htaut-0.1.1.0: Tautology Proving Logic in Haskell
Htaut.Theorem.Basic
syllogism :: (Prop p, Prop q, Prop r) => Prove ((p -> q) -> (q -> r) -> p -> r) Source #
syllogism' :: (Prop p, Prop q, Prop r) => Prove ((q -> r) -> (p -> q) -> p -> r) Source #
propagate :: (Prop p, Prop q) => Prove (p -> (p -> q) -> q) Source #
conditionSeperate :: (Prop p, Prop q, Prop r) => Prove ((p -> q -> r) -> (p -> q) -> p -> r) Source #
conditionCommute :: (Prop p, Prop q, Prop r) => Prove ((p -> q -> r) -> q -> p -> r) Source #
identity :: Prop p => Prove (p -> p) Source #
conditionAdd :: (Prop p, Prop q) => Prove (q -> p -> q) Source #
dunsScotus :: (Prop p, Prop q) => Prove (Neg p -> p -> q) Source #
dunsScotus' :: (Prop p, Prop q) => Prove (p -> Neg p -> Neg q) Source #