rewrite function must be able to return agraph.

Concretely, aFwdRewrite takes a node and a suitably shaped fact,
and returns eitherNothing, indicating that the node should not be
replaced, or(Just (FwdRes g rw)), indicating that the node
should be replaced withg: the replacement graph. You may have
been expectingg to have typeGraph n e x, but it actually has
typeAGraph n e x. The reason is that if the rewriter makes graphs
containing blocks, it may need freshLabels. AnAGraph provides
easy access to fresh labels, usingwithLabels (Figure 5). The
figure also shows an implementation ofAGraph and a few simple
functions typically used to buildAGraphs.

The type ofFwdRewrite in Figure 3 guaranteesat compile time
that the replacement graphg has thesameopen/closed shape as
the node being rewritten. For example, a branch instruction can
be replaced only by a graph closed at the exit. Moreover, because
only an open/open graph can be empty—look at the type ofGNil
in Figure 2—the type ofFwdRewrite guarantees, at compile time,
that no head of a block (closed/open) or tail of a block (open/closed)
can ever be deleted by being rewritten to an empty graph.

4.4 Shallow vs deep rewriting

Once the rewrite has been performed, what then? Since the rewrite
returns a graph, the replacement graph must itself be analyzed, and
its nodes may be rewritten. So we must callanalyzeAndRewriteFwd
to process the replacement graph—but whatFwdPass should we
use? There are two common situations:

• Sometimes we want to analyze and transform the replacement
graph with an unmodifiedFwdPass, further rewriting the re-
placement graph. This procedure is calleddeep rewriting. When
deep rewriting is used, the client’s rewrite function must ensure
that the graphs it produces are not rewritten indefinitely (Sec-
tion 4.9).

• Sometimes we want to analyzebut not further rewritethe re-
placement graph. This procedure is calledshallow rewriting.
It is easily implemented by using a modifiedFwdPass whose
rewriting function always returnsNothing.

Deep rewriting is essential to achieve the full benefits of interleaved
analysis and transformation (Lerner, Grove, and Chambers 2002).
But shallow rewriting can be vital as well; for example, a forward
dataflow pass that inserts a spill before a call must not rewrite the
call again, lest it attempt to insert infinitely many spills.

An innovation of Hoopl is to build the choice of shallow or deep
rewriting into each rewrite function, an idea that is elegantly cap-
tured by theFwdRes type returned by aFwdRewrite (Figure 3).
The first component of theFwdRes is the replacement graph, as
discussed earlier. The second component,rw , is a new rewriting
functionto use when recursively processing the replacement graph.
For shallow rewriting this new function is the constantNothing
function; for deep rewriting it is the original rewriting function.

4.5 Composing rewrite functions and dataflow passes

By requiring each rewrite to return a new rewrite function, Hoopl
enables a variety of combinators over rewrite functions. For ex-
ample, here is a function that combines two rewriting functions in
sequence:

thenFwdRw :: FwdRewrite n f
-> FwdRewrite n f
-> FwdRewrite n f

thenFwdRw rw1 rw2 n f
= case rw1 n f of

Nothing -> rw2 n f
Just (FwdRes g rw1a) -> Just $ FwdRes g $

rw1a ‘thenFwdRw‘ rw2
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noFwdRw :: FwdRewrite n f
noFwdRw n f = Nothing

What a beautiful typethenFwdRw has! It triesrw1, and ifrw1 de-
clines to rewrite, it behaves likerw2. But if rw1 rewrites, returning
a new rewriterrw1a, then the overall call also succeeds, return-
ing a new rewrite function obtained by combiningrw1a with rw2.
(We cannot applyrw1a or rw2 directly to the replacement graphg,
becauser1 returns a graph andrw2 expects a node.) The rewriter
noFwdRw is the identity ofthenFwdRw. Finally, thenFwdRw can
combine a deep-rewriting function and a shallow-rewriting func-
tion, to produce a rewriting function that is a combination of deep
and shallow.

A shallow rewriting function can be made deep by iterating it:

iterFwdRw :: FwdRewrite n f -> FwdRewrite n f
iterFwdRw rw =
\n f -> case rw n f of

Just (FwdRes g rw2) ->
Just $ FwdRes g (rw2 ‘thenFwdRw‘ iterFwdRw rw)

Nothing -> Nothing

If we have shallow rewritesA andB then we can buildAB, A∗B,
(AB)∗, and so on: sequential composition isthenFwdRw and the
Kleene star isiterFwdRw.

⋄
NR: Do we still
believe this
claim?

The combinators above operate on rewrite functions that share a
common fact type and transfer function. It can also be useful to
combine entire dataflow passes that use different facts. We invite
you to write one such combinator, with type

thenFwd :: FwdPass n f1
-> FwdPass n f2
-> FwdPass n (f1,f2)

The two passes run interleaved, not sequentially, and each may
help the other, yielding better results than runningA and thenB
or B and thenA (Lerner, Grove, and Chambers 2002).

4.6 Example: Constant propagation and constant folding

Figure 6 shows client code for constant propagation and constant
folding. For each variable at each point in a graph, the analysis
concludes one of three facts: the variable holds a constant value
(Boolean or integer), the variable might hold a non-constant value,
or nothing is known about what the variable holds. We repre-
sent these facts using a finite map from a variable to a fact of
type (Maybe HasConst). A variable with a constant value maps
to Just k, wherek is the constant value; a variable with a non-
constant value maps toJust Top; and a variable with an unknown
value maps toNothing (i.e., it is not in the domain of the finite
map).

The definition of the lattice (constLattice) is straightforward.
The bottom element is an empty map (nothing is known about the
contents of any variable). We use thestdMapJoin function to lift
the join operation for a single variable (constFactAdd) up to the
map containing facts for all variables.

