
Design and Implementation of a
validating XML parser in Haskell

Master’s thesis

University of Applied Sciences Wedel

Computer Science Department

Martin Schmidt

Design and Implementation of a validating XML parser in Haskell: Master’s thesis;
University of Applied Sciences Wedel
Computer Science Department
by Martin Schmidt

Published 2002-09-02

Abstract

This thesis introduces the core component of the Haskell XML Toolbox: a validating XML parser that supports
almost fully the Extensible Markup Language (XML) 1.0 (Second Edition) W3C Recommendation [WWW01].
The thesis presents how a validating XML parser and XML processing applications can be implemented by
using filter functions as a uniform design.

The Haskell XML Toolbox is a collection of tools for processing XML with Haskell. It is itself purely written in
Haskell. The Toolbox is a project of the University of Applied Sciences Wedel, initialized by Prof. Dr. Uwe
Schmidt.

The Haskell XML Toolbox bases on the ideas of HaXml [WWW21] and HXML [WWW25], but introduces a
more general approach for processing XML with Haskell. It uses a generic data model for representing XML
documents, including the DTD subset and the document subset. This data model makes is possible to use filter
functions as a uniform design of XML processing applications. Libraries with filters and combinators are
provided for processing this data model.

The following components are included:

• hdom - Core data types and functions for processing XML with Haskell

• hparser - XML parser

• hvalidator - Modules for validating XML documents

• hxslt - Modules for XSL transformations

Prof. Dr. Uwe Schmidt wrote the basic parser and core functions. His master student Christine Nickel wrote the
package hxslt, his master student Martin Schmidt wrote the package hvalidator and some parts of the parser.

Related work

Malcolm Wallace and Colin Runciman wrote HaXml [WWW21], a collection of utilities for using Haskell and
XML together. The Haskell XML Toolbox is based on their idea of using filter combinators for processing XML
with Haskell.

Joe English wrote HXML [WWW25], a non-validating XML parser in Haskell. His idea of validating XML by
using derivatives of regular expressions [WWW26] was implemented in the validation functions of this software.

Dedication

"Learn at least one new [programming] language every year.
Different languages solve the same problems in different ways.
By learning several different approaches, you can help broaden
your thinking and avoid getting stuck in a rut."

--- The Pragmatic Programmer

Table of Contents
Preface .. i

1. Basics.. 1

1.1. XML... 1
1.1.1. Introduction ... 1
1.1.2. Processing XML.. 1
1.1.3. Correctness of documents.. 2
1.1.4. Document Type Definition (DTD) .. 2
1.1.5. Example... 5

1.2. Haskell.. 5
1.2.1. Introduction ... 5
1.2.2. Functions ... 6
1.2.3. Types.. 7
1.2.4. Pattern Matching ... 9
1.2.5. Guards.. 9
1.2.6. Higher-order Functions.. 10
1.2.7. Modules ... 10

2. Package hdom ... 12

2.1. Modules.. 12
2.2. Data structures.. 14

2.2.1. Core components ... 14
2.2.2. Data type XmlTree .. 15
2.2.3. Example... 20

2.3. Filter functions ... 22
2.3.1. Introduction ... 22
2.3.2. Filters from module NTree .. 23
2.3.3. Filters from module XmlTreeAccess .. 24

2.4. Filter combinators .. 27
2.4.1. Introduction ... 27
2.4.2. List of combinators.. 27
2.4.3. Binding power and associativity.. 30

2.5. Examples for filters and filter combinators .. 31
2.5.1. Removing comments ... 31
2.5.2. Merging internal and external DTD subset ... 32

2.6. Access functions .. 34
2.7. State-I/O monad from module XmlState ... 35

3. Package hparser.. 38

3.1. Overview .. 38
3.2. Module HdomParser .. 38
3.3. Module XmlParser ... 40
3.4. Module XmlInput... 41
3.5. Module DTDProcessing... 41
3.6. Module XmlOutput .. 42

4. Package hvalidator ... 43

4.1. Module hierarchy ... 43
4.2. Creating a validating XML parser.. 44
4.3. Validation of the Document Type Definition ... 46
4.4. Validation of the document subset ... 47
4.5. Transformation of the document subset ... 49

iv

4.6. Validation of attribute values.. 50
4.7. Derivatives of regular expressions ... 50

4.7.1. Description .. 50
4.7.2. Examples ... 51
4.7.3. Realization in Haskell.. 51
4.7.4. Conclusions ... 52

5. Conclusion ... 54

5.1. XML conformance of the parser .. 54
5.2. The Haskell XML Toolbox in comparison to HaXml and HXML.................................... 54
5.3. Conclusions and future work ... 57

A. User handbook ... 59

A.1. System requirements ... 59
A.2. Missing features and known problems.. 59
A.3. Directory structure .. 59
A.4. HXmlParser - Well-formedness checker and validator ... 60
A.5. Check the XML parser with the XML Test Suites.. 61
A.6. Performance and profiling... 61

A.6.1. Usage information .. 62
A.6.2. How to interpret the results... 62

B. MIT License.. 64

Bibliography.. 65

Affidavit ... 67

v

List of Tables
1-1. Connectors... 3
1-2. Occurrence indicators.. 3
1-3. Grouping.. 3
1-4. #PCDATA in content model .. 3
1-5. Keywords... 4
1-6. Type of the attribute value ... 4
1-7. Attribute defaults ... 4
2-1. Binding power and associativity of functional combinators ... 30
2-2. Binding power and associativity of monadic combinators.. 31

List of Figures
2-1. Module hierarchy of XmlTree... 12
2-2. General modules of package hdom ... 14
2-3. Modules of XmlState... 36
3-1. Modules of XmlParser... 40
4-1. Modules of package hvalidator ... 43

List of Examples
1-1. Sample XML document .. 5
1-2. Adding two integers .. 6
1-3. Prefix and infix notation .. 7
1-4. Type signature of an infix function.. 7
1-5. Define associativity and binding power... 7
1-6. A tuple for persons with ID and name .. 7
1-7. Get the head of a list.. 8
1-8. Definition of String.. 8
1-9. A type for binary trees... 8
1-10. Calculate the length of a list .. 9
1-11. Get all values from Bintree.. 9
1-12. Get all leafs from Bintree .. 9
1-13. Calculate the maximum of two numbers... 10
1-14. Apply a function to a list ... 10
1-15. Increase all numbers in a list ... 10
1-16. Modules ... 10
2-1. Input document.. 20
2-2. Input document as XmlTree .. 21
2-3. Internal representation of the document subset ... 22
2-4. Adding a new attribute to an XTag node. .. 35
2-5. Using the monad from XmlState... 37
4-1. Validating a document with errors... 45
4-2. Validation that notations are not declared for EMPTY elements.. 47
4-3. Validation that all attributes are unique ... 49
5-1. Document subset in HXML .. 55
5-2. DTD subset in HXML... 55
5-3. XML documents in HaXml... 55
5-4. Document subset in HaXml .. 56
5-5. The filter type of HaXml ... 56

vi

5-6. XML documents represented in the Haskell XML Toolbox ... 56
A-1. Executing RunTestCases .. 61

vii

Preface

The primary aim of this project is to gain some valuable experiences with the beautiful functional
programming Haskell. Parsing and processing lists are strengths of functional programming
languages. Both features are needed to handle XML. Combined with higher-order combinatorial
functions, that a functional programming language like Haskell allows, processing XML can be very
efficient and elegant.

Many of the techniques described in this master thesis are far more elegant, compact and powerful
than the ones found in familiar techniques like DOM [WWW05] or JDOM [WWW06].

Because there did not exist any validating XML parser written in Haskell, we thought it might be a
nice project implementing one and doing some further XML processing with Haskell. The Haskell
XML Toolbox uses a general tree data model for representing XML documents. This generic data
model makes it possible to implement an XML parser or XML processing applications with a
uniform design by using filter functions and combinators for processing XML.

We have chosen Haskell because it is a popular modern functional programming language, and we
were interested in learning more about the functional programming paradigm. There exist lots of free
implementations, online tutorials and some good Haskell books. The Haskell homepage Haskell.org
[WWW11] gives many further details.

Learning functional programming with Haskell by self-studies was very challenging. It required a
change in perspective of programming. But once the paradigms are understood, writing Haskell
programs is very straightforward and makes a lot of fun.

The first chapter gives an introduction to XML and Haskell. Readers who are familiar with these
techniques can skip it. The next three chapters describe the packages hdom, hparser and
hvalidator of the Haskell XML Toolbox. The last chapter compares the design used in the Haskell
XML Toolbox with HaXml and HXML.

i

Chapter 1. Basics

The following chapter gives a short introduction to XML and Haskell. Readers who are familiar with
these techniques can skip this chapter.

1.1. XML

1.1.1. Introduction

The Extensible Markup Language (XML) was standardized by the World Wide Web Consortium
(W3C) at the beginning of 1998. The current standard is described by the Extensible Markup
Language (XML) 1.0 (Second Edition) W3C Recommendation [WWW01]. XML forms a subset of
the Structured Generalized Markup Language (SGML), which is extremely complex. XML itself is a
simplified form of SGML. Both languages are meta languages for defining markup languages.

XML documents are structured hierarchical. The documents base on a simple data model: trees with
attributes as some extra structure.

A Document Type Definition (DTD) can be used to define formal requirements to the structure of an
XML document. It specifies a grammar for a class of documents. These are rules for the elements,
attributes and other data and how they are logically related in an XML document. Each document,
which corresponds to a DTD, is called an instance of this DTD.

Today XML is often used to define and exchange data structures application-independent. A central
role plays the validation of XML documents. Validation of XML documents describes the check if
the document corresponds to the constraints of a DTD. The application that reads an XML document
and performs validation is called XML processor. Not all XML processors are validating ones.
Applications that do not need these checks can use non-validating XML processors for performance
reasons.

1.1.2. Processing XML

Every application that processes information from XML documents needs an XML processor, which
reads an XML document and provides access to its content and structure to the processing
application. Two parse methods exist: event based and tree based parse method. They define
essential differences for the communication between the XML processor and applications.

1.1.2.1. Event based parse method

The document is processed sequentially; the most popular parse method is SAX - the Simple API for
XML [WWW10]. Each element is an event trigger, which can initiate an action on the processing
application. In terms of processing speed and memory consumption this is the most performant
technique for accessing an XML document in sequential order. The event based parsed method is

1

Chapter 1. Basics

also very efficient for processing only a few specific elements of a document. The main disadvantage
is that it is more difficult to generate output with a different order of elements than the input, because
some kind of memory is needed.

1.1.2.2. Tree based parse method

The document is transformed from a sequential into a hierarchical structure by the XML processor
(e.g. DOM/JDOM). This tree model of the document is stored in memory and can be accessed by the
processing application. The main advantage of this parse method is that it supports random access to
the document. Random access is needed for example for Extensible Stylesheet Language
Transformations (XSLT) [WWW07]. XSLT implements a tree-oriented transformation language for
transmuting XML documents.

The tree representation can be used for traversing the document several times or construct output in a
different order from the input. The main disadvantage of this method is that the tree model is only
accessible when parsing of the document is complete. For large documents this can be slow and
memory intensive.

1.1.3. Correctness of documents

1.1.3.1. Well-formed documents

There exist two classes of correctness for XML documents. The first class form the well-formed
documents. These documents meet the syntax rules of the XML 1.0 specification [WWW01]. If a
document does not meet these syntax rules, it is not an XML document and is rejected by any XML
processor.

Some XML syntax rules:

• Every document must have a single unique root element that encloses all other elements.

• All elements must be correctly nested.

