/*-************************************* * Dependencies ***************************************/ #include /* fprintf */ #include /* malloc, free, qsort */ #include /* memset */ #include /* clock */ #include "mem.h" /* read */ #include "pool.h" #include "threading.h" #include "cover.h" #include "zstd_internal.h" /* includes zstd.h */ #ifndef ZDICT_STATIC_LINKING_ONLY #define ZDICT_STATIC_LINKING_ONLY #endif #include "zdict.h" /*-************************************* * Constants ***************************************/ #define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB)) #define FASTCOVER_MAX_F 31 #define FASTCOVER_MAX_ACCEL 10 #define DEFAULT_SPLITPOINT 0.75 #define DEFAULT_F 20 #define DEFAULT_ACCEL 1 /*-************************************* * Console display ***************************************/ static int g_displayLevel = 2; #define DISPLAY(...) \ { \ fprintf(stderr, __VA_ARGS__); \ fflush(stderr); \ } #define LOCALDISPLAYLEVEL(displayLevel, l, ...) \ if (displayLevel >= l) { \ DISPLAY(__VA_ARGS__); \ } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ #define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__) #define LOCALDISPLAYUPDATE(displayLevel, l, ...) \ if (displayLevel >= l) { \ if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \ g_time = clock(); \ DISPLAY(__VA_ARGS__); \ } \ } #define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__) static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100; static clock_t g_time = 0; /*-************************************* * Hash Functions ***************************************/ static const U64 prime6bytes = 227718039650203ULL; static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; } static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); } static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL; static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; } static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); } /** * Hash the d-byte value pointed to by p and mod 2^f */ static size_t FASTCOVER_hashPtrToIndex(const void* p, U32 h, unsigned d) { if (d == 6) { return ZSTD_hash6Ptr(p, h) & ((1 << h) - 1); } return ZSTD_hash8Ptr(p, h) & ((1 << h) - 1); } /*-************************************* * Acceleration ***************************************/ typedef struct { unsigned finalize; /* Percentage of training samples used for ZDICT_finalizeDictionary */ unsigned skip; /* Number of dmer skipped between each dmer counted in computeFrequency */ } FASTCOVER_accel_t; static const FASTCOVER_accel_t FASTCOVER_defaultAccelParameters[FASTCOVER_MAX_ACCEL+1] = { { 100, 0 }, /* accel = 0, should not happen because accel = 0 defaults to accel = 1 */ { 100, 0 }, /* accel = 1 */ { 50, 1 }, /* accel = 2 */ { 34, 2 }, /* accel = 3 */ { 25, 3 }, /* accel = 4 */ { 20, 4 }, /* accel = 5 */ { 17, 5 }, /* accel = 6 */ { 14, 6 }, /* accel = 7 */ { 13, 7 }, /* accel = 8 */ { 11, 8 }, /* accel = 9 */ { 10, 9 }, /* accel = 10 */ }; /*-************************************* * Context ***************************************/ typedef struct { const BYTE *samples; size_t *offsets; const size_t *samplesSizes; size_t nbSamples; size_t nbTrainSamples; size_t nbTestSamples; size_t nbDmers; U32 *freqs; unsigned d; unsigned f; FASTCOVER_accel_t accelParams; } FASTCOVER_ctx_t; /*-************************************* * Helper functions ***************************************/ /** * Selects the best segment in an epoch. * Segments of are scored according to the function: * * Let F(d) be the frequency of all dmers with hash value d. * Let S_i be hash value of the dmer at position i of segment S which has length k. * * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1}) * * Once the dmer with hash value d is in the dictionary we set F(d) = 0. */ static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx, U32 *freqs, U32 begin, U32 end, ZDICT_cover_params_t parameters, U16* segmentFreqs) { /* Constants */ const U32 k = parameters.k; const U32 d = parameters.d; const U32 f = ctx->f; const U32 dmersInK = k - d + 1; /* Try each segment (activeSegment) and save the best (bestSegment) */ COVER_segment_t bestSegment = {0, 0, 0}; COVER_segment_t activeSegment; /* Reset the activeDmers in the segment */ /* The activeSegment starts at the beginning of the epoch. */ activeSegment.begin = begin; activeSegment.end = begin; activeSegment.score = 0; /* Slide the activeSegment through the whole epoch. * Save the best segment in bestSegment. */ while (activeSegment.end < end) { /* Get hash value of current dmer */ const size_t idx = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, f, d); /* Add frequency of this index to score if this is the first occurrence of index in active segment */ if (segmentFreqs[idx] == 0) { activeSegment.score += freqs[idx]; } /* Increment end of segment and segmentFreqs*/ activeSegment.end += 1; segmentFreqs[idx] += 1; /* If the window is now too large, drop the first position */ if (activeSegment.end - activeSegment.begin == dmersInK + 1) { /* Get hash value of the dmer to be eliminated from active segment */ const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d); segmentFreqs[delIndex] -= 1; /* Subtract frequency of this index from score if this is the last occurrence of this index in active segment */ if (segmentFreqs[delIndex] == 0) { activeSegment.score -= freqs[delIndex]; } /* Increment start of segment */ activeSegment.begin += 1; } /* If this segment is the best so far save it */ if (activeSegment.score > bestSegment.score) { bestSegment = activeSegment; } } /* Zero out rest of segmentFreqs array */ while (activeSegment.begin < end) { const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d); segmentFreqs[delIndex] -= 1; activeSegment.begin += 1; } { /* Zero the frequency of hash value of each dmer covered by the chosen segment. */ U32 pos; for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { const size_t i = FASTCOVER_hashPtrToIndex(ctx->samples + pos, f, d); freqs[i] = 0; } } return bestSegment; } static int FASTCOVER_checkParameters(ZDICT_cover_params_t parameters, size_t maxDictSize, unsigned f, unsigned accel) { /* k, d, and f are required parameters */ if (parameters.d == 0 || parameters.k == 0) { return 0; } /* d has to be 6 or 8 */ if (parameters.d != 6 && parameters.d != 8) { return 0; } /* k <= maxDictSize */ if (parameters.k > maxDictSize) { return 0; } /* d <= k */ if (parameters.d > parameters.k) { return 0; } /* 0 < f <= FASTCOVER_MAX_F*/ if (f > FASTCOVER_MAX_F || f == 0) { return 0; } /* 0 < splitPoint <= 1 */ if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) { return 0; } /* 0 < accel <= 10 */ if (accel > 10 || accel == 0) { return 0; } return 1; } /** * Clean up a context initialized with `FASTCOVER_ctx_init()`. */ static void FASTCOVER_ctx_destroy(FASTCOVER_ctx_t* ctx) { if (!ctx) return; free(ctx->freqs); ctx->freqs = NULL; free(ctx->offsets); ctx->offsets = NULL; } /** * Calculate for frequency of hash value of each dmer in ctx->samples */ static void FASTCOVER_computeFrequency(U32* freqs, const FASTCOVER_ctx_t* ctx) { const unsigned f = ctx->f; const unsigned d = ctx->d; const unsigned skip = ctx->accelParams.skip; const unsigned readLength = MAX(d, 8); size_t i; assert(ctx->nbTrainSamples >= 5); assert(ctx->nbTrainSamples <= ctx->nbSamples); for (i = 0; i < ctx->nbTrainSamples; i++) { size_t start = ctx->offsets[i]; /* start of current dmer */ size_t const currSampleEnd = ctx->offsets[i+1]; while (start + readLength <= currSampleEnd) { const size_t dmerIndex = FASTCOVER_hashPtrToIndex(ctx->samples + start, f, d); freqs[dmerIndex]++; start = start + skip + 1; } } } /** * Prepare a context for dictionary building. * The context is only dependent on the parameter `d` and can used multiple * times. * Returns 1 on success or zero on error. * The context must be destroyed with `FASTCOVER_ctx_destroy()`. */ static int FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx, const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, unsigned d, double splitPoint, unsigned f, FASTCOVER_accel_t accelParams) { const BYTE* const samples = (const BYTE*)samplesBuffer; const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples); /* Split samples into testing and training sets */ const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples; const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples; const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize; const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize; /* Checks */ if (totalSamplesSize < MAX(d, sizeof(U64)) || totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) { DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n", (unsigned)(totalSamplesSize >> 20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20)); return 0; } /* Check if there are at least 5 training samples */ if (nbTrainSamples < 5) { DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid\n", nbTrainSamples); return 0; } /* Check if there's testing sample */ if (nbTestSamples < 1) { DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.