For the transfer function,varHasConst, there are two interesting
kinds of nodes: assignment and conditional branch. In the first
two cases for assignment, a variable gets a constant value, so we
produce a dataflow fact mapping the variable to its value. In the
third case for assignment, the variable gets a non-constant value,
so we produce a dataflow fact mapping the variable toTop. The
last interesting case is a conditional branch where the condition is
a variable. If the conditional branch flows to the true successor,
the variable holdsTrue, and similarly for the false successor. We
update the fact flowing to each successor accordingly.

-- Types and definition of the lattice
data HasConst = Top | B Bool | I Integer
type ConstFact = Map.Map Var HasConst
constLattice = DataflowLattice

{ fact_bot = Map.empty
, fact_extend = stdMapJoin constFactAdd }
where

constFactAdd old new = (c, j)
where j = if new == old then new else Top

c = if j == old then NoChange else SomeChange

-------------------------------------------------------
-- Analysis: variable has constant value
varHasConst :: FwdTransfer Node ConstFact
varHasConst (LabelNode l) f = lookupFact f l
varHasConst (Store _ _) f = f
varHasConst (Assign x (Bool b)) f = Map.insert x (B b) f
varHasConst (Assign x (Int i)) f = Map.insert x (I i) f
varHasConst (Assign x _) f = Map.insert x Top f
varHasConst (Branch l) f = mkFactBase [(l, f)]
varHasConst (CondBranch (Var x) tid fid) f

= mkFactBase [(tid, Map.insert x (B True) f),
(fid, Map.insert x (B False) f)]

varHasConst (CondBranch _ tid fid) f
= mkFactBase [(tid, f), (fid, f)]

-------------------------------------------------------
-- Constant propagation
constProp :: FwdRewrite Node ConstFact
constProp node facts

= fmap toAGraph (mapE rewriteE node)
where

rewriteE e (Var x)
= case M.lookup x facts of

Just (B b) -> Just $ Bool b
Just (I i) -> Just $ Int i
_ -> Nothing

rewriteE e = Nothing

-------------------------------------------------------
-- Simplification ("constant folding")
simplify :: FwdRewrite Node f
simplify (CondBranch (Bool b) t f) _

= Just $ toAGraph $ Branch (if b then t else f)
simplify node _ = fmap toAGraph (mapE s_exp node)

where
s_exp (Binop Add (Int i1) (Int i2))

= Just $ Int $ i1 + i2
... -- more cases for constant folding

-- Rewriting expressions
mapE :: (Expr -> Maybe Expr)

-> Node e x -> Maybe (Node e x)
mapE f (LabelNode _) = Nothing
mapE f (Assign x e) = fmap (Assign x) $ f e
... -- more cases for rewriting expressions

-------------------------------------------------------
-- Defining the forward dataflow pass
constPropPass = FwdPass

{ fp_lattice = constLattice
, fp_transfer = varHasConst
, fp_rewrite = constProp ‘thenFwdRw‘ simplify }

Figure 6. The client for constant propagation and constant folding

We do not need to consider complicated cases such as an assign-
mentx:=y wherey holds a constant valuek. Instead, we rely on
the interleaving of transformation and analysis to first transform
the assignment tox:=k, which is exactly what our simple transfer
function expects. As we mention in Section 2, interleaving makes it
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possible to write the simplest imaginable transfer functions, with-
out missing opportunities to improve the code.

The rewrite function for constant propagation,constProp, simply
rewrites each use of a variable to its constant value. We use the
auxiliary functionmapE to applyrewriteE to each use of a vari-
able in each kind of node; in turn, therewriteE function checks
if the variable has a constant value and makes the substitution. We
assume an auxiliary function

toAGraph :: Node e x -> AGraph e x

Figure 6 also gives a completely separate rewrite function to per-
form constant folding, calledsimplify. It rewrites a conditional
branch on a boolean constant to an unconditional branch, and to
find constant subexpressions, it runss_exp on every subexpres-
sion. Functionsimplify does not need to check whether a variable
holds a constant value; it relies onconstProp to have replaced the
variable by the constant. Indeed,simplify does not consult the
incoming fact at all, and hence is polymorphic inf.

We have written twoFwdRewrite functions because they are
independently useful. But in this case we want to applyboth
of them, so we compose them withthenFwdRw. The composed
rewrite functions, along with the lattice and the transfer func-
tion, go intoconstPropPass (bottom of Figure 6). To improve
a particular graph, we passconstPropPass and the graph to
analyzeAndRewriteFwd.

4.7 Throttling the dataflow engine using “optimization fuel”

Debugging an optimization can be tricky: an optimization may
rewrite hundreds of nodes, and any of those rewrites could be in-
correct. To debug dataflow optimizations, we use Whalley’s (1994)
powerful technique to identify the first rewrite that transforms a
program from working code to faulty code.

The key idea is to limit the number of rewrites that are performed
while optimizing a graph. In Hoopl, the limit is calledoptimization
fuel: each rewrite costs one unit of fuel, and when the fuel is
exhausted, no more rewrites are permitted. Because each rewrite
leaves the observable behavior of the program unchanged, it is safe
to stop rewriting at any point. Given a program that fails when
compiled with optimization, a test infrastructure uses binary search
on the amount of optimization fuel, until it finds that the program
works correctly aftern − 1 rewrites but fails aftern rewrites. The
nth rewrite is faulty.

You may have noticed thatanalyzeAndRewriteFwd returns a
value in theFuelMonad (Section 4). TheFuelMonad is a simple
state monad maintaining the supply of unused fuel. It also holds a
supply of fresh labels, which are used by the rewriter for making
new blocks; more precisely, Hoopl uses these labels to take the
AGraph returned by a pass’s rewrite function (Figure 3) and convert
it to aGraph.

4.8 Fixed points and speculative rewrites

Are rewrites sound, especially when there are loops? Many analy-
ses compute a fixed point starting from unsound “facts”; for exam-
ple, a live-variable analysis starts from the assumption that all vari-
ables are dead. This meansrewrites performed before a fixed point
is reached may be unsound, and their results must be discarded.
Each iteration of the fixed-point computation must start afresh with
the original graph.