• All elements must have corresponding start and end tags.

• Attribute values must be enclosed within single or double quotes.

1.1.3.2. Valid documents

The second class form the valid documents. These documents are well-formed and meet in addition
the constraints of a DTD (described in Section 1.1.4) or a Schema [WWW08]. This class of
correctness is required if XML documents must be exchanged between applications reliably. Only
validating XML processors perform these checks, non-validating XML processors ignore the DTD.

2

Chapter 1. Basics

1.1.4. Document Type Definition (DTD)

XML is a meta language for specifying markup languages, the DTD is a tool to create and describe
this language. A DTD defines the elements, attributes, entities and notations used in an XML
document. Further it defines a context free grammar that states which is the allowed content of an
element. The DTD can point to an external DTD subset containing declarations, it may contain the
declarations directly in an internal DTD subset, or even both. This section will describe the
definitions of elements and their attributes. They form the basic concepts of XML documents. Entity
declarations that are mainly used for replacing text and notation declarations that are used for
specifying the format of special contents are not explained. For a complete overview see [WWW04].

1.1.4.1. Element type declaration

A DTD declares all allowed elements in an XML document. Elements are defined by <!ELEMENT>
declarations. This declaration specifies the name of the element and its content model. Only one
declaration for each element is allowed, multiple declarations are forbidden. The order of the
declarations is irrelevant.

<!ELEMENT name content model>

• ELEMENT - Keyword

• name - Element name, respectively its tag names

• content model - Definition of the allowed types of child elements (text data, other elements)
and their order

For defining the content model of elements there exist some operators. These operators are described
shortly in the following.

Table 1-1. Connectors

, Sequence of elements, "then"

| Alternative of elements (exclusive), "xor"

Table 1-2. Occurrence indicators

(no indicator) Element must appear exactly one time

? Element is optional, 0 or 1

* Element is optional and repeatable, 0 or more

+ Element must appear at least one time, 1 or more

Table 1-3. Grouping

(Start of content model or group

) End of content model or group

3

Chapter 1. Basics

Table 1-4. #PCDATA in content model

(#PCDATA) Element has only text data or nothing as content

(#PCDATA | el1 | el2)* Mixed content. The element can contain text data and elements. #PCDATA
must be listed in the declaration at first. It cannot be defined that allowed
child elements have to appear in a certain order, or that they at least must
appear.

#PCDATA is the abbreviation for "parsed character data" and means that text data is inspected by the
XML parser for eventual markup. If for example the text data contains entity references, the entities
are expanded.

Table 1-5. Keywords

EMPTY Element has no content

ANY Element has any declared elements and text data as content, or is empty.

1.1.4.2. Attribute declarations

Attributes define additional name-value pairs for elements. The attributes are defined by
<!ATTLIST> declarations. It defines the attribute type and default values.

<!ATTLIST target_element attr_name attr_type default>

• ATTLIST - Keyword

• target_element - Element name

• attr_name - Attribute name

• attr_type - Type of the attribute value, or list of values

• default - Keyword or default value

Table 1-6. Type of the attribute value

CDATA Text data

ID Unique identifier, value of attribute must be unique within the XML
document

IDREF Reference to an ID, must match the value of some ID attribute

IDREFS One or more references to IDs, separated by white space

NMTOKEN Name token, attribute value must only consist of letters, digits and some
extra characters

NMTOKENS One or more name tokens, separated by white space

ENTITY Name of an unparsed entity, declared in the DTD

ENTITIES One or more names of unparsed entities declared in the DTD, separated by
white space

(a | b | c) Enumeration, list of possible attribute values

4

Chapter 1. Basics

Table 1-7. Attribute defaults

"value" Default value of the attribute. If the attribute is not specified, this value is
used by the XML processor

#REQUIRED Attribute must be specified

#IMPLIED Attribute is optional

#FIXED "value" Attribute has a fixed value. No other value is allowed.

1.1.5. Example

This simple example demonstrates an XML document with an internal DTD. The DTD defines the
elements a, b and c. The element a has an additional attribute att1. The small document enclosed
by the root element a is an instance of this DTD.

Example 1-1. Sample XML document

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE a [
<!ATTLIST a att1 CDATA #IMPLIED>
<!ELEMENT a (b, c?)>
<!ELEMENT b EMPTY>
<!ELEMENT c (#PCDATA)>
]>

<a att1="test">

<c>hello world</c>

1.2. Haskell

This introduction to Haskell can only cover a few aspects of Haskell. Its aim is to make the next
chapters more easily understandable for persons who are not familiar with Haskell, but with
programming languages. If you are new to Haskell, its homepage Haskell.org [WWW11] is a good
place to start for gaining information and lots of free compilers and libraries. The tutorial "A Gentle
Introduction to Haskell" [WWW14] gives a detailed overview about the language. A great learning
book, full of examples is "The Craft of Functional Programming" by Simon Thompson
[Thompson99]. For advanced people Paul Hudak’s "The Haskell School of Expression" [Hudak00]
gives a more complete overview about monads and higher-order functions by samples from
multimedia. The language itself is defined in the Haskell 98 Report [WWW15] and the Haskell 98
Library Report [WWW16].

5

Chapter 1. Basics

1.2.1. Introduction

Haskell is named after Haskell Brooks Curry [WWW12] who was one of the pioneers of the lambda
calculus. Haskell bases on the lambda calculus, a mathematical theory of functions, and not on the
Turing machine like imperative programming languages do. In functional programming the
programmer defines what has to be calculated and not how it is calculated. A functional program is a
single expression, which is executed by evaluating the expression.

Shortly described, Haskell is a strong typed, lazy, pure functional programming language.

Haskell has a static type system so that all type errors are detected at compile time. This makes
Haskell programs very type safe. Its type class system is complex but powerful.

Haskell’s evaluation model is called lazy or non-strict, because arguments of functions are only
evaluated if they are needed for computations. This leads to a demand-driven evaluation.
Expressions are evaluated just enough to get the result. Parts of them may not be evaluated at all. In
contrast to imperative languages, program order is not needed.

The language is called pure, because it has no imperative extensions and it eschews all side effects.
This leads to the fact that Haskell lacks any loop constructs, because mutable variables do not exist.
All iterations have to be expressed by recursions. The lack of side effects allows easy reasoning
about the programs.

The above-described qualities make Haskell a modern functional programming language with many
strengths over actual object oriented languages like Java or C++.

1.2.2. Functions

Functions are essential for structuring a program. The following example shows a function
declaration for adding two numbers.

Example 1-2. Adding two integers

add :: Int -> Int -> Int
add a b = a + b

The first line is the type signature, it declares the name and type of the function. The function add
takes two integers as input and returns an integer as a result. The type system of Haskell is so
powerful that the type signature can be avoided. However there exist a few exceptions and defining
the type signatures makes a program much more maintainable.

The second line gives the definition of the function as an equation. The part before the equal sign
names the arguments, the part after the equal sign defines the computation. Using pattern matching
(see Section 1.2.4) a function can be defined by a series of these equations.

6

Chapter 1. Basics

By surrounding the function name of a two-argument function in back-quotes, it can be written
between its arguments, called infix.

Example 1-3. Prefix and infix notation

add 1 2
1 ’add’ 2

Operators, such as ++ for concatenating two lists, are just infix functions. Instead of writing the
function in front of its arguments, it is written between them. Haskell allows the programmer to
define his own operators. For defining infix functions, the function name has to be enclosed in
parenthesis in the type signature.

Example 1-4. Type signature of an infix function

(++) :: [a] -> [a] -> [a]

It is also possible to define the associativity and binding power of the self-defined operators. The
following example defines ++ as a right-associative operator with a precedence level of 5.

Example 1-5. Define associativity and binding power

infixr 5 ++

1.2.3. Types

In general terms, a type is a collection of similar objects, such as numbers or characters. Haskell has
a very powerful and complex type system. The following sections can just give a small overview.
Type classes, abstract data types or infinite lists are not discussed.

1.2.3.1. Build-in types

Like many other programming languages Haskell has the basic build-in types: Char, Int, Bool, Float
and String, which is only a synonym for a list of Char.

Lists and tuples are often used data structures for compound data in Haskell and are therefore also
build-in values.

Lists combine values of the same type into a single object. The list [1,2,3] is a shorthand for
1:(2:(3:[])). The infix operator : adds its first argument to the front of its second argument, a list. The
empty list is expressed by []. The data type list is a polymorphic type, see Section 1.2.3.2 .

A tuple combines a predefined number of values of predefined, may be different, types into a single
object. Tuples are called records or structures in other programming languages. A person might be
represented by a personal id and a name. These two different types can be expressed by a tuple:

7

Chapter 1. Basics

Example 1-6. A tuple for persons with ID and name

(Int,String) => (42, "Schmidt")

1.2.3.2. Polymorphic types

Lists and tuples are the most common examples of generic polymorph data types. A list can contain
any type, the only constraint is that all types in one list are the same.

The Prelude, Haskell’s standard library, contains lots of polymorphic functions and operators for
processing lists and tuples. The head function for example is a list function that returns the head
element of any list.

Example 1-7. Get the head of a list

head :: [a] -> a

The function takes a list with elements of type a and returns one element of type a, the head. Haskell
supports type variables, like the a above. They are uncapitalized in contrast to specific types like
Char or Int and stand for any type.

1.2.3.3. Type synonyms

Type synonyms are names for commonly used types. They are created using a type declaration. A
synonym does not define a new type, it just gives a new name for an existing type. Because synonyms
are simply a shorthand, which can always be expanded out, type synonyms cannot be recursive.

As mentioned in the section about basic types, a String is a type synonym for a list of characters.

Example 1-8. Definition of String

type String = [Char]

Instead of writing [’H’,’e’,’l’,’l’,’o’] for a string, Haskell defines a shorthand syntax for strings:
"Hello".

1.2.3.4. Algebraic types

Algebraic types are used to define more complex types than lists or tuples, e.g. enumerated types or
trees. These types can be recursive. Their definition starts with the keyword data, followed by the
name of the type and the constructors.

The following example demonstrates a recursive data structure for a polymorphic binary tree, which
can store any data type in its leafs. The two kinds Leaf and Branch of the data type BinTree are
called constructors. They can be used in the pattern matching of function definitions, described in the
next section.

8

Chapter 1. Basics

Example 1-9. A type for binary trees

data BinTree a = Leaf a | Branch (BinTree a) (BinTree a)

1.2.4. Pattern Matching

Functions can get different types of input. A powerful way for describing different input types in
Haskell is using pattern matching. A function can be multiple defined, each definition having a
particular pattern for its input arguments. The first pattern that matches the argument is used for that
function call. An underscore is a wildcard and is used where something should match, but where the
matched value is not used.

Example 1-10. Calculate the length of a list

length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

The function length uses recursion for calculating the length of lists. It calls itself on the right-hand
of the second equation. There exist two definitions of the function: one for empty lists and one for
lists with content. The pattern [] matches the empty list. The pattern x:xs matches any list with at
least one element. The head element is described by the x, the tail of the list by xs. The x can be
replaced by the wildcard, because the head element has not to be accessed directly.

The generic type [a] in the function declaration of length expresses that length is a polymorph
function, which can be applied to a list containing elements of any type.

Constructors of algebraic types can also be used for pattern matching. The following function returns
a list of all values stored in a binary tree. The infix function ++ concatenates two lists.

Example 1-11. Get all values from Bintree

fringe :: Bintree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch t1 t2) = fringe t1 ++ fringe t2

To name a pattern for the use on the right-hand side of an equation, there exists the operator @. These
patterns are called as-patterns. The pattern in front of the @ always results in a successful match, but
the sub-pattern can fail. The following example shows a rewritten fringe function that returns not
only the values of the leafs but the leafs itself.