\n", nbTestSamples); return 0; } /* Zero the context */ memset(ctx, 0, sizeof(*ctx)); DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples, (unsigned)trainingSamplesSize); DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples, (unsigned)testSamplesSize); ctx->samples = samples; ctx->samplesSizes = samplesSizes; ctx->nbSamples = nbSamples; ctx->nbTrainSamples = nbTrainSamples; ctx->nbTestSamples = nbTestSamples; ctx->nbDmers = trainingSamplesSize - MAX(d, sizeof(U64)) + 1; ctx->d = d; ctx->f = f; ctx->accelParams = accelParams; /* The offsets of each file */ ctx->offsets = (size_t*)calloc((nbSamples + 1), sizeof(size_t)); if (ctx->offsets == NULL) { DISPLAYLEVEL(1, "Failed to allocate scratch buffers \n"); FASTCOVER_ctx_destroy(ctx); return 0; } /* Fill offsets from the samplesSizes */ { U32 i; ctx->offsets[0] = 0; assert(nbSamples >= 5); for (i = 1; i <= nbSamples; ++i) { ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1]; } } /* Initialize frequency array of size 2^f */ ctx->freqs = (U32*)calloc(((U64)1 << f), sizeof(U32)); if (ctx->freqs == NULL) { DISPLAYLEVEL(1, "Failed to allocate frequency table \n"); FASTCOVER_ctx_destroy(ctx); return 0; } DISPLAYLEVEL(2, "Computing frequencies\n"); FASTCOVER_computeFrequency(ctx->freqs, ctx); return 1; } /** * Given the prepared context build the dictionary. */ static size_t FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx, U32* freqs, void* dictBuffer, size_t dictBufferCapacity, ZDICT_cover_params_t parameters, U16* segmentFreqs) { BYTE *const dict = (BYTE *)dictBuffer; size_t tail = dictBufferCapacity; /* Divide the data into epochs. We will select one segment from each epoch. */ const COVER_epoch_info_t epochs = COVER_computeEpochs( (U32)dictBufferCapacity, (U32)ctx->nbDmers, parameters.k, 1); const size_t maxZeroScoreRun = 10; size_t zeroScoreRun = 0; size_t epoch; DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", (U32)epochs.num, (U32)epochs.size); /* Loop through the epochs until there are no more segments or the dictionary * is full. */ for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) { const U32 epochBegin = (U32)(epoch * epochs.size); const U32 epochEnd = epochBegin + epochs.size; size_t segmentSize; /* Select a segment */ COVER_segment_t segment = FASTCOVER_selectSegment( ctx, freqs, epochBegin, epochEnd, parameters, segmentFreqs); /* If the segment covers no dmers, then we are out of content. * There may be new content in other epochs, for continue for some time. */ if (segment.score == 0) { if (++zeroScoreRun >= maxZeroScoreRun) { break; } continue; } zeroScoreRun = 0; /* Trim the segment if necessary and if it is too small then we are done */ segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail); if (segmentSize < parameters.d) { break; } /* We fill the dictionary from the back to allow the best segments to be * referenced with the smallest offsets. */ tail -= segmentSize; memcpy(dict + tail, ctx->samples + segment.begin, segmentSize); DISPLAYUPDATE( 2, "\r%u%% ", (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity)); } DISPLAYLEVEL(2, "\r%79s\r", ""); return tail; } /** * Parameters for FASTCOVER_tryParameters(). */ typedef struct FASTCOVER_tryParameters_data_s { const FASTCOVER_ctx_t* ctx; COVER_best_t* best; size_t dictBufferCapacity; ZDICT_cover_params_t parameters; } FASTCOVER_tryParameters_data_t; /** * Tries a set of parameters and updates the COVER_best_t with the results. * This function is thread safe if zstd is compiled with multithreaded support. * It takes its parameters as an *OWNING* opaque pointer to support threading. */ static void FASTCOVER_tryParameters(void *opaque) { /* Save parameters as local variables */ FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t *)opaque; const FASTCOVER_ctx_t *const ctx = data->ctx; const ZDICT_cover_params_t parameters = data->parameters; size_t dictBufferCapacity = data->dictBufferCapacity; size_t totalCompressedSize = ERROR(GENERIC); /* Initialize array to keep track of frequency of dmer within activeSegment */ U16* segmentFreqs = (U16 *)calloc(((U64)1 << ctx->f), sizeof(U16)); /* Allocate space for hash table, dict, and freqs */ BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity); U32 *freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32)); if (!segmentFreqs || !dict || !freqs) { DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n"); goto _cleanup; } /* Copy the frequencies