Although the rewrites may be unsound,they must be performed
(speculatively, and possibly recursively), so that the facts down-
stream of the replacement graphs are as accurate as possible.
For example, consider this graph, with entry atL1:

L1: x=0; goto L2
L2: x=x+1; if x==10 then goto L3 else goto L2

The first traversal of blockL2 starts with the unsound “fact”{x=0};
but analysis of the block propagates the new fact{x=1} to L2,
which joins the existing fact to get{x=⊤}. What if the predicate
in the conditional branch werex<10 instead ofx==10? Again the
first iteration would begin with the tentative fact{x=0}. Using that
fact, we would rewrite the conditional branch to an unconditional
branchgoto L3. No new fact would propagate toL2, and we would
have successfully (and soundly) eliminated the loop. This example
is contrived, but it illustrates that for best results we should

• Perform the rewrites on every iteration.

• Begin each new iteration with the original, virgin graph.

This sort of algorithm is hard to implement in an imperative setting,
where rewrites mutate a graph in place. But with an immutable
graph, implementing the algorithm is trivially easy: we simply
revert to the original graph at the start of each fixed-point iteration.

4.9 Correctness

Facts computed byanalyzeAndRewriteFwd depend on graphs
produced by the rewrite function, which in turn depend on facts
computed by the transfer function. How do we know this algorithm
is sound, or if it terminates? A proof requires a POPL paper (Lerner,
Grove, and Chambers 2002), but we can give some intuition.

Hoopl requires that a client’s functions meet these preconditions:

• The lattice must have noinfinite ascending chains; that is,
every sequence of calls tofact_extend must eventually return
NoChange.

• The transfer function must bemonotonic: given a more infor-
mative fact in, it should produce a more informative fact out.

• The rewrite function must besound: if it replaces a noden by a
replacement graphg, theng must be observationally equivalent
to n under the assumptions expressed by the incoming dataflow
factf.

• The rewrite function must beconsistentwith the transfer func-
tion; that is,transfer n f ⊑ transfer g f. For example, if
the analysis says thatx is dead before the noden, then it had
better still be dead ifn is replaced byg.

• To ensure termination, a transformation that uses deep rewriting
must not return replacement graphs which contain nodes that
could be rewritten indefinitely.

Without the conditions on monotonicity and consistency, our algo-
rithm will terminate, but there is no guarantee that it will compute a
fixed point of the analysis. And that in turn threatens the soundness
of rewrites based on possibly bogus “facts”.

However, when the preconditions above are met,

• The algorithm terminates. The fixed-point loop must terminate
because the lattice has no infinite ascending chains. And the
client is responsible for avoiding infinite recursion when deep
rewriting is used.

• The algorithm is sound. Why? Because if each rewrite is sound
(in the sense given above), then applying a succession of
rewrites is also sound. Moreover, a sound analysis of the re-
placement graph may generate only dataflow facts that could
have been generated by a more complicated analysis of the
original graph.
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data RG n f e x where
RGNil :: RG n f a a
RGCatO :: RG n f e O -> RG n f O x -> RG n f e x
RGCatC :: RG n f e C -> RG n f C x -> RG n f e x
RGUnit :: Fact e f -> Block n e x -> RG n f e x

Figure 7. The data typeRG of rewritten graphs

5. Hoopl’s implementation
Section 4 gives a client’s-eye view of Hoopl, showing how to use it
to create analyses and transformations. Hoopl’s interface is simple,
but theimplementationof interleaved analysis and rewriting is quite
complicated. Lerner, Grove, and Chambers (2002) do not describe
their implementation. We have written at least three previous im-
plementations, all of which were long and hard to understand, and
only one of which provided compile-time guarantees about open
and closed shapes. We are not confident that any of these imple-
mentations are correct.

In this paper we describe our new implementation. It is short (about
a third of the size of our last attempt), elegant, and offers strong
static shape guarantees. The whole thing is about 300 lines of
code, excluding comments; this count includes both forward and
backward dataflow analysis and transformation.

We describe the implementation offorward analysis and transfor-
mation. The implementations of backward analysis and transfor-
mation are exactly analogous and are included in Hoopl.

5.1 Overview

We concentrate on implementinganalyzeAndRewriteFwd, whose
type is in Section 4. Its implementation is built on the hierarchy of
nodes, blocks, and graphs described in Section 3. For each thing in
the hierarchy, we develop a function of this type:

type ARF thing n
= forall f e x. FwdPass n f

-> thing e x -> Fact e f
-> FuelMonad (RG n e x, Fact x f)

An ARF (short for “analyze and rewrite forward”) is a combination
of a rewrite and transfer function. AnARF takes aFwdPass, a
thing (a node, block, or graph), and an input fact, and it returns a
rewritten graph of type(RG n e x) of the same shape as thething,
plus a suitably shaped output fact. The typeRG is internal to Hoopl;
it is not seen by any client. We use it, notGraph, for two reasons:

• The client is often interested not only in the facts flowing out of
the graph (which are returned in theFact x f), but also in the
facts on theinternal blocks of the graph. A replacement graph
of type(RG n e x) is decorated with these internal facts.

• A Graph has deliberately restrictive invariants; for example, a
GMany with a JustO is always open at exit (Figure 2). It turns
out to be awkward to maintain these invariantsduringrewriting,
but easy to restore themafter rewriting by “normalizing” anRG.

The information in anRG is returned to the client by the normaliza-
tion functionnormalizeBody, which splits anRG into aBody and
its correspondingFactBase:

normalizeBody :: Edges n => RG n f C C
-> (Body n, FactBase f)

The constructors ofRG are given in Figure 7. The essential points
are that constructorRGUnit is polymorphic in the shape of a
block, RGUnit carries a fact as well as a block, and the concate-
nation constructors record the shapes of the graphs at the point
of concatenation. (A record of the shapes is needed so that when

normalizeBody is presented with a block carried byRGUnit, it is
known whether the block is an entry sequence, an exit sequence, or
a basic block.)