Example 1-12. Get all leafs from Bintree

fringe2 :: Bintree a -> [Bintree a]
fringe2 l@(Leaf _) = [l]
fringe2 (Branch t1 t2) = fringe t1 ++ fringe t2

9

Chapter 1. Basics

1.2.5. Guards

Guards (|) allow boolean tests of arguments passed to a function. The function definition which
conditional expression matches first is applied. The keyword otherwise matches always. The
function max uses guards for calculating the maximum of two numbers.

Example 1-13. Calculate the maximum of two numbers

max :: Int -> Int -> Int
max x y

| x <= y = y
| otherwise = x

1.2.6. Higher-order Functions

In Haskell functions are first-class citizens. This means that they are themselves simply values. They
can be stored in data types or passed as arguments to other functions.

Higher-order functions are functions that take functions as input, return functions as a result or do
both. This technique provides a very high abstraction, by embodying a pattern of computation into a
function. The following map function embodies transformations over lists.

Example 1-14. Apply a function to a list

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map is a polymorphic function that takes a function and a list as arguments. The passed function
takes any type a and returns any type b. By applying map to a list of a’s, it returns a new list of b’s.
The generic types a and b might be different, but do not have to be like the following example
demonstrates.

Example 1-15. Increase all numbers in a list

map (+1) [1,2,3] => [2,3,4]

The infix function + in the example for increasing all numbers in a list is partially applied. Partial
application can be done to any function taking two or more arguments. The operator + expects two
arguments, one argument is predefined as "1". In this case the function increases every second
argument by one.

1.2.7. Modules

Modules are the basis for structuring programs or building general libraries. A module has a name
and contains a collection of Haskell definitions. A module may import definitions from other
modules and export definitions for the use by other modules.

10

Chapter 1. Basics

Example 1-16. Modules

module Foo
(inc
, dec)

where import Bar

... definitions of inc and dec

The module Foo exports the functions inc and dec. It imports the module Bar so that Foo can use
Bar’s exported definitions. Haskell’s standard library, the Prelude, is implicitly imported.

11

Chapter 2. Package hdom

This chapter describes the package hdom, which defines a generic tree data type XmlTree for
representing whole XML documents in Haskell. The package provides many functions for
processing XML documents represented by this data model.

2.1. Modules

The core public module of the package hdom is the module XmlTree. It exports all elements from
the basic libraries XmlTreeAccess, XmlTreePredicates, XmlTreeTypes, NTree and
XmlKeywords.

The module XmlTreeTypes defines data types for representing any XML document in Haskell. The
generic tree data type XmlTree models XML documents, including all logical units of XML like the
DTD subset or document subset. This type is based on the general n-ary tree NTree defined in the
module NTree. The type NTree defines trees as a node that has a list of child nodes. Leafs are just
nodes with an empty child list. XML documents are composed of elements, comments, DTD
declarations, character references or processing instructions. XmlTree provides for each logical unit
an own node type.

The module NTree defines a general n-ary tree structure NTree as well as filter functions (see
Section 2.3) and combinators (see Section 2.4) for processing this data type. The filters and
combinators have been copied and modified from HaXml [WWW21]. In contrast to HaXml the
filters have been modified using a more generic approach. The filter functions of HaXml work only
for the document subset of XML documents. Because of the generic tree data model NTree these
functions can be used to process whole XML documents in the Haskell XML Toolbox.

The module XmlTreeAccess provides basic filter functions for constructing, editing or selecting
parts of the data type XmlTree. Furthermore it provides functions for processing the attribute list of
XmlTree nodes.

The module XmlTreePredicates provides basic predicate filter functions. The functions are
similar to predicate logic. If the condition is true, they return a list with a node, otherwise they return
an empty list.

The module XmlKeywords provides constants that are used for representing DTD keywords and
attributes in the XmlTree.

12

Chapter 2. Package hdom

Figure 2-1. Module hierarchy of XmlTree

XmlTree

XmlTreePredicates
XmlTreeAccess

XmlTreeTypes

NTree
 XmlKeywords

Besides the module XmlTree and its sub-modules there exist some other public modules for
processing the XmlTree data structure.

XmlTreeToString provides functions for transformation of an XmlTree back into a string. The
string shows an XML document in XML syntax.

EditFilters provides some filters for transforming an XmlTree:

• Remove text nodes which contain only white space from the tree.

• Remove comment nodes from the tree.

• Transform special characters like <, >, ", ’ and & of text nodes into character references.

• Manipulate text nodes with customized functions.

• Convert CDATA nodes to text nodes by escaping all special characters.

• Convert character references to normal text.

• Create a canonicalized representation of XML documents [WWW03].

FormatXmlTree creates a string with a tree representation of an XmlTree. This is useful to see how
the data type XmlTree represents an XML document.

XmlFilterCombinators provides special filter combinators for processing an XmlTree. These
filters can only operate on the data type XmlTree and not on the general n-ary tree data type NTree.

13

Chapter 2. Package hdom

Figure 2-2. General modules of package hdom

EditFilters

Util
 XmlTree
Unicode

FormatXmlTree
 XmlFilterCombinators

XmlTreeToString

2.2. Data structures

2.2.1. Core components

XML documents are structured hierarchically and can be represented as trees. Trees can be modeled
easily with lists, because trees can be seen as a generalization of lists: nested lists. As shown in the
first chapter, Haskell has some nifty facilities for representing and manipulating lists.

XML documents consist of many different logical units, which can be represented by different types.
Functional languages like Haskell are well-equipped to process typed tree-structured data by using
pattern matching and recursion.

Basically there exist two different approaches for representing XML documents in Haskell. One
approach is to use a generic tree structure by which all XML documents can be handled.

Another approach is to use problem specific types that are derived from a specific Document Type
Definition. Both approaches have several advantages and disadvantages. They are discussed in depth
in the paper "Haskell and XML: Generic Combinators or Type-Based Translation?" by Malcolm
Wallace and Colin Runciman [WWW22].

The Haskell XML Toolbox uses a generic data structure for representing whole XML documents. Its
data model is more general than the one used in HaXml. The differences are discussed in depth in
Section 5.2. A generic data model is the only practical approach for implementing a generic XML
parser and a framework for processing any XML documents.

14

Chapter 2. Package hdom

The data type that models a generic tree structure is the data type NTree, defined in the module
NTree. It defines an n-ary tree: a node with a list of children that are also nodes. If a node is a leaf it
has an empty child list. The data type NTrees is an abbreviation for the node list. Together both
types are mutually recursive and form a multi-branch tree structure.

data NTree node = NTree node (NTrees node)
deriving (Eq, Ord, Show, Read)

type NTrees node = [NTree node]

2.2.2. Data type XmlTree

Building on the very general tree data type NTree are defined the types XmlTree and XmlTrees
that are defined in the module XmlTreeTypes. They are used to specify a general recursive data
type for XML documents. The data, which can be stored in the nodes, must be of type XNode.

type XmlTree = NTree XNode

type XmlTrees = NTrees XNode

The algebraic data type XNode is used for representing all kinds of XML’s logical units. The type is
described in detail in the next section.

2.2.2.1. Data type XNode

Before introducing the data type XNode, some type synonyms have to be presented which are used in
the definitions of XNode. The type TagAttrl defines the attribute list of an element, it is a list of
name-value pairs.

type TagAttrl = [TagAttr]
type TagAttr = (AttrName, AttrValue)

Several type synonyms exist to make the definitions more understandable:

type TagName = String
type AttrName = String
type AttrValue = String

XML documents consist of several different logical units like elements, text data, comments, DTD
definitions or entity references. Each kind can be represented by an own type in Haskell so that
processing an XmlTree can be implemented very efficient by the use of pattern matching. The
algebraic data type XNode defines the basic nodes and leafs for all kinds of XML’s logical units.

Together with the algebraic type DTDElem, which defines constructors for the DTD declarations, this
data model allows a uniform processing of the whole XML document by filter functions, described
in Section 2.3.

15

Chapter 2. Package hdom

data XNode =
XText String

| XCharRef Int
| XEntityRef String
| XCmt String
| XCdata String
| XPi TagName TagAttrl
| XTag TagName TagAttrl
| XDTD DTDElem TagAttrl
| XError Int String
deriving (Eq, Ord, Show, Read)

Description of the constructors:

XText String

Ordinary text data (leaf)

Note that an XText node does not necessarily represent a maximal contiguous sequence of
characters. The parser may split text data up into multiple XText nodes. The parser produces
XText nodes from white space occurring before or after tags, too.

There exist special filter functions in the module EditFilters for summing up sequences of
XText nodes into one node and removing XText nodes from the tree, which contain white
space only.

XCharRef Int

Character reference (leaf)

XML syntax: &#nnn; (nnn is a hexadecimal or decimal representation of the characters code
point in ISO/IEC 10646)

XEntityRef String

Entity reference (leaf)

XML syntax: &...;

XCmt String

Comment (leaf)

XCdata String

CDATA section (leaf)

XPi TagName TagAttrl

Processing Instruction (leaf)

16

Chapter 2. Package hdom

TagName stores the name of the processing instruction. If name is xml, it has the attributes
"version", "encoding" and "standalone". Otherwise there is only the attribute "value" which
stores a list of the processing instruction attributes.

XTag TagName TagAttrl

Element (node or leaf)

Inner node if the element has content, respectively children. Leaf if the element is empty.
TagName stores the name of the element. The attribute list TagAttrl contains all attributes of
the element.

XDTD DTDElem TagAttrl

DTD element (node or leaf)

The algebraic data type DTDElem is used to specify the concrete kind of the element, e.g.
element declaration, attribute declaration or entity declaration. The attribute list TagAttrl
contains almost all information from the DTD declarations (see Section 2.2.2.2).

XError Int String

Error (node or leaf)

Not an XML component. Internal extension for representing errors with error level and error
message. The error level can be of type: warning, error or fatal error. The error node can have a
child list with the nodes where the error occurred.

2.2.2.2. Data type DTDElem

Because a DTD is quite complex, there exists an extra algebraic data type DTDElem for representing
DTD elements in the XmlTree. For each DTD declaration there exists an own type. The nodes store
almost all information from DTD declarations in their attribute list. The library XmlKeywords
provides constants for the names and values of these attributes. Variable contents like the definition
of the content model or the names in the value-list of enumerated attribute types are modeled using
the node’s child list in combination with helper nodes.

data DTDElem =
DOCTYPE

| ELEMENT
| CONTENT
| ATTLIST
| ENTITY
| NOTATION
| NAME
| PENTITY
| PEREF
| CONDSECT

17

Chapter 2. Package hdom

deriving (Eq, Ord, Show, Read)

Description of the constructors:

DOCTYPE

The root node of a DTD, has XDTD nodes as children.

Attributes:

• name - Name of the root element

• SYSTEM - Reference to external subset (optional)

• PUBLIC - Reference to external subset (optional)

ELEMENT

Element declaration. If the element is of type children or mixed, it has a list of XDTD CONTENT

nodes as children. These children describe the content model of the element.

Attributes:

• name - Element name

• type - EMPTY | ANY | #PCDATA | children | mixed

CONTENT

Not an XML component. Specifies the content model of an element if the element is of type
children or mixed. An XDTD CONTENT node has a list of children, which can be of type XDTD
CONTENT if there is some grouping in the content model, or of type XDTD NAME to specify the
name of a child element.