because we need to modify them */ memcpy(freqs, ctx->freqs, ((U64)1 << ctx->f) * sizeof(U32)); /* Build the dictionary */ { const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict, dictBufferCapacity, parameters, segmentFreqs); const unsigned nbFinalizeSamples = (unsigned)(ctx->nbTrainSamples * ctx->accelParams.finalize / 100); dictBufferCapacity = ZDICT_finalizeDictionary( dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, ctx->samples, ctx->samplesSizes, nbFinalizeSamples, parameters.zParams); if (ZDICT_isError(dictBufferCapacity)) { DISPLAYLEVEL(1, "Failed to finalize dictionary\n"); goto _cleanup; } } /* Check total compressed size */ totalCompressedSize = COVER_checkTotalCompressedSize(parameters, ctx->samplesSizes, ctx->samples, ctx->offsets, ctx->nbTrainSamples, ctx->nbSamples, dict, dictBufferCapacity); _cleanup: COVER_best_finish(data->best, totalCompressedSize, parameters, dict, dictBufferCapacity); free(data); free(segmentFreqs); free(dict); free(freqs); } static void FASTCOVER_convertToCoverParams(ZDICT_fastCover_params_t fastCoverParams, ZDICT_cover_params_t* coverParams) { coverParams->k = fastCoverParams.k; coverParams->d = fastCoverParams.d; coverParams->steps = fastCoverParams.steps; coverParams->nbThreads = fastCoverParams.nbThreads; coverParams->splitPoint = fastCoverParams.splitPoint; coverParams->zParams = fastCoverParams.zParams; } static void FASTCOVER_convertToFastCoverParams(ZDICT_cover_params_t coverParams, ZDICT_fastCover_params_t* fastCoverParams, unsigned f, unsigned accel) { fastCoverParams->k = coverParams.k; fastCoverParams->d = coverParams.d; fastCoverParams->steps = coverParams.steps; fastCoverParams->nbThreads = coverParams.nbThreads; fastCoverParams->splitPoint = coverParams.splitPoint; fastCoverParams->f = f; fastCoverParams->accel = accel; fastCoverParams->zParams = coverParams.zParams; } ZDICTLIB_API size_t ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, ZDICT_fastCover_params_t parameters) { BYTE* const dict = (BYTE*)dictBuffer; FASTCOVER_ctx_t ctx; ZDICT_cover_params_t coverParams; FASTCOVER_accel_t accelParams; /* Initialize global data */ g_displayLevel = parameters.zParams.notificationLevel; /* Assign splitPoint and f if not provided */ parameters.splitPoint = 1.0; parameters.f = parameters.f == 0 ? DEFAULT_F : parameters.f; parameters.accel = parameters.accel == 0 ? DEFAULT_ACCEL : parameters.accel; /* Convert to cover parameter */ memset(&coverParams, 0 , sizeof(coverParams)); FASTCOVER_convertToCoverParams(parameters, &coverParams); /* Checks */ if (!FASTCOVER_checkParameters(coverParams, dictBufferCapacity, parameters.f, parameters.accel)) { DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n"); return ERROR(GENERIC); } if (nbSamples == 0) { DISPLAYLEVEL(1, "FASTCOVER must have at least one input file\n"); return ERROR(GENERIC); } if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", ZDICT_DICTSIZE_MIN); return ERROR(dstSize_tooSmall); } /* Assign corresponding FASTCOVER_accel_t to accelParams*/ accelParams = FASTCOVER_defaultAccelParameters[parameters.accel]; /* Initialize context */ if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, coverParams.d, parameters.splitPoint, parameters.f, accelParams)) { DISPLAYLEVEL(1, "Failed to initialize context\n"); return ERROR(GENERIC); } COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, g_displayLevel); /* Build the dictionary */ DISPLAYLEVEL(2, "Building dictionary\n"); { /* Initialize array to keep track of frequency of dmer within activeSegment */ U16* segmentFreqs = (U16 *)calloc(((U64)1 << parameters.f), sizeof(U16)); const size_t tail = FASTCOVER_buildDictionary(&ctx, ctx.freqs, dictBuffer, dictBufferCapacity, coverParams, segmentFreqs); const unsigned nbFinalizeSamples = (unsigned)(ctx.nbTrainSamples * ctx.accelParams.finalize / 100); const size_t dictionarySize = ZDICT_finalizeDictionary( dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, samplesBuffer, samplesSizes, nbFinalizeSamples, coverParams.zParams); if (!ZSTD_isError(dictionarySize)) { DISPLAYLEVEL(2, "Constructed dictionary of size %u\n", (unsigned)dictionarySize); } FASTCOVER_ctx_destroy(&ctx); free(segmentFreqs); return dictionarySize; } } ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover( void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, ZDICT_fastCover_params_t* parameters) { ZDICT_cover_params_t coverParams; FASTCOVER_accel_t accelParams; /* constants */ const unsigned nbThreads = parameters->nbThreads; const