⋄
NR: Within
Hoopl, the
RG type is a great
convenience.
Mutter mutter: it
carries facts as
well as blocks,
and it frees the
client’s rewrite
functions from
any obligation to
respect the
invariants of type
Graph—I’m not
convinced.

We exploit the type distinctions of nodes,Block, Body, andGraph
to structure the code into several small pieces, each of which can
be understood independently. Specifically, we define a layered set
of functions, each of which calls the previous one:

arfNode :: Edges n => ARF n n
arfBlock :: Edges n => ARF (Block n) n
arfBody :: Edges n

=> FwdPass n f -> Body n -> FactBase f
-> FuelMonad (RG n f C C, FactBase f)

arfGraph :: Edges n => ARF (Graph n) n

• The arfNode function processes nodes (Section 5.3). It han-
dles the subtleties of interleaved analysis and rewriting, and it
deals with fuel consumption. It callsarfGraph to analyze and
transform rewritten graphs.

• Based onarfNode it is extremely easy to writearfBlock,
which lifts the analysis and rewriting from nodes to blocks
(Section 5.2).

• Using arfBlock we definearfBody, which analyzes and
rewrites a Body: that is, a group of closed/closed blocks
linked by arbitrary control flow. Because aBody is always
closed/closed and does not take shape parameters, function
arfBody is less polymorphic than the others, but its type is
what would be obtained by expanding and specializing the def-
inition of ARF for athing which is always closed/closed and is
equivalent to aBody.

FunctionarfBody takes care of fixed points (Section 5.4).

• Based onarfBody it is easy to writearfGraph (Section 5.2).

Given these functions, writing the main analyzer is a simple matter
of matching the external API to the internal functions:

analyzeAndRewriteFwd
:: forall n f. Edges n
=> FwdPass n f -> Body n -> FactBase f
-> FuelMonad (Body n, FactBase f)

analyzeAndRewriteFwd pass body facts
= do { (rg, _) <- arfBody pass body facts

; return (normalizeBody rg) }

5.2 From nodes to blocks

We begin our explanation with the second task: writingarfBlock,
which analyzes and transforms blocks.

arfBlock :: Edges n => ARF (Block n) n
arfBlock pass (BUnit node) f
= arfNode pass node f

arfBlock pass (BCat b1 b2) f
= do { (g1,f1) <- arfBlock pass b1 f

; (g2,f2) <- arfBlock pass b2 f1
; return (g1 ‘RGCatO‘ g2, f2) }

The code is delightfully simple. TheBUnit case is implemented by
arfNode. TheBCat case is implemented by recursively applying
arfBlock to the two sub-blocks, threading the output fact from
the first as the input to the second. Each recursive call produces a
rewritten graph; we concatenate them withRGCatO.

FunctionarfGraph is equally straightforward:

arfGraph :: Edges n => ARF (Graph n) n
arfGraph _ GNil f = return (RGNil, f)
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arfGraph pass (GUnit blk) f = arfBlock pass blk f
arfGraph pass (GMany NothingO body NothingO) f
= do { (body’, fb) <- arfBody pass body f

; return (body’, fb) }
arfGraph pass (GMany NothingO body (JustO exit)) f
= do { (body’, fb) <- arfBody pass body f

; (exit’, fx) <- arfBlock pass exit fb
; return (body’ ‘RGCatC‘ exit’, fx) }

-- ... two more equations for GMany ...

The pattern is the same as forarfBlock: thread facts through the
sequence, and concatenate the results. Because the constructors
of type RG are more polymorphic than those ofGraph, type RG
can represent graphs more simply thanGraph; for example, each
element of aGMany becomes a singleRG object, and theseRG
objects are then concatenated to form a single result of typeRG.

5.3 Analyzing and rewriting nodes

Although interleaving analysis with transformation is tricky, we
have succeeded in isolating the algorithm in just two functions,
arfNode and its backward analog,arbNode:

arfNode :: Edges n => ARF n n
arfNode pass n f
= do { mb_g <- withFuel (fp_rewrite pass n f)

; case mb_g of
Nothing -> return (RGUnit f (BUnit n),

fp_transfer pass n f)
Just (FwdRes ag rw) ->
do { g <- graphOfAGraph ag

; let pass’ = pass { fp_rewrite = rw }
; arfGraph pass’ g f } }

The code here is more complicated, but still admirably brief. Using
thefp_rewrite record selector (Figure 3), we begin by extracting
the rewriting function from theFwdPass, and we apply it to the
noden and the incoming factf.

The resultingMaybe is passed towithFuel, which deals with fuel
accounting:

withFuel :: Maybe a -> FuelMonad (Maybe a)

If withFuel’s argument isNothing, or if we have run out of op-
timization fuel (Section 4.7),withFuel returnsNothing. Other-
wise,withFuel consumes one unit of fuel and returns its argument
(which will be aJust). That is all we need say about fuel.

In the Nothing case, no rewrite takes place—either because the
rewrite function didn’t want one or because fuel is exhausted.
We return a single-node graph(RGUnit f (BUnit n)), deco-
rated with its incoming fact. We also apply the transfer function
(fp_transfer pass) to the incoming fact to produce the outgo-
ing fact. (Likefp_rewrite, fp_transfer is a record selector of
FwdPass.)

In theJust case, we receive a replacementAGraph ag and a new
rewrite functionrw. We convertag to aGraph, using

graphOfAGraph :: AGraph n e x -> FuelMonad (Graph n e x)

and we analyze the resultingGraph with arfGraph. This analysis
usespass’, which contains the original lattice and transfer func-
tion frompass, together with the new rewrite functionrg.