Attributes:

• kind - seq | choice

• modifier - "" | ? | * | +

ATTLIST

Attribute declaration. If the attribute declaration is of type NOTATION or ENUMERATION,
this node has a list of children of type XDTD NAME to specify the enumerated values.

Attributes:

• name - Element name

• value - Attribute name

18

Chapter 2. Package hdom

• kind - #REQUIRED | #IMPLIED | #DEFAULT | #FIXED

• type - CDATA | ID | IDREF | IDREFS | ENTITY | ENTITIES | NMTOKEN | NMTOKENS |
NOTATION | ENUMERATION

• default - Default value (optional)

ENTITY

General or unparsed entity declaration. If the entity is a general entity, it has a child list with
nodes of type XDTD XCharRef and XDTD XText that specify the replacement text.

Attributes:

• name - Entity name

• SYSTEM - Reference to external file (optional and only for external or unparsed entities)

• NDATA - reference to a notation (optional and only for unparsed entities)

NOTATION

Notation declaration.

Attributes:

• name - Notation name

• SYSTEM - Reference to external application

NAME

Not an XML component. Used by the attribute declaration XDTD ATTLIST to specify the list
of values for attributes of type NOTATION and ENUMERATION.

Used by the node XDTD CONTENT to specify element names in content models.

Attributes:

• name - Value of the name

The following node types are not accessible by any application. They are for internal use of the XML
parser and handled by it. However it is possible to turn of this processing of the parser, so they are
shortly described.

19

Chapter 2. Package hdom

PENTITY

Parameter entity declaration.

Attributes:

• name - Name of parameter entity

• value - Value of parameter entity

• SYSTEM - Reference to external file (optional)

• PUBLIC - Reference to external file (optional)

PEREF

Parameter entity reference.

Attributes:

• PERef - Name of referenced parameter entity

CONDSECT

Node for conditional sections. The child list contains the DTD declarations that are defined in
the conditional section.

Attributes:

• type - INCLUDE, IGNORE or parameter entity reference (%...;)

2.2.3. Example

The following example demonstrates how an XML document is transformed into the generic tree
structure XmlTree.

Example 2-1. Input document

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE a [
<!ATTLIST a att1 CDATA #IMPLIED>
<!ELEMENT a (b, c?)>
<!ELEMENT b EMPTY>
<!ELEMENT c (#PCDATA)>
]>

20

Chapter 2. Package hdom

<a att1="test">

<c>hello world</c>

The following graph shows the XmlTree representation of the document after parsing. The
predefined general entities amp, lt, gt, apos and quot are automatically added to the DTD by the
XML parser. A dummy node with the name "/" forms the root node of the tree so that the DTD, the
document subset, processing instructions and comments can be modeled by one tree.

White space before or after tags is represented by XText nodes. There exist filter functions in the
module EditFilters for removing XText nodes containing white space only from the tree if these
nodes are not necessary for further processing.

Example 2-2. Input document as XmlTree

---XTag "/" [("standalone","yes"),("version","1.0"),("source","example.xml"),
| ("encoding","UTF-8")]
|
+---XPi "xml" [("version","1.0"),("encoding","UTF-8"),("standalone","yes")]
|
+---XText "\n\n"
|
+---XDTD DOCTYPE [("name","a")]
| |
| +---XDTD ENTITY [("name","lt")]
| | |
| | +---XCharRef 38
| | |
| | +---XText "#60;"
| |
| +---XDTD ENTITY [("name","gt")]
| | |
| | +---XCharRef 62
. .
. . (Definitions of the other predefined entities amp, apos and quot)
. .
| +---XDTD ATTLIST [("name","a"),("value","att1"),("default","42"),
| | ("kind","#DEFAULT"),("type","CDATA")]
| |
| +---XDTD ELEMENT [("name","a"),("type","children")]
| | |
| | +---XDTD CONTENT [("modifier",""),("kind","seq")]
| | |
| | +---XDTD NAME [("name","b")]
| | |
| | +---XDTD CONTENT [("modifier","?"),("kind","seq")]
| | |
| | +---XDTD NAME [("name","c")]
| |
| +---XDTD ELEMENT [("name","b"),("type","EMPTY")]
| |
| +---XDTD ELEMENT [("name","c"),("type","#PCDATA")]
|
+---XText "\n\n"

21

Chapter 2. Package hdom

|
+---XTag "a" [("att1","test")]
| |
| +---XText "\n "
| |
| +---XTag "b" []
| |
| +---XText "\n "
| |
| +---XTag "c" []
| | |
| | +---XText "hello world"
| |
| +---XText "\n"
|
+---XText "\n"

The following listing shows the internal representation of the document subset. The root node with
the name "a" has a list of attributes and a list of children.

Example 2-3. Internal representation of the document subset

NTree (XTag "a" [("att1","test")]) [
NTree (XText "\n ") [],
NTree (XTag "b" []) [],
NTree (XText "\n ") [],
NTree (XTag "c" []) [

NTree (XText "hello world") []
],NTree (XText "\n") []

]

2.3. Filter functions

2.3.1. Introduction

Filters are the basic functions for processing the XmlTree representation of XML documents. A
filter takes a node or a list of nodes and returns some sequence of nodes. The result list might be
empty, might contain a single item, or it could contain several items.

The idea of filters was adopted from HaXml [WWW21], but has been modified. In HaXml filters
work only on the document subset part of XML documents. The Haskell XML Toolbox uses the
generic tree data type NTree for modeling XML documents. This generic data model makes it
possible to generalize HaXml’s filter idea so that filters can process the whole XML document,
including the DTD subset or document subset. This generalization allows implementing a very
uniform design of XML processing applications by using filters. In fact the whole XML Parser of the
Haskell XML Toolbox works internally with filters. The differences between HaXml’s approach and
the approach of the Haskell XML Toolbox are described in depth in Section 5.2.

22

Chapter 2. Package hdom

TFilter and TSFilter are filters for the general n-ary tree defined by the data type NTree. The
function TFilter takes a node and returns a list of nodes. TSFilter takes a list of nodes and
returns a list, too.

type TFilter node = NTree node -> NTrees node
type TSFilter node = NTrees node -> NTrees node

XmlFilter and XmlSFilter base on these types. They only work on XNode data types.

type XmlFilter = TFilter XNode
type XmlSFilter = TSFilter XNode

The filters can be used to select parts of a document, to construct new document parts or to change
document parts. They can even be used for checking validity constraints as described in Chapter 4.
In this case a filter returns an empty list if the document is valid or a list with errors.

Filters can sometimes be thought of as predicates. In this case they are used for deciding whether or
not to keep its input. The functional approach differs from predicate logic. If the predicate is false, an
empty list is returned. If the predicate is true, a list with the passed element is returned.

All filters share the same basic type so that combining them with the help of combinators, described
in Section 2.4, is possible. With this approach defining complex filters on the basis of easier ones is
possible.

The following list describes the basic filter functions for processing XML documents represented as
an XmlTree. Some functions are higher-order functions and return a filter function as a result. The
arguments of these functions are used to construct parameterized filters. This is useful for example
for constructing filters that should be used to return nodes with a certain property.

2.3.2. Filters from module NTree

Simple filters

none :: TFilter node

Takes any node, returns always an empty list. Algebraically zero.

this :: TFilter node

Takes any node, returns always a list of the passed node. Algebraically unit.

Selection filters

isOfNode :: (node -> Bool) -> TFilter node

Takes a predicate functions and returns a filter. The filter returns a list with passed node if the
predicate function is true for the node, otherwise it returns an empty list.

isNode :: Eq node => node -> TFilter node

The same as isOfNode. Instead of a predicate function a reference node is taken.

23

Chapter 2. Package hdom

Filters for modifying nodes

mkNTree :: NTree node -> TFilter node

Takes a node and returns a filter. The filter returns always a list with this node and ignores the
passed one.

replaceNode :: node -> TFilter node

Takes a node and returns a filter. The filter replaces a passed node with the initialized one. The
children of the passed node are added to the new node.

replaceChildren :: NTrees node -> TFilter node

Like replaceNode except that in this case the children are replaced by an initialized list. The
passed node itself is not modified.

modifyNode :: (node -> Maybe node) -> TFilter node

Takes a function for modifying nodes and returns a filter. The function (node -> Maybe

node) is applied to the passed node, the children are not modified.

modifyNode0 :: (node -> node) -> TFilter node

Like modifyNode0 except that the type of the modification function (node -> node) is
different.

modifyChildren :: TSFilter node -> TFilter node

Takes a filter that processes lists of nodes and returns a new filter. The new filter applies the
filter TSFilter node to the child list of a passed node. The node itself is not modified.

2.3.3. Filters from module XmlTreeAccess

Predicate filters

isTag :: TagName -> XmlFilter

Takes a TagName and returns a filter. The filter returns a list with the passed node if its name
equals TagName, otherwise an empty list is returned.

isOfTag :: (TagName -> Bool) -> XmlFilter

Takes a predicate function (TagName -> Bool) and returns a filter. The filter applies the
predicate function to the name of a passed node. If the predicate function is true, the filter
returns a list with the node. Otherwise an empty list is returned.

attrHasValue :: AttrName -> (AttrValue -> Bool) -> XmlFilter

Constructs a predicate filter for attributes which value meets a predicate function. The
constructed filter returns a list with the passed node if the node has an attribute with name
AttrName and its value matches the predicate function (AttrValue -> Bool). Otherwise an
empty list is returned.

Lots of further predicate functions are provided by the module XmlTreePredicates: isXCdata,
isXCharRef, isXCmt, isXDTD, isXEntityRef, isXError, isXNoError, isXPi, isXTag,
isXText, etc. These filters are used for identifying special types of nodes.

24

Chapter 2. Package hdom

Construction filters

mkXTag :: TagName -> TagAttrl -> XmlTrees -> XmlFilter

The created filter constructs an XTag node with the name TagName, an attribute list TagAttrl
and a list of children. The passed node is ignored by the filter.

mkXText :: String -> XmlFilter

The created filter constructs an XText node with text data. The passed node is ignored by the
filter. There exists a shortcut function txt that does the same.

mkXCharRef :: Int -> XmlFilter

The created filter constructs an XCharRef node with a reference number to a character. The
passed node is ignored by the filter.

mkXEntityRef :: String -> XmlFilter

The created filter constructs an XEntityRef node with an entity reference. The passed node is
ignored by the filter.

mkXCmt :: String -> XmlFilter

The created filter constructs an XCmt node with text data. The passed node is ignored by the
filter. There exists a shortcut function cmt that does the same.

mkXDTD :: DTDElem -> TagAttrl -> XmlTrees -> XmlFilter

The created filter constructs an XDTD node. The type of the node is specified by the algebraic
data type DTDElem. The node has attributes and a list of children. The passed node is ignored
by the filter.

mkXPi :: String -> TagAttrl -> XmlFilter

The created filter constructs an XPi node with a name and attributes. The passed node is
ignored by the filter.

mkXCdata :: String -> XmlFilter

The created filter constructs an XCdata node with text data. The passed node is ignored by the
filter.

mkXError :: Int -> String -> XmlFilter

The created filter constructs an XError node with an error level and an error message. The
passed node is stored in the child list of this error node, so that the location where the error
occurred can be preserved. The shortcut functions warn, err and fatal of type String ->

XmlFilter can be used to create specific error nodes.

mkXElem :: TagName -> TagAttrl -> [XmlFilter] -> XmlFilter

The created filter constructs an XTag node with the name TagName and the attribute list
TagAttrl. Its child list is constructed by applying the filter list [XmlFilter] to the passed
node. There exists a shortcut function tag that does the same.

mkXSElem :: TagName -> [XmlFilter] -> XmlFilter

The created filter constructs a simple XTag node. It works like mkXElem except that no
attribute list is created. There exists a shortcut function stag that does the same.