double splitPoint = parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint; const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d; const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d; const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k; const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k; const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps; const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1); const unsigned kIterations = (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize); const unsigned f = parameters->f == 0 ? DEFAULT_F : parameters->f; const unsigned accel = parameters->accel == 0 ? DEFAULT_ACCEL : parameters->accel; /* Local variables */ const int displayLevel = parameters->zParams.notificationLevel; unsigned iteration = 1; unsigned d; unsigned k; COVER_best_t best; POOL_ctx *pool = NULL; int warned = 0; /* Checks */ if (splitPoint <= 0 || splitPoint > 1) { LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect splitPoint\n"); return ERROR(GENERIC); } if (accel == 0 || accel > FASTCOVER_MAX_ACCEL) { LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect accel\n"); return ERROR(GENERIC); } if (kMinK < kMaxD || kMaxK < kMinK) { LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect k\n"); return ERROR(GENERIC); } if (nbSamples == 0) { LOCALDISPLAYLEVEL(displayLevel, 1, "FASTCOVER must have at least one input file\n"); return ERROR(GENERIC); } if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { LOCALDISPLAYLEVEL(displayLevel, 1, "dictBufferCapacity must be at least %u\n", ZDICT_DICTSIZE_MIN); return ERROR(dstSize_tooSmall); } if (nbThreads > 1) { pool = POOL_create(nbThreads, 1); if (!pool) { return ERROR(memory_allocation); } } /* Initialization */ COVER_best_init(&best); memset(&coverParams, 0 , sizeof(coverParams)); FASTCOVER_convertToCoverParams(*parameters, &coverParams); accelParams = FASTCOVER_defaultAccelParameters[accel]; /* Turn down global display level to clean up display at level 2 and below */ g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1; /* Loop through d first because each new value needs a new context */ LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n", kIterations); for (d = kMinD; d <= kMaxD; d += 2) { /* Initialize the context for this value of d */ FASTCOVER_ctx_t ctx; LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d); if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams)) { LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n"); COVER_best_destroy(&best); POOL_free(pool); return ERROR(GENERIC); } if (!warned) { COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, displayLevel); warned = 1; } /* Loop through k reusing the same context */ for (k = kMinK; k <= kMaxK; k += kStepSize) { /* Prepare the arguments */ FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc( sizeof(FASTCOVER_tryParameters_data_t)); LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k); if (!data) { LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n"); COVER_best_destroy(&best); FASTCOVER_ctx_destroy(&ctx); POOL_free(pool); return ERROR(GENERIC); } data->ctx = &ctx; data->best = &best; data->dictBufferCapacity = dictBufferCapacity; data->parameters = coverParams; data->parameters.k = k; data->parameters.d = d; data->parameters.splitPoint = splitPoint; data->parameters.steps = kSteps; data->parameters.zParams.notificationLevel = g_displayLevel; /* Check the parameters */ if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity, data->ctx->f, accel)) { DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n"); free(data); continue; } /* Call the function and pass ownership of data to it */ COVER_best_start(&best); if (pool) { POOL_add(pool, &FASTCOVER_tryParameters, data); } else { FASTCOVER_tryParameters(data); } /* Print status */ LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ", (unsigned)((iteration * 100) / kIterations)); ++iteration; } COVER_best_wait(&best); FASTCOVER_ctx_destroy(&ctx); } LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", ""); /* Fill the output buffer and parameters with output of the best parameters */ { const size_t dictSize = best.dictSize; if (ZSTD_isError(best.compressedSize)) { const size_t compressedSize = best.compressedSize; COVER_best_destroy(&best); POOL_free(pool); return compressedSize; } FASTCOVER_convertToFastCoverParams(best.parameters, parameters, f, accel); memcpy(dictBuffer, best.dict, dictSize); COVER_best_destroy(&best); POOL_free(pool); return dictSize; } }