And that’s it! If the client wanted deep rewriting, it is implemented
by the call toarfGraph; if the client wanted shallow rewriting,
the rewrite function will have returnednoFwdRw asrw, which is
implanted inpass’ (Section 4.4).

5.4 Fixed points

Lastly,arfBody deals with the fixed-point calculation. This part of
the implementation is the only really tricky part, and it is cleanly
separated from everything else:

arfBody :: Edges n
=> FwdPass n f -> Body n -> FactBase f
-> FuelMonad (RG n f C C, FactBase f)

arfBody pass body fbase
= fixpoint (fp_lattice pass) (arfBlock pass) fbase $

forwardBlockList (factBaseLabels fbase) body

FunctionforwardBlockList takes a list of possible entry points
andBody, and it returns a linear list of blocks, sorted into an order
that makes forward dataflow efficient:

forwardBlockList
:: Edges n => [Label]
-> Body n -> [(Label,Block n C C)]

For example, if theBody starts at blockL2, and L2 branches
to L1, but not vice versa, then Hoopl will reach a fixed point
more quickly if we processL2 before L1. To find an efficient
order,forwardBlockList uses the methods of theEdges class—
entryLabel and successors—to perform a reverse depth-first
traversal of the control-flow graph. The order of the blocks does
not affect the fixed point or any other part of the answer; it affects
only the number of iterations needed to reach the fixed point.

How do we know what entry points to pass toforwardBlockList?
We treat any block with an entry in the in-flowingFactBase as an
entry point.

The rest of the work is done byfixpoint, which is shared by both
forward and backward analyses:

fixpoint :: forall n f.
Edges n

=> Bool -- going Forward?
-> DataflowLattice f
-> (Block n C C -> FactBase f ->

FuelMonad (RG n f C C, FactBase f))
-> FactBase f
-> [(Label, Block n C C)]
-> FuelMonad (RG n f C C, FactBase f)

Except for the mysteriousBool passed as the first argument,
the type signature tells the story. The third argument is a func-
tion that analyzes and rewrites a single block;fixpoint applies
that function successively to all the blocks, which are passed as
the fifth argument. Thefixpoint function maintains a “Current
FactBase” which grows monotonically: the initial value of the
CurrentFactBase is the fourth argument tofixpoint, and the
CurrentFactBase is augmented with the new facts that flow out
of eachBlock as it is analyzed. Thefixpoint function keeps
analyzing blocks until the CurrentFactBase reaches a fixed point.

The code forfixpoint is a massive 70 lines long; for complete-
ness, it appears in Appendix A. The code is mostly straightforward,
although we try to be a bit clever about deciding when a new fact
means that another iteration over the blocks will be required. There
is one more subtle point worth mentioning, which we highlight by
considering a forward analysis of this graph, where execution starts
atL1:

L1: x:=3; goto L4
L2: x:=4; goto L4
L4: if x>3 goto L2 else goto L5

Block L2 is unreachable. But if we naı̈vely process all the blocks
(say in orderL1, L4, L2), then we will start with the bottom fact for
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L2, propagate{x=4} to L4, where it will join with {x=3} to yield
{x=⊤}. Givenx=⊤, the conditional inL4 cannot be rewritten, and
L2 seems reachable. We have lost a good optimization.

Our implementation solves this problem through a clever trick that
is safe only for a forward analysis;fixpoint analyzes a block only
if the block is reachable from an entry point. This trick is not safe
for a backward analysis, which is whyfixpoint takes aBool as
its first argument: it must know if the analysis goes forward.

Although the trick can be implemented in just a couple of lines of
code, the reasoning behind it is quite subtle—exactly the sort of
thing that should be implemented once in Hoopl, so clients don’t
have to worry about it.

6. Related work
While there is a vast body of literature on dataflow analysis and op-
timization, relatively little can be found on thedesignof optimizers,
which is the topic of this paper. We therefore focus on the foun-
dations of dataflow analysis and on the implementations of some
comparable dataflow frameworks.

Foundations When transfer functions are monotone and lattices
are finite in height, iterative dataflow analysis converges to a fixed
point (Kam and Ullman 1976). If the lattice’s join operation dis-
tributes over transfer functions, this fixed point is equivalent to
a join-over-all-paths solution to the recursive dataflow equations
(Kildall 1973).5 Kam and Ullman (1977) generalize to some mono-
tone functions. Each client of Hoopl must guarantee monotonicity.

Cousot and Cousot (1977, 1979) introduce abstract interpretation as
a technique for developing lattices for program analysis. Schmidt
(1998) shows that an all-paths dataflow problem can be viewed as
model checking an abstract interpretation.

Muchnick (1997) presents many examples of both particular anal-
yses and related algorithms.

The soundness of interleaving analysis and transformation, even
when not all speculative transformations are performed on later
iterations, was shown by Lerner, Grove, and Chambers (2002).

Frameworks Most dataflow frameworks support only analysis,
not transformation. The framework computes a fixed point of trans-
fer functions, and it is up to the client of the framework to use that
fixed point for transformation. Omitting transformation makes it
much easier to build frameworks, and one can find a spectrum of
designs. We describe two representative designs, then move on to
the prior frameworks that support interleaved analysis and transfor-
mation.

The CIL toolkit (Necula et al. 2002) provides an analysis-only
framework for C programs. The framework is limited to one repre-
sentation of control-flow graphs and one representation of instruc-
tions, both of which are provided by the framework. The API is
complicated; much of the complexity is needed to enable the client
to affect which instructions the analysis iterates over.

The Soot framework is designed for analysis of Java programs
(Vallée-Rai et al. 2000). While Soot’s dataflow library supports
only analysis, not transformation, we found much to admire in its
design. Soot’s library is abstracted over the representation of the
control-flow graph and the representation of instructions. Soot’s in-
terface for defining lattice and analysis functions is like our own,
although because Soot is implemented in an imperative style, addi-

5 Kildall uses meets, not joins. Lattice orientation is conventional, and
conventions have changed. We use Dana Scott’s orientation,in which higher
elements carry more information.

tional functions are needed to copy lattice elements. Like CIL, Soot
provides only analysis, not transformation.