25

Chapter 2. Package hdom

mkXEElem :: TagName -> XmlFilter

The created filter constructs an empty XTag node. It works like mkXSElem except that no child
list is created. There exists a shortcut function etag that does the same.

Selection filters

getXTagName :: XmlFilter

If the passed node is of type XTag, a list with an XText node is returned. This node contains
the name of the element. Otherwise an empty list is returned.

getXTagAttr :: AttrName -> XmlFilter

If the passed node is of type XTag and there exists an attribute with the name AttrName, a list
with an XText node is returned. This node contains the value of the attribute. Otherwise an
empty list is returned.

getXDTDAttr :: AttrName -> XmlFilter

The same as getXTagAttr except that it works on XDTD nodes.

getXText :: XmlFilter

If the passed node is of type XText, a list with an XText node is returned. This node contains
text data. Otherwise an empty list is returned.

getXCmt :: XmlFilter

If the passed node is of type XCmt, a list with an XText node is returned. This node contains
the text data of the comment. Otherwise an empty list is returned.

getXPiName :: XmlFilter

If the passed node is of type XPi, a list with an XText node is returned. This node contains the
name of the processing instruction. Otherwise an empty list is returned.

getXCdata :: XmlFilter

If the passed node is of type XCdata, a list with an XText node is returned. This node contains
the text data of the element. Otherwise an empty list is returned.

getXError :: XmlFilter

If the passed node is of type XError, a list with an XText node is returned. This node contains
the error message. Otherwise an empty list is returned.

Substitution filters

replaceTagName :: TagName -> XmlFilter

Constructed filter replaces the name of an XTag or XPi node by the TagName and returns a list
with the modified node.

replaceAttrl :: TagAttrl -> XmlFilter

Constructed filter replaces the attribute list of an XTag, XDTD or XPi node by the TagAttrl
and returns a list with the modified node.

26

Chapter 2. Package hdom

modifyTagName :: (TagName -> TagName) -> XmlFilter

Constructed filter modifies the name of an XTag or XPi node by applying the function
(TagName -> TagName) to the name. The filter returns a list with the modified node.

modifyAttrl :: (TagAttrl -> TagAttrl) -> XmlFilter

Constructed filter modifies the attribute list of an XTag, XDTD or XPi node by applying the
function (TagAttrl -> TagAttrl) to the attribute list. The filter returns a list with the
modified node.

modifyAttr :: AttrName -> AttrValue -> XmlFilter

Constructed filter changes the attribute value of the attribute which name equals AttrName to
AttrValue and returns a list with the modified node.

2.4. Filter combinators

2.4.1. Introduction

Functional programming languages like Haskell allow the use of higher-order functions, which take
some functions as input, return a function as a result, or both. Filter combinators are higher-order
functions, or operators, for combining several filters (see Section 2.3). By combining simple filters,
more complex functions can be created. Because all filters share the same type, it is possible that any
filter can be composed with any other. All filters can be mixed and matched freely, because all
functions in Haskell are side-effect free.

The idea of filter combinators was adapted and extended from HaXml [WWW21]. In their paper
"Haskell and XML: Generic Combinators or Type-Based Translation?" [WWW22] Malcom Wallace
and Colin Runciman describe various algebraic laws for their combinators.

The use of combinators makes it possible to hide details of programming over data structures. All
details of data structure manipulation are hidden in combinator functions. In effect, the combinators
define problem specific control structures. With this approach it is possible to reach a form of
expression that is natural for the problem itself.

Conceptually, combinators are much like Unix pipes in that they allow building up more complex
computational sequences by flexibly arranging highly specialized tools [WWW24]. The equivalent
to Unix pipes it the "Irish composition" combinator, represented by the infix operator "o". This
combinator applies one filter to the results of another one. This is similar to a pipe, which passes the
output of one program as the input to another one.

The combinator library provides all functions that are necessary for traversing and processing XML
documents represented as an XmlTree. Haskell allows the definition of own infix operator symbols.
Some combinators are defined as infix operators where it seemed more natural.

27

Chapter 2. Package hdom

2.4.2. List of combinators

Basic filter combinators

o :: (a -> [b]) -> (c -> [a]) -> c -> [b]

Irish composition. Sequential composition of two filters. The left filter is applied to the result of
the right filter. (conjunction)

(+++) :: (a -> [b]) -> (a -> [b]) -> (a -> [b])

Binary parallel composition, the function unifies the results of two filters sequential. Each filter
uses a copy of state. (union)

cat :: [a -> [b]] -> (a -> [b])

Concatenates the results of all filters in a list, a list version of union +++. The combinator sticks
lots of filters together.

($$) :: (a -> [b]) -> [a] -> [b]

Applies a filter to a list.

processChildren :: TFilter node -> TFilter node

Applies a filter to the child list of a node.

Choice combinators

orElse :: (a -> [b]) -> (a -> [b]) -> (a -> [b])

Directional choice. Second filter is only applied if the first one produces an empty list.

(?>) :: (a -> [b]) -> ThenElse (a -> [b]) -> (a -> [b])

In combination with the type ThenElse a = a :> a this combinator models an expression
that resembles the conditional expression "p ? f : g" of C: "p ?> f :> g". If the predicate
filter p is true, the filter f is applied otherwise g is applied.

when :: TFilter node -> TFilter node -> TFilter nod

First filter is only applied to the passed node, if the second filter produces a list with contents,
otherwise a list with the passed node is returned. The second filter is typically a predicate filter.

Definition: f ‘when‘ g = g ?> f :> this

whenNot :: TFilter node -> TFilter node -> TFilter node

First filter is only applied to the passed node, if the second filter produces an empty list,
otherwise a list of the passed node is returned. The second filter is typically a predicate filter.

Definition: f ‘whenNot‘ g = g ?> this :> f

28

Chapter 2. Package hdom

guards :: TFilter node -> TFilter node -> TFilter node

First filter is only applied to the passed node, if the second filter produces a list with contents,
otherwise an empty list is returned. The second filter is typically a predicate filter.

Definition: g ‘guards‘ f = g ?> f :> none

containing :: (a -> [b]) -> (b -> [c]) -> a -> [b]

Pruning: Keep only those nodes for which the second filter produces a list with contents and
apply the first filter to these nodes.

Definition: f ‘containing‘ g = filter (not . null . g) . f

notContaining :: (a -> [b]) -> (b -> [c]) -> a -> [b]

Pruning: Keep only those nodes for which the second filter produces an empty list and apply
the first filter to these nodes.

Definition: f ‘notContaining‘ g = filter (null . g) . f

(/>) :: TFilter node -> TFilter node -> TFilter node

Interior search, pronounced "slash". First filter is applied to a node, the children of the result are
taken and the second filter is applied to them, these children are returned. (meaning g inside f)

Definition: f /> g = g ‘o‘ getChildren ‘o‘ f

(</) :: TFilter node -> TFilter node -> TFilter node

Exterior search, pronounced "outside". First filter is applied to a node, the second to its
children. If both filters return a result, the node is returned. (meaning f containing g)

Definition: f </ g = f ‘containing‘ (g ‘o‘ getChildren)

Recursive search combinators

deep :: TFilter node -> TFilter node

Filter is applied to each node of the tree. If the filter returns a result, processing is stopped. If
not, the filter is applied to the next node of the tree. (top down traversal)

deepest :: TFilter node -> TFilter node

See deep, but bottom up traversal.

multi :: TFilter node -> TFilter node

Returns all successful applications of the filter to the whole tree.

29

Chapter 2. Package hdom

Recursive transformation combinators

applyBottomUp :: TFilter node -> TFilter node

Constructs a new tree by applying the passed filter to each node of the tree. The tree is
traversed bottom-up.

applyTopDown :: TFilter node -> TFilter node

Constructs a new tree by applying the passed filter to each node of the tree. The tree is
traversed top-down.

applyBottomUpIfNot :: TFilter node -> TFilter node -> TFilter node

Constructs a new tree with a guarded top down transformation. The first filter is only applied to
those nodes for which the second filter produces a result.

Monadic composition

liftM :: Monad m => (a -> [b]) -> a -> m [b]

Lift a normal filter to a monadic filter so that it can be used in monads.

(.<) :: Monad m => (b -> m [c]) -> (a -> m[b]) -> (a -> m[c])

Monadic Irish composition. Sequential composition of two filters. The first filter is applied to
the result of the second filter (conjunction). Monadic version of the basic filter o.

($$<) :: Monad m => (a -> m [b]) -> [a] -> m [b]

Apply a monadic filter to a list. Monadic version of the basic filter combinator cat.

Special Filter combinators for XmlTree

whenOk :: XmlFilter -> XmlFilter ->XmlFilter

Applies the first filter to a node and checks the result for errors. In case of an error it stops
processing and returns the list with the XError node. Otherwise processing is continued and
the second filter is applied to the result.

whenOkM :: Monad m => (a -> XmlTrees) -> (XmlTrees -> m XmlTrees) -> a ->

m XmlTrees

Monadic version of whenOk.

2.4.3. Binding power and associativity

Some combinators like the basic filter combinators and choice combinators can be expressed more
naturally by operators. In Haskell completely new operators can be invented by using infix versions
of functions and defining precedences and associativities for them.

The combinator operators are listed in following tables in decreasing order of their binding power.
Combinators defined as prefix functions have to be written in back-quotes to be used as operators.

30

Chapter 2. Package hdom

Table 2-1. Binding power and associativity of functional combinators

Precedence level Operator Associativity

6 (high) ‘containing‘,
‘notContaining‘

left

5 ‘o‘, +++ right

5 />, </, ‘orElse‘ left

4 ‘when‘, ‘whenNot‘,
‘guards‘, ‘whenOk‘

right

3 ?>, :> right

0 (low) $$ right

Table 2-2. Binding power and associativity of monadic combinators

Precedence level Operator Associativity

5 (high) .< right

4 ‘whenOkM‘ right

0 (low) $$< right

2.5. Examples for filters and filter combinators

After discussing filters and filter combinators in depth, this section shows the use of these functions
in real life examples. Because the filters work on the generic tree data type XmlTree, which
represents whole XML documents, these functions form the basic uniform design of XML
processing applications. The whole XML Parser of the Haskell XML Toolbox works internally with
filters.

2.5.1. Removing comments

This example describes in depth the use of filters and combinators for removing comments from an
XmlTree. It illustrates, how a complex filter can be constructed by combining very simple ones.

Removing comments from an XmlTree is done by transforming the tree with a special filter. This
filter returns an empty list for comment nodes, all other nodes are simply returned. The result is a
new tree without comment nodes.

To implement this filter, a predicate function is needed first, which detects comment nodes. Building
on this filter a more complex one will be constructed that returns an empty list for comment nodes,
but returns all other nodes. The final filter will apply this filter to the whole tree and create a new tree
from its results.

The function isXCmt is a predicate filter that detects comment nodes. It takes a node and checks if
the node is of type XCmt. If the node is a comment, a list with this node is returned, otherwise the

31

Chapter 2. Package hdom

result is an empty list.

isXCmt :: XmlFilter
isXCmt = isOfNode isXCmtNode

The predicate filter isXCmt itself bases on the basic selection filter isOfNode, which is exported by
the module XmlTree, and the predicate function isXCmtNode. The selection filter isOfNode takes
the predicate function as a parameter and returns a list with the passed node if the predicate function
returns true for this node. Otherwise an empty list is returned. The predicate function isXCmtNode
uses pattern matching to figure out if a node is of type XCmt.

isOfNode :: (node -> Bool) -> TFilter node
isOfNode p t@(NTree n _)

| p n = [t]
| otherwise = []

isXCmtNode :: XNode -> Bool
isXCmtNode (XCmt _) = True
isXCmtNode _ = False

The filter removeComment takes a node and returns an empty list if the node is a comment,
otherwise a list with the passed node is returned. The filter removeComment combines the simple
filter none and the above described filter isXCmt with the combinator when. If the predicate filter
isXCmt is true, none returns an empty list. Otherwise a list with the node is returned.

removeComment :: XmlFilter
removeComment

= none ‘when‘ isXCmt

The main filter removeAllComment is a filter for removing all comments from an XmlTree. It uses
the recursive transformation filter applyBottomUp, which applies the filter removeComment to the
whole tree. The result is a new tree where all comments have been removed.

removeAllComment :: XmlFilter
removeAllComment

= applyBottomUp removeComment

This example shows very clearly how complex filters can be constructed out of simple ones. The
functions isOfNode, none, when and applyBottomUp are already exported by the module
XmlTree. They define own control structures and hide processing of the XmlTree from the
programmer. The programmer does not have to worry about how to apply a filter to the whole tree
and how to transform it. The use of predefined combinators and filters makes it possible to program
on a very high abstraction level.

2.5.2. Merging internal and external DTD subset

After discussing the simple example for removing comments, this example will show a much more
complex use of filters. Having defined combinators and basic filters already, it shows how they can
usefully be combined into a complex function for merging the internal and external DTD subset. The

32

Chapter 2. Package hdom

XML parser of the Haskell XML Toolbox uses this function internally. The filter is part of the
module DTDProcessing.

A validating XML parser must merge the internal and external DTD subset. The document type
declaration can point to an external subset containing declarations, it can contain the declarations
directly in an internal subset, or can do both. If both the external and internal subsets are used, the
internal subset must occur before the external subset. This has the effect that entity and attribute-list
declarations in the internal subset take precedence over those in the external subset [WWW01].

The function mergeDTDs takes two lists with the declarations of the internal and external subset as
input and returns both subsets merged. Because the internal subset dominates over the external one,
its declarations can be prepended before the filtered result list of the external subset. The operator ++
is a standard Haskell function for concatenating two lists. The expression mergeDTDentry dtdInt

creates a complex filter function that filters declarations from the external subset, which have been
already declared in the internal subset. This complex filter is applied by the combinator $$ to the
whole declaration list of the external DTD subset.

mergeDTDs :: XmlTrees -> XmlTrees -> XmlTrees
mergeDTDs dtdInt dtdExt

= dtdInt ++ (mergeDTDentry dtdInt $$ dtdExt)

The complex filter mergeDTDentry is initialized with the internal subset. By applying this filter to
each node of the external subset, it filters all entries that are already declared in the internal subset. It
uses the same semantic like the example for removing comments. If a declaration occurs in both
subsets, the filter returns an empty list, otherwise it returns a list with the element from the external
subset. This behavior is defined by the expression: none ‘when‘ found.

Internally the filter mergeDTDentry bases on the filter filterDTDNode, which returns a node that
occurs in both subsets. This filter is initialized with one node from the internal subset and checks if a
node from the external subset equals this node. Because there usually exists more than one
declaration in the internal subset, a list of this filter function is constructed, by applying
filterDTDNode with the list transformation function map to all nodes of the internal subset. The
result is a list of filter functions. This list of filters is later applied to a node of the external subset by
the combinator cat.

mergeDTDentry :: XmlTrees -> XmlFilter
mergeDTDentry dtd

= none ‘when‘ found
where
filterList = map filterDTDNode dtd -- construct the list of filters
found = cat filterList -- concatenate the filters (set union)

The function filterDTDNode constructs a filter which returns a list with a node that occurs in both
subsets. The filter is initialized with a node from the internal subset.

filterDTDNode :: XmlTree -> XmlFilter

If the nodes from the internal and external subsets are both of type ELEMENT, NOTATION or ENTITY,
the filter checks if the values of their attributes "name" are equal. If this is the case, a list with the
node is returned, otherwise an empty list is returned.

33

Chapter 2. Package hdom

filterDTDNode (NTree (XDTD dtdElem al) _)
| dtdElem ‘elem‘ [ELEMENT, NOTATION, ENTITY]

= filterElement
where
filterElement n@(NTree (XDTD dtdElem’ al’) _cl’)

| dtdElem == dtdElem’ &&
getAttrValue a_name al’ == getAttrValue a_name al
= [n]

| otherwise = []
filterElement _ = []

If the nodes from the internal and external subset are of type ATTLIST, the filter has to check if the
values of the attributes for the element name and attribute name are equal. If this is the case, the
declarations are equal and a list with this node is returned, otherwise an empty list is returned.

filterDTDNode (NTree (XDTD ATTLIST al) _)
= filterAttlist
where
filterAttlist n@(NTree (XDTD ATTLIST al’) _cl’)

| getAttrValue a_name al’ == getAttrValue a_name al &&
getAttrValue a_value al’ == getAttrValue a_value al

= [n]
filterAttlist _ = []

For all other types a filter is constructed that returns always an empty list.

filterDTDNode _ = none

This example might be a little bit confusing for people being not familiar with Haskell, but it
demonstrates how even very complex tasks like merging the internal and external DTD subset can be
implemented with filter functions and combinators. In this case a list of parameterized filter
functions is constructed at runtime, which is applied to each node of the external DTD subset.

2.6. Access functions

Besides filters and combinators there exist some access functions for processing the attribute list
TagAttrl of nodes.

Functions for processing the attribute list

getAttrValue :: Eq a => a -> [(a,b)] -> Maybe b

Looks up the value for a certain attribute. If the attribute does not exist, the data type Nothing
is returned.

getAttrValue1 :: Eq a => a -> [(a, String)] -> String

Looks up the value for a certain attribute. If the attribute does not exist, an empty string is
returned.

34

Chapter 2. Package hdom

hasAttrValue :: Eq a => a -> [(a,b)] -> Bool

Returns true if there is an attribute with the searched name in the attribute list.

addAttrValue :: Eq a => a -> b -> [(a,b)] -> [(a,b)]

Adds an attribute, the name and value, to the list.

addAttrValues :: Eq a => [(a,b)] -> [(a,b)] -> [(a,b)]

Adds a list of name-value pairs to the attribute list.

changeAttrValue :: Eq a => a -> b -> [(a,b)] -> [(a,b)]

Changes the value of a certain attribute.

delAttrValue :: Eq a => a -> [(a,b)] -> [(a,b)]

Deletes an attribute from the list.

delAttrValues :: Eq a => [a] -> [(a,b)] -> [(a,b)]

Deletes a list of attributes from the attribute list.

The following example shows the use of access functions for adding a new attribute with the name
"att2" and the value "val2" to the attribute list of an XTag node. The type of the node is detected by
pattern-matching. If the node is of another type, it is simply returned.

Example 2-4. Adding a new attribute to an XTag node.

addAttribute :: XmlFilter
addAttribute n@(NTree (XTag name al) cs)

= replaceAttrl newAttList n
where
newAttList = addAttrValue "att2" "val2" al

addAttribute n = [n]

2.7. State-I/O monad from module XmlState

The module XmlState provides a monad for an internal state and I/O commands. The concept of a
monad comes from category theory. Monads are used for programming in a functional language
using an imperative style. A monad can encapsulate computations such as I/O, manipulation of state
or exceptions. For further information about monads, the section "Using Monads" of the Haskell
Bookshelf [WWW17] is a good starting place.

XmlState is used for various parts of the XML parser, e.g. when building the parse tree or
substituting entities. The internal state of the monad from XmlState consists of two parts, the user
state and the system state. The user state is a type parameter, the system state is a list of name-value
pairs. If the user state is not needed, the type parameter can be instantiated with ().

35

Chapter 2. Package hdom

The monad provides trace functions combined with trace levels to output marked computation steps.
Error reporting functions are also located in this module. The error messages are printed to stderr
and the maximum error level is stored in the system state.

Furthermore there are types for XmlFilter functions working on this monad, functions for
manipulating the state components and for lifting I/O commands and XmlFilters to monad filters.

Figure 2-3. Modules of XmlState

MonadStateIO
 XmlTree

XmlState

The internal state consists of a system and a user state.

data XmlState state = XmlState { sysState :: SysState
, userState :: state
}

The system state consists of a list of name-value pairs of type String.

type SysState = TagAttrl

The monad type for commands. It is an instance of StateIO from the general module
MonadStateIO.

type XState state res = MonadStateIO.StateIO (XmlState state) res

The XmlFilter type for filters working on a state.

type XmlStateFilter state = XmlTree -> XState state XmlTrees

Functions for executing XState commands

run0 :: XmlState state -> XState state res -> IO (res, XmlState state)

Executes an XState command with an initial state.

run :: state -> XState state res -> IO res

Executes an XState command with an initial user state.

36

Chapter 2. Package hdom

run’ :: XState () res -> IO res

Executes an XState command in the I/O monad.

The following example shows the use of the State-I/O monad. All computations of processXmlN
take place in the State-I/O monad. The functions getXmlContents, parseXmlDoc and
putXmlTree are XmlStateFilters. The first two filters do some computations where errors might
occur. These XmlStateFilters can output the errors and set an error level in the State-I/O monad.
The value of the error level is tested before the constructed parse tree is returned. The
XmlStateFilters putXmlTree just outputs the constructed parse tree.

Example 2-5. Using the monad from XmlState

processXmlN :: XmlTree -> IO [XmlTree]
processXmlN t0

= run’ $ do
setSysState (selXTagAttrl . getNode $ t0)
setTraceLevel 0
t1 <- getXmlContents $ t0
t2 <- parseXmlDoc $$< t1
putXmlTree t2
el <- getErrorLevel
return (if el == 0

then t2
else [])

The functions setSysState, setTraceLevel and getErrorLevel are functions for accessing
and manipulating the state of the monad. The monad comes with lots of more access functions.

37

Chapter 3. Package hparser

The following chapter describes the package hparser. It contains all modules for parsing XML files
and checking the well-formedness constraints of XML. Validation, normalizing attribute values and
adding default values is done by the separate package hvalidator.

The parser works internally with filters for reading XML data and processing the constructed
XmlTree. The whole parser works with filters of type XmlStateFilter from the module
XmlState so that trace-output of the computations can be generated, errors can be reported and
some state information can be saved where it is necessary.

3.1. Overview

The package hparser provides five public modules for implementing an XML parser, which builds
the generic tree data structure XmlTree from XML documents.

Modules

HdomParser

Basic parser for building the generic tree data structure XmlTree. Bases on XmlParser,
XmlInput and DTDProcessing.

XmlParser

Parses XML files. Bases on the free monadic parser combinator library Parsec [WWW29].

XmlInput

Reads XML files, handles different character encodings.

DTDProcessing

Processes the DTD. Substitution of general and parameter entities, merging of the internal and
external DTD subset.

XmlOutput

Prints the parsed data by using the XmlStateFilter defined in module XmlState.

3.2. Module HdomParser

The module HdomParser provides functions for parsing XML files and building the generic tree
data structure XmlTree from these documents. The whole parsing process takes place in the
State-I/O monad of the module XmlState, so that well-formedness errors can be reported and
different computations can be traced by outputting their results.