The Whirlwind compiler contains the dataflow framework imple-
mented by Lerner, Grove, and Chambers (2002), who were the first
to interleave analysis and transformation. Their implementation is
much like our early efforts: it is a complicated mix of code that si-
multaneously manages interleaving, deep rewriting, and fixed-point
computation. By separating these tasks, our implementation sim-
plifies the problem dramatically. Whirlwind’s implementation also
suffers from the difficulty of maintaining pointer invariants in a mu-
table representation of control-flow graphs, a problem we have dis-
cussed elsewhere (Ramsey and Dias 2005).

Because speculative transformation is difficult in an imperative set-
ting, Whirlwind’s implementation is split into two phases. The first
phase runs the interleaved analyses and transformations to compute
the final dataflow facts and a representation of the transformations
that should be applied to the input graph. The second phase exe-
cutes the transformations. In Hoopl, because control-flow graphs
are immutable, speculative transformations can be applied imme-
diately, and there is no need for a phase distinction.

In previous work (Ramsey and Dias 2005), we described a zipper-
based representation of control-flow graphs, stressing the advan-
tages of immutability. Our new representation, described in Sec-
tion 3, is a significant improvement:

• We can concatenate nodes, blocks, and graphs in constant time.

• We can do a backward analysis without having to “unzip” (and
allocate a copy of) each block.

• Using GADTs, we can represent a flow-graph node using a sin-
gle type, instead of the triple of first, middle, and last types
used in our earlier representation. This change simplifies the
interface significantly: instead of providing three transfer func-
tions and three rewrite functions per pass—one for each type
of node—a client of Hoopl provides only one transfer function
and one rewrite function per pass.

• Errors in concatenation are ruled out at compile-compile time
by Haskell’s static type system. In earlier implementations,
such errors were not detected until the compiler ran, at which
point we tried to compensate for the errors—but the compen-
sation code harbored subtle faults, which we discovered while
developing a new back end for the Glasgow Haskell Compiler.

The implementation of Hoopl is also much better than our earlier
implementations. Not only is the code simpler conceptually, but it
is also shorter: our new implementation is about a third as long as
the previous version, which is part of GHC, version 6.12.

7. What we learned
We have spent six years implementing and reimplementing frame-
works for dataflow analysis and transformation. This formidable
design problem taught us two kinds of lessons: we learned some
very specific lessons about representations and algorithms for op-
timizing compilers, and we were forcibly reminded of some very
general, old lessons that are well known not just to functional pro-
grammers, but to programmers everywhere.

Our main goal for Hoopl was to combine three good ideas (inter-
leaved analysis and transformation, optimization fuel, and an ap-
plicative control-flow graph) in a way that could easily be reused
by many, many compiler writers. Reuse requires abstraction, and as
is well known, designing good abstractions is challenging. Hoopl’s
data types and the functions over those types have been through
dozensof revisions. As we were refining our design, we found it
invaluable to operate in two modes: In the first mode, we designed,
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built, and used a framework as an important component of a real
compiler (first Quick C--, then GHC). In the second mode, we de-
signed and built a standalone library, then redesigned and rebuilt
it, sometimes going through several significant changes in a week.
Operating in the first mode—inside a live compiler—forced us to
make sure that no corners were cut, that we were solving a real
problem, and that we did not inadvertently cripple some other part
of the compiler. Operating in the second mode—as a standalone
library—enabled us to iterate furiously, trying out many more ideas
than would have been possible in the first mode. We have learned
that alternating between these two modes leads to a better design
than operating in either mode alone.

We were forcibly reminded of timeless truths: that interfaces are
more important than implementations, and that data is more im-
portant than code. These truths are reflected in this paper, in which
we have given Hoopl’s API three times as much space as Hoopl’s
implementation.

We were also reminded that Haskell’s type system (polymorphism,
GADTs, higher-order functions, type classes, and so on) is a re-
markably effective language for thinking about data and code—and
that Haskell lacks a language of interfaces (like ML’s signatures)
that would make it equally effective for thinking about APIs at a
larger scale. Still, as usual, the types were a remarkable aid to writ-
ing the code: when we finally agreed on the types presented above,
the code almost wrote itself.

Types are widely appreciated at ICFP, but here are three specific
examples of how types helped us:

• Reuse is enabled by representation-independence, which in a
functional language is expressed through parametric polymor-
phism. Making Hoopl polymorphic in the nodes made the code
simpler, easier to understand, and easier to maintain. In particu-
lar, it forced us to make explicitexactlywhat Hoopl must know
about nodes, and to embody that knowledge in theEdges type
class (Section 3.5).

• We are proud of using GADTs to track the open and closed
shapes of nodes, blocks, and graphs at compile time. Shapes
may seem like a small refinement, but they helped tremendously
when building Hoopl, and we expect them to help clients. Giv-
ing the sameshapes to nodes, blocks, and graphs helped our
thinking and helped to structure the implementation.

• In our earlier designs, graphs were parameterized overthree
node types: first, middle, and last nodes. Those designs there-
fore required three transfer functions, three rewrite functions,
and so on. Moving to a single, “shapely” node type was a major
breakthrough: not only do we have just one node type, but our
client need supply only one transfer function and one rewrite
function. To make this design work, however, wemusthave the
type-level function forFact (Figure 3), to express how incom-
ing and outgoing facts depend on the shape of a node.