38

Chapter 3. Package hparser

Parse functions

parseDoc :: String -> IO [XmlTree]

Parses the file specified by the first parameter.

parseXmlFile :: IO [XmlTree]

Parses an XML file specified by a command line argument:

• --source "source file" - XML file to parse

• --encoding "encoding" - Encoding scheme used in the file (optional)

The following example shows how an XML parser is constructed in the module HdomParser. The
whole parsing process takes place in the State-I/O monad defined in the module XmlState. All
computations are of type XmlStateFilter.

processXmlN :: Int -> XmlTree -> IO [XmlTree]
processXmlN n t0

= run’ $ do
setSysState (selXTagAttrl . getNode $ t0)
setTraceLevel n
t1 <- getXmlContents $ t0
t2 <- parseXmlDoc $$< t1
t3 <- liftM transfAllCharRef $$< t2
t4 <- processDTD $$< t3
t5 <- processGeneralEntities $$< t4
el <- getErrorLevel
return (if el == 0

then t5
else [])

Actions during parsing

getXmlContents :: XmlStateFilter a

Returns a filter for reading the XML file. The filename is retrieved from the attribute with the
name "source" which must be part of the initial node t0.

parseXmlDoc :: XmlStateFilter a

Parses the XML file and builds the XmlTree.

transfAllCharRef :: XmlFilter

The XmlFilter transfAllCharRef has to be lifted to an XmlStateFilter. The filter
substitutes character references by their characters.

processDTD :: XmlStateFilter a

Substitutes parameter entities, adds include sections and removes exclude sections of DTDs,
merges internal and external DTD subsets.

processGeneralEntities :: XmlStateFilter a

Substitutes general entities.

39

Chapter 3. Package hparser

getErrorLevel :: XState state Int

If an error occurred during applying the XmlStateFilters, processXmlN returns an empty
list, otherwise it returns the constructed XmlTree.

3.3. Module XmlParser

The module XmlParser provides the parse functions for parsing XML files and building an
XmlTree. The parser bases on Parsec [WWW29], a free monadic parser combinator library for
Haskell and does not need any look-ahead. The lexer and the parser are not separated. A feature of
this parser is that nearly all parse functions can be implemented as it is defined by the productions in
the XML 1.0 specification [WWW01].

Like filters are composed with filter combinators in the Haskell XML Toolbox, parsing is usually
done with parser combinators in Haskell. Simple parser functions are combined with these
higher-order functions to complex ones. The parser combinators are control structures that represent
the operators used it the productions of syntax definitions.

An XML parser has to deal with different character sets. The parser of the Haskell XML Toolbox
works internally with Unicode (UTF-8) encoding. The module Unicode provides several conversion
functions for different character sets.

Supported character sets by the XmlParser:

• UTF-8

• ISO-8859-1

• US-ASCII

• ISO-10646-UCS-2

• UTF-16

• UTF-16BE

• UTF-16LE

40

Chapter 3. Package hparser

Figure 3-1. Modules of XmlParser

XmlState

XmlTree

XmlParser

XmlOutput
 Parsec

Unicode

Util

3.4. Module XmlInput

The module XmlInput provides input functions implemented as filters of type XmlStateFilter.
The main function is getXmlContents, which returns an XmlStateFilter for reading the
content. This filter expects as input a node of type NTree XTag with several arguments stored in its
attribute list. The child list of this node should be empty, because the parsed document will be stored
there.

Protocols like the http or file protocol are not supported at the moment. Unfortunately there does not
seem to exist any Haskell library supporting theses protocols. Perhaps later versions of the parser
will use the curl command.

Arguments of getXmlContents

Keyword a_source ("source") from module XmlKeywords

Specifies input file (or later URL)

Keyword a_encoding ("encoding") from module XmlKeywords

Specifies encoding scheme (optional). If no encoding is specified, the parser tries to guess the
encoding.

41

Chapter 3. Package hparser

3.5. Module DTDProcessing

The module DTDProcessing provides functions for parameter entity substitution, general entity
substitution and merging the internal and the external DTD subset into one internal part. Parameter
entity substitution should be done before merging the subsets of a DTD. The function processDTD
ensures this. Substitution of general entities is done by processGeneralEntities. The filters are
monadic functions that use the State-I/O monad from the module XmlState.

3.6. Module XmlOutput

XmlOutput provides output functions implemented as XmlStateFilters. These filters are very
useful for printing out the XmlTree during computations while parsing, e.g. printing out the tree
before and after entity processing. The whole parsing process takes place in the State-I/O monad
from XmlState. If a trace level different from zero is set in this monad, these functions are used to
show the computation steps.

putXmlSource :: XmlStateFilter a

Prints the XmlTree in XML representation.

putXmlTree :: XmlStateFilter a

Prints the XmlTree in tree representation.

42

Chapter 4. Package hvalidator

This chapter describes the package hvalidator which provides all functions for validating XML
documents represented as XmlTree. The validation process basically consists of three phases. First
the DTD is validated, after this the document is validated. In the last step the document is
transformed: missing default values are added and attribute values are normalized. Unlike other
popular XML validation tools the validation functions return a list of errors instead of aborting after
the first error was found.

While the modules from package hparser use a monadic approach, these modules are written
purely functional. Validation is done by filter functions of type XmlFilter. These filters return a list
of errors or an empty list if no errors are detected.

4.1. Module hierarchy

The only public module for validating XML documents is the module Validation. It exports all
functions for validating and transforming XML documents. Validation is basically a helper
module, which combines the functionalities of the internal modules taking part at validation and
transformation.

Internal modules

DTDValidation

Provides functions for validating the DTD of XML documents.

DocValidation

Provides functions for validating the elements and attributes of XML documents.

DocTransformation

Provides functions for transforming XML documents after they have been validated. The
transformation phase is part of the validation process.

AttributeValueValidation

Provides functions to normalize attribute values and to check if the attribute value matches the
lexical constraints of its type.

XmlRE and RE

Support DocValidation by validating the content model of an element. The algorithm used is
based on derivatives of regular expressions.

43

Chapter 4. Package hvalidator

Figure 4-1. Modules of package hvalidator

Validation

DTDValidation
DocValidation
 DocTransformation

validateAndTransform

validate

validateDTD

validateDoc

removeDoublicateDefs

transform

removeDoublicateDefs

validateDTD

validateDoc
 transform

AttributeValueValidation

checkAttributeValue

normalizeAttributeValue

XmlRE

RE

IdValidation

validateIds

checkRE,

matches,

printRE

RE,

re_unit, re_zero, re_sym,

re_rep, re_plus, re_opt,

re_seq, re_alt, re_dot,

...

4.2. Creating a validating XML parser

The only public module for validating XML documents is the module Validation. It exports
several functions for validating XML documents, parts of XML documents and transforming them.

validateAndTransform :: XmlSFilter

Combines validation and transformation of a document. If errors or fatal errors occurred during
validation, a list of errors is returned. Otherwise the transformed document is returned.

44

Chapter 4. Package hvalidator

validate :: XmlSFilter

Checks if the DTD and the document are valid.

validateDTD :: XmlSFilter

Checks if the DTD is valid.

validateDoc :: XmlSFilter

Checks if the document corresponds to the given DTD.

transform :: XmlSFilter

Transforms the document with respect to the given DTD. Validating parsers are expected to
normalize attribute values and add default values. This function should be called after a
successful validation.

The following example shows how the functions validate and transform can be used in an XML
processing application. The document is valid, if validate returns an empty list or a list containing
only errors of type warning. If the list contains errors of type error or fatal error, the document is
not valid. If the document is valid the document is transformed and displayed to the user.

printMsg :: XmlTrees -> XmlTrees -> IO()
printMsg errors doc

= if null ((isError +++ isFatalError) $$ errors)
then do

if null errors
then

putStrLn "The document is valid."
putStrLn (xmlTreesToString $ transform doc)

else do
putStrLn "The document is valid, but there were warnings:"
putStrLn (xmlTreesToString $ transform doc)
putStrLn (showXErrors errors)

else do
putStrLn "The document is not valid. List of errors:"
putStrLn (showXErrors errors)

main :: IO()
main

= do
doc <- parseDoc "invalid.xml"
printMsg (validate doc) doc
return ()

Calling the module ValidateExample from the directory example of the Haskell XML Toolbox
with the invalid document invalid.xml produces the following error messages.

45

Chapter 4. Package hvalidator

Example 4-1. Validating a document with errors

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE a [
<!ATTLIST a att1 CDATA #IMPLIED>
<!ELEMENT a (z, c?)>
<!ELEMENT b EMPTY>
<!ELEMENT c (#PCDATA)>
]>

<a att2="test">
<y/>
<c>hello world</c>

The document is not valid. List of errors:
Warning: The element type "z", used in content model of element "a", is not declared.
Error: The content of element "a" must match ("z" , "c"?). Element "z" expected,

but Element "y" found.
Error: Attribute "att2" of element "a" is not declared in DTD.
Error: Element "y" not declared in DTD.

4.3. Validation of the Document Type Definition

Validation of the DTD is done by the module DTDValidation. Notations, unparsed entities,
element declarations and attribute declarations are checked if they correspond to the constraints of
the XML 1.0 specification [WWW01].

The following checks are performed:

DTD

• Error: There exists no DOCTYPE declaration in the document.

Notations

• Error: A notation was already specified.

Unparsed entities:

• Warning: Entity is declared multiple times. First declaration is used.

• Error: A referenced notations must be declared

Element declarations:

• Error: Element is declared more than once

• Error: Element was specified multiple times in a content model of type mixed content.

• Warning: Element used in a content model is not declared.

Attribute declarations:

• Warning: There exists no element declaration for the attribute declaration.

46

Chapter 4. Package hvalidator

• Warning: Attribute is declared multiple times. First declaration will be used.

• Warning: Same Nmtoken should not occur more than once in enumerate attribute types.

• Error: Element already has an attribute of type ID. A second attribute of type ID is not permitted.

• Error: ID attribute must have a declared default of #IMPLIED or #REQUIRED.

• Error: Element already has an attribute of type NOTATION. A second attribute of type
NOTATION is not permitted.

• Error: Attribute of type NOTATION must not be declared on an element declared EMPTY.

• Error: A notation must be declared when referenced in the notation type list for an attribute.

• Error: The declared default value must meet the lexical constraints of the declared attribute type.

Each check is done by a separate function, which takes the child list of the XDTD DOCTYPE node as
input and returns a list of errors. Some functions can optionally take some further arguments to have
access to context information, e.g. when validating unparsed entities, a list of all defined notations is
needed. The result of validating the DTD is a concatenated list of the results of all validation
functions.

The following example shows a filter function for checking the validity constraint: "No Notation on
Empty Element" (section 3.3.1 in XML 1.0 specification [WWW01]). It means that an attribute of
type NOTATION must not be declared for an element declared EMPTY. A notation attribute is a way
to give an application a clue how the content of an element should be processed. The notation might
refer to a program that can process the content, e.g. a base-64 encoded JPEG. Because empty
elements cannot have contents, attributes of type notation are forbidden. The function
checkNoNotationForEmptyElement is initialized with a list of all element names declared
EMPTY. The constructed filter is then applied to all XDTD ATTLIST nodes of type NOTATION that
have been selected from the DTD by another filter function.

Example 4-2. Validation that notations are not declared for EMPTY elements

checkNoNotationForEmptyElement :: [String] -> XmlFilter
checkNoNotationForEmptyElement emptyElems nd@(NTree (XDTD ATTLIST al) _)

= if elemName ‘elem‘ emptyElems
then err ("Attribute \""++ attName ++"\" of type NOTATION must not be "++

"declared on the element \""++ elemName ++"\" declared EMPTY.") nd
else []
where
elemName = getAttrValue1 a_name al
attName = getAttrValue1 a_value al

checkNoNotationForEmptyElement _ nd
= error ("checkNoNotationForEmptyElement: illegal parameter:\n" ++ show nd)

The validation functions cannot check if a content model is deterministic. This requirement is for
compatibility with SGML, because some SGML tools can rely on unambiguous content models.
XML processors may flag such content models as errors, but the Haskell XML Toolbox does not. It
does not need deterministic content models for checking if the children of an element are valid (see
Section 4.7).