Dataflow optimization is usually described as a way to improve
imperative programs by mutating control-flow graphs. Such trans-
formations appear very different from the tree rewriting that func-
tional languages are so well known for, and that makes functional
languages so attractive for writing other parts of compilers. But
even though dataflow optimization looks very different from what
we are used to, writing a dataflow optimizer in a pure functional
language was a huge win. In a pure functional language, not only
do we know that no data structure will be unexpectedly mutated,
but we are forced to be explicit about every input and output, and
we are encouraged to implement things compositionally. This kind
of thinking has helped us make significant improvements to the al-
ready tricky work of Lerner, Grove, and Chambers: per-function

control of shallow vs deep rewriting (Section 4.4), combinators
for dataflow passes (Section 4.5), optimization fuel (Section 4.7),
and transparent management of unreachable blocks (Section 5.4).
We trust that these improvements are right only because they are
implemented in separate parts of the code that cannot interact ex-
cept through explicit function calls. With this new, improved design
in hand, we are now moving back to live-compiler mode, pushing
Hoopl into version 6.13 of the Glasgow Haskell Compiler.
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A. Code for fixpoint
data TxFactBase n f

= TxFB { tfb_fbase :: FactBase f
, tfb_rg :: RG n f C C -- Transformed blocks
, tfb_cha :: ChangeFlag
, tfb_lbls :: LabelSet }

-- Set the tfb_cha flag iff
-- (a) the fact in tfb_fbase for or a block L changes
-- (b) L is in tfb_lbls.
-- The tfb_lbls are all Labels of the *original*
-- (not transformed) blocks

updateFact :: DataflowLattice f -> LabelSet -> (Label, f)
-> (ChangeFlag, FactBase f)
-> (ChangeFlag, FactBase f)

updateFact lat lbls (lbl, new_fact) (cha, fbase)
| NoChange <- cha2 = (cha, fbase)
| lbl ‘elemLabelSet‘ lbls = (SomeChange, new_fbase)
| otherwise = (cha, new_fbase)
where

(cha2, res_fact)
= case lookupFact fbase lbl of

Nothing -> (SomeChange, new_fact)
Just old_fact -> fact_extend lat old_fact new_fact

new_fbase = extendFactBase fbase lbl res_fact

fixpoint :: forall n f. Edges n
=> Bool -- Going forwards?
-> DataflowLattice f
-> (Block n C C -> FactBase f

-> FuelMonad (RG n f C C, FactBase f))
-> FactBase f -> [(Label, Block n C C)]
-> FuelMonad (RG n f C C, FactBase f)

fixpoint is_fwd lat do_block init_fbase blocks
= do { fuel <- getFuel

; tx_fb <- loop fuel init_fbase
; return (tfb_rg tx_fb,

tfb_fbase tx_fb ‘delFromFactBase‘ blocks) }
-- The outgoing FactBase contains facts only for
-- Labels *not* in the blocks of the graph

where
tx_blocks :: [(Label, Block n C C)]

-> TxFactBase n f -> FuelMonad (TxFactBase n f)
tx_blocks [] tx_fb = return tx_fb
tx_blocks ((lbl,blk):bs) tx_fb = tx_block lbl blk tx_fb

>>= tx_blocks bs

tx_block :: Label -> Block n C C
-> TxFactBase n f -> FuelMonad (TxFactBase n f)

tx_block lbl blk tx_fb@(TxFB { tfb_fbase = fbase
, tfb_lbls = lbls
, tfb_rg = blks
, tfb_cha = cha })

| is_fwd && not (lbl ‘elemFactBase‘ fbase)
= return tx_fb -- Note [Unreachable blocks]
| otherwise
= do { (rg, out_facts) <- do_block blk fbase

; let (cha’,fbase’)
= foldr (updateFact lat lbls) (cha,fbase)

(factBaseList out_facts)
; return (TxFB { tfb_lbls = extendLabelSet lbls lbl

, tfb_rg = rg ‘RGCatC‘ blks
, tfb_fbase = fbase’
, tfb_cha = cha’ }) }

loop :: Fuel -> FactBase f -> FuelMonad (TxFactBase n f)
loop fuel fbase

= do { let init_tx_fb = TxFB { tfb_fbase = fbase
, tfb_cha = NoChange
, tfb_rg = RGNil
, tfb_lbls = emptyLabelSet}

; tx_fb <- tx_blocks blocks init_tx_fb
; case tfb_cha tx_fb of

NoChange -> return tx_fb
SomeChange -> setFuel fuel >>

loop fuel (tfb_fbase tx_fb) }

B. Index of defined identifiers
This appendix lists every nontrivial identifier used in the body
of the paper. For each identifier, we list the page on which that
identifier is defined or discussed—or when appropriate, the figure
(with line number where possible). For those few identifiers not
defined or discussed in text, we give the type signature and the page
on which the identifier is first referred to.

Some identifiers used in the text are defined in the Haskell Prelude;
for those readers less familiar with Haskell, these identifiers are
listed in Appendix D.

Add :: Operator not shown (but see page 7).
AGraph defined in Figure 5 on page 6.
analyzeAndRewriteFwd defined on page 9.
arbNode defined on page 10.
ARF defined on page 9.
arfBlock defined on page 9.
arfBody defined on page 10.
arfGraph defined on page 10.
arfNode defined on page 10.
Assign defined in Figure 1 on page 3.
B defined in Figure 6 on page 7.
b1 let- orλ-bound on page 4.
b2 let- orλ-bound on page 4.
BCat defined in Figure 2 on page 3.
Binop :: Operator -> Expr -> Expr -> Expr not shown
(but see page 7).
Block defined in Figure 2 on page 3.
Body defined in Figure 2 on page 3.
BodyCat defined in Figure 2 on page 3.
BodyEmpty defined in Figure 2 on page 3.
BodyUnit defined in Figure 2 on page 3.
Branch defined in Figure 1 on page 3.
BUnit defined in Figure 2 on page 3.
C defined in Figure 2 on page 3.
ChangeFlag defined in Figure 3 on page 4.
CondBranch defined in Figure 1 on page 3.
ConstFact defined in Figure 6 on page 7.
constFactAdd defined in Figure 6 on page 7.
constLattice defined in Figure 6 on page 7.
constProp defined in Figure 6 on page 7.
constPropPass defined in Figure 6 on page 7.
DataflowLattice defined in Figure 3 on page 4.
delFromFactBase :: FactBase f -> [(Label,a)] ->
FactBase f not shown (but see page 13).
Edges defined in Figure 2 on page 3.
elemFactBase :: Label -> FactBase f -> Bool not
shown (but see page 13).
elemLabelSet :: Label -> LabelSet -> Bool not shown
(but see page 13).
emptyLabelSet :: LabelSet not shown (but see page 13).
entryLabel defined in Figure 2 on page 3.
extendFactBase :: FactBase f -> Label -> f ->
FactBase f not shown (but see page 13).
extendLabelSet :: LabelSet -> Label -> LabelSet not
shown (but see page 13).
Fact defined in Figure 3 on page 4.
FactBase defined in Figure 3 on page 4.
factBaseLabels :: FactBase f -> [Label] not shown (but
see page 13).
fact bot defined in Figure 3 on page 4.
fact extend defined in Figure 3 on page 4.
fixpoint defined on page 10.
forwardBlockList defined on page 10.
fp lattice defined in Figure 3 on page 4.
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fp rewrite defined in Figure 3 on page 4.
fp transfer defined in Figure 3 on page 4.
Fuel defined on page 10.
FuelMonad defined on page 8.
FwdPass defined in Figure 3 on page 4.
FwdRes defined in Figure 3 on page 4.
FwdRewrite defined in Figure 3 on page 4.
FwdTransfer defined in Figure 3 on page 4.
gCat defined on page 4.
getFuel :: FuelMonad Fuel not shown (but see page 13).
GMany defined in Figure 2 on page 3.
GNil defined in Figure 2 on page 3.
Graph defined in Figure 2 on page 3.
graphOfAGraph defined on page 10.
GUnit defined in Figure 2 on page 3.
gUnitCO defined in Figure 5 on page 6.
gUnitOC defined in Figure 5 on page 6.
HasConst defined in Figure 6 on page 7.
I defined in Figure 6 on page 7.
init fbase let- orλ-bound on page 13.
JustO defined in Figure 2 on page 3.
Label defined in Figure 2 on page 3.
LabelMap (a type) not shown (but see page 13).
LabelNode defined in Figure 1 on page 3.
LabelSet (a type) not shown (but see page 13).
lookupFact :: FactBase f -> Label -> Maybe f not
shown (but see page 13).
loop defined on page 13.
mapE defined in Figure 6 on page 7.
MaybeO defined in Figure 2 on page 3.
mkBranch defined in Figure 5 on page 6.
mkFactBase :: [(Label, f)] -> FactBase f not shown
(but see page 4).
mkIfThenElse defined in Figure 5 on page 6.
mkLabel defined in Figure 5 on page 6.
new fbase let- orλ-bound on page 13.
NoChange defined in Figure 3 on page 4.
Node defined in Figure 1 on page 3.
noFwdRw defined on page 7.
normalizeBody defined on page 9.
NothingO defined in Figure 2 on page 3.
O defined in Figure 2 on page 3.
res fact let- orλ-bound on page 13.
rewriteE defined in Figure 6 on page 7.
RG defined in Figure 7 on page 9.
RGCatC defined in Figure 7 on page 9.
RGCatO defined in Figure 7 on page 9.
RGNil defined in Figure 7 on page 9.
RGUnit defined in Figure 7 on page 9.
simplify defined in Figure 6 on page 7.
SomeChange defined in Figure 3 on page 4.
Store defined in Figure 1 on page 3.
successors defined in Figure 2 on page 3.
tfb cha defined on page 13.
tfb fbase defined on page 13.
tfb lbls defined on page 13.
tfb rg defined on page 13.
thenFwd defined on page 7.
thenFwdRw defined on page 7.
Top defined in Figure 6 on page 7.
tx block defined on page 13.
tx blocks defined on page 13.
TxFactBase defined on page 13.
TxFB defined on page 13.
updateFact defined on page 13.

varHasConst defined in Figure 6 on page 7.
withFuel defined on page 10.
withLabels defined in Figure 5 on page 6.

C. Undefined identifiers
ag (p10),blk (p10),blks (p13),blocks (p13),body (p9),
body’ (p10),bs (p4),bs1 (p4),bs2 (p4),cha (p13),cha’ (p13),
cha2 (p13),do block (p13),ex (p3),exit (p10),exit’ (p10),
Expr (p3),factBaseList (p13),facts (p7),family (p4),
fb (p10),fbase (p10),fbase’ (p13),fid (p7),fmap (p7),
fn (p6),fuel (p13),fx (p10),goto (p2),init tx fb (p13),
is fwd (p13),iterFwdRw (p7),lat (p13),lbl (p13),
lbls (p13),ls (p6),M.lookup (p7),Map.empty (p7),
Map.insert (p7),Map.Map (p7),mb g (p10),new (p7),
new fact (p13),node (p6),old (p7),old fact (p13),
out facts (p13),pass (p9),pass’ (p10),rg (p9),rw (p7),
rw1 (p7),rw1a (p7),rw2 (p7),setFuel (p13),s exp (p7),
stdMapJoin (p7),thing (p9),tid (p7),toAGraph (p7),
transfer (p8),transfer fn (p6),tx fb (p13),Var (p3).

D. Identifiers defined in Haskell Prelude
!, $, &, &&, *, +, ++, -, ., /, ==, >, >=, >>, >>=, Bool, const,
curry, Data.Map, drop, False, flip, foldl, foldr, fst,
head, id, Int, Integer, Just, last, liftM, map, mapM , Maybe,
not, Nothing, otherwise, return, snd, String, tail, take,
True, uncurry, undefined .
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