47

Chapter 4. Package hvalidator

4.4. Validation of the document subset

After validation of the DTD the document has to be validated. By validating the document, validation
of the elements and their attributes is meant. This process is split into two phases: validation of the
elements and their attributes and validation of attributes of types ID, IDREF and IDREFS.

Involved modules

DocValidation

Validation of the elements and their attributes. Validation of content models is delegated to the
module XmlRE.

IdValidation

Validation of attributes of types ID, IDREF and IDREFS.

Before the document is validated, a lookup-table is built on the basis of the DTD. This table maps
element names to their validation functions. The validation function for an element is a set of
XmlFilter functions, which take the current element as input and return a list of errors. If the
element meets the validation constraints, an empty list is returned. Each validation constraint, listed
in the following, is represented by a single filter. All these filters are combined by the combinator
+++, which concatenates the results of filters, each filter uses copy of state. This approach for
validation is very flexible. It is very easy to add new functions without affecting the other ones.

After the initialization phase of building the validation filters and the lookup table, the whole
document is traversed in preorder and every element is validated by its validation filter.

Validation of elements:

• Error: Element is not declared in DTD.

• Error: Root element must match value declared in DOCTYPE.

• Error: Children of element do not match its content model.

Validation of attributes:

• Error: Attribute is not declared.

• Error: Attribute is specified multiple times.

• Error: Attribute is of type #REQUIRED, but was not specified.

• Error: Attribute is of type #FIXED, but specified value differs from fixed value.

• Error: Value of attribute does not match the lexical constraints of its type.

The module IdValidation provides functions for checking special ID/IDREF/IDREFS
constraints. First it is checked if all ID values are unique. All nodes with ID attributes are collected
from the document, then it is validated that values of ID attributes do not occur more than once.
During a second iteration over the document it is validated that all IDREF/IDREFS values match the
value of some ID attribute. For both checks a lookup-table, which maps element names to their
validation functions, is built like it is done in the module DocValidation.

48

Chapter 4. Package hvalidator

Validation of ID/IDREF/IDREFS:

• Error: Value of type ID must be unique within the document.

• Error: An attribute of type IDREF/IDREFS references an identifier that does not exist in the
document.

The following example shows a filter for validating that all attributes of an element are unique
(Unique AttSpec, section 3.1 XML 1.0 specification [WWW01]). It is a filter, which takes an
element - an NTree XTag node - checks if its attributes are unique, and returns a list of errors or an
empty list.

Example 4-3. Validation that all attributes are unique

noDoublicateAttributes :: XmlFilter
noDoublicateAttributes n@(NTree (XTag name al) _)

= doubles $ reverse al
where
doubles :: TagAttrl -> XmlTrees
doubles ((attrName,_):xs)

= if (lookup attrName xs) == Nothing
then doubles xs
else (err ("Attribute \""++ attrName ++"\" was already specified "++

"for element \"++ name ++"\".") n)
++
doubles xs

doubles [] = []

noDoublicateAttributes n
= error ("noDoublicateAttributes: illegal parameter:\n" ++ show n)

4.5. Transformation of the document subset

Transformation of the document is done by the module DocTransformation. The transformation
should be started after validating the document.

Tasks:

• Adding default values of attributes

• Normalizing attribute values

• Sorting all attributes in lexicographic order

Before the document can be transformed, a lookup-table is built on the basis of the DTD which maps
element names to their transformation functions. The transformation functions are XmlFilter
functions, which take a node and return the transformed node. After the initialization phase the

49

Chapter 4. Package hvalidator

whole document is traversed in preorder and every element is transformed by its transformation filter
from the lookup-table. The result is a new, transformed XmlTree.

4.6. Validation of attribute values

The module AttributeValueValidation provides all functions for validating attribute values. It
provides a function for checking if the attribute value meets the lexical constraints of its type and a
function for normalizing attribute values. These functions have been moved into an own module,
because they are needed when the DTD subset and the document subset are validated and when the
document is transformed. The function for checking the attribute value is again an XmlFilter

function.

4.7. Derivatives of regular expressions

The following section describes how the algorithm for validating the element content works. It is
implemented in the modules XmlRE and RE. The most commonly-used technique to solve this
problem is based on finite automaton.

Another algorithm, based on derivatives of regular expressions, is much better suited for
implementation in a functional language. This technique does not need to backtrack, like some
NFA-based algorithms do and when combined with lazy evaluation and memorization it can be very
efficient.

The algorithm of derivating regular expressions was first described by Janusz A. Brzozowski
[Brzozowski64]. Joe English suggested using this algorithm for validating element contents in XML.
He gave a short description of his ideas combined with a small Haskell program fragment
[WWW26].

Mark Hopkins wrote some small C programs based on this algorithm. A description of the algorithm
and working source code is available from the comp.compilers archive [WWW27]. James Clark
describes an algorithm for RELAX NG validation [WWW28] that bases on derivatives, too.

4.7.1. Description

Validating the element content is an instance of regular expression matching problem. Basically the
content model of an element describes a regular expression. If given the regular expression e and the
content c it has to be checked if c is in L(e)? L(e) denotes the language accepted by the regular
expression e.

Informal described, the algorithm works as follows. A regular expression is applied to a sentence.
The remaining regular expression is checked if it can be derived to an empty sequence. If it can be
derived to an empty sequence, the sentence matches the regular expression. Otherwise the sentence
is not described by the regular expression.

50

Chapter 4. Package hvalidator

The algorithm can be seen as working on an infinite DFA with states labeled by regular expressions
instead of symbols as in the canonical construction. The final states are those states for which the
regular expression can be derived to an empty sequence. The transition function is a function, which
derives the regular expression by a single symbol.

4.7.2. Examples

The regular expression foobar should be derived with respect to the string "foo". After applying the
regular expression to this string, the remaining regular expression is bar. This regular expression
cannot be derived to an empty string, because it expects the characters ’b’, ’a’ and ’r’. This means
that the string bar is not described by the regular expression. (Short form: foo\foobar = bar)

The regular expression a* should be derived with respect to the string "aa". After applying the
regular expression to the string, the regular expression a* remains. This expression can be derived to
an empty string, because the *-operator indicates that none or more ’a’ characters are expected. This
means that the regular expression matches the string. (Short form: aa\a* = a*)

4.7.3. Realization in Haskell

The following code was adopted from Joe English [WWW26], but has been extended to support
meaningful error messages, to accept any single symbol (dot operator) and to work with data types
of XmlTree.

Regular expressions are defined by the algebraic data type RE.

data RE a =
RE_ZERO String --’ L(0) = {} (empty set, or failure with message)
| RE_UNIT --’ L(1) = { [] } (empty sequence, or success)
| RE_SYM a --’ L(x) = { [x] }
| RE_DOT --’ accept any single symbol
| RE_REP (RE a) --’ L(e*) = { [] } ‘union‘ L(e+)
| RE_PLUS (RE a) --’ L(e+) = { x ++ y | x <- L(e), y <- L(e*) }
| RE_OPT (RE a) --’ L(e?) = L(e) ‘union‘ { [] }
| RE_SEQ (RE a) (RE a) --’ L(e,f) = { x ++ y | x <- L(e), y <- L(f) }
| RE_ALT (RE a) (RE a) --’ L(e|f) = L(e) ‘union‘ L(f)
deriving (Show, Eq)

The core of the algorithm is the delta ("derivative") function. It takes a regular expression re and a
symbol s. The function returns a new expression that matches all sentences that are a suffix of
sentences in L(re) beginning with s. The function works by simple case wise analysis.

delta :: (Eq a, Show a) => RE a -> a -> RE a
delta re s = case re of

RE_ZERO m -> re_zero m
RE_UNIT -> re_zero ("Symbol "++ show s ++" unexpected.")
RE_SYM sym

| s == sym -> re_unit
| otherwise -> re_zero ("Symbol "++ show sym ++" expected, but "++

"symbol "++ show s ++" found.")

51

Chapter 4. Package hvalidator

RE_REP e -> re_seq (delta e s) (re_rep e)
RE_PLUS e -> re_seq (delta e s) (re_rep e)
RE_OPT e -> delta e s
RE_SEQ e f

| nullable e -> re_alt (re_seq (delta e s) f) (delta f s)
| otherwise -> re_seq (delta e s) f

RE_ALT e f -> re_alt (delta e s) (delta f s)
RE_DOT -> re_unit

The function matches derives a regular expression with respect to a sentence by using the
higher-order function foldl which folds a function into a list of values.

matches :: (Eq a, Show a) => RE a -> [a] -> RE a
matches e = foldl delta e

The auxiliary function nullable tests if a regular expression matches the empty sequence. If
regular expressions are compound ones and the outer expression cannot be itself derived to an empty
sequence, the sub-expressions have to be tested if they are nullable.

nullable :: (Show a) => RE a -> Bool
nullable (RE_ZERO _) = False
nullable RE_UNIT = True
nullable (RE_SYM _) = False
nullable (RE_REP _) = True
nullable (RE_PLUS e) = nullable e
nullable (RE_OPT _) = True
nullable (RE_SEQ e f) = nullable e && nullable f
nullable (RE_ALT e f) = nullable e || nullable f
nullable RE_DOT = True

The function checkRE checks if an input matched a regular expression. The regular expression
RE_ZERO indicates that an error occured during derivation and that the regular expression does not
match the given sentence.

checkRE :: (Show a) => RE a -> String
checkRE (RE_ZERO m) = m
checkRE re

| nullable re = ""
| otherwise = "Input must match " ++ printRE re

The constructor functions re_seq, re_opt and so on, used in the delta function, are not shown.
Without these constructor functions the intermediate regular expressions would grow very rapidly.
The constructors simplify them at each step, e.g. by replacing a sequence of epsilons (RE_UNIT) by a
single epsilon.

The described delta function is not the one used for validating XmlTree types. There exists a
special function for validating XmlTree nodes in the module XmlRE.

52

Chapter 4. Package hvalidator

4.7.4. Conclusions

The algorithm of derivating regular expressions can be expressed in Haskell very naturally: regular
expressions are represented by a special data type, sentences are just a list of symbols.
Pattern-matching and Haskell’s standard functions for list processing allow a very clear and short
implementation.

The algorithm can handle ambiguous regular expressions very well. If a regular expression consists
of sub-expressions, all sub-expressions are derived by a certain symbol. If for example the
ambiguous regular expression (a , b) | (a , c) is derived with respect to the sentence "ab",
the algorithm will construct the regular expression (b | c) after deriving the original expression by
the symbol a. After deriving the remaining regular expression by the symbol b, the regular
expression (RE_UNIT | RE_ZERO) remains. This expression can be derived to the empty sequence
and therefore the regular expression matches the sentence.

Haskell’s lazy evaluation avoids the evaluation of the whole regular expression. The expression has
only to be evaluated as much that nullable can calculate an answer.

53

Chapter 5. Conclusion

5.1. XML conformance of the parser

The validating XML parser of the Haskell XML Toolbox was elaborately tested with the XML Test
Suites (XML TS) from the W3C [WWW02].

These XML TS consist of over 2000 test files for the XML 1.0 specification [WWW01] and an
associated test report. The test report contains background information on conformance testing for
XML as well as test descriptions for each of the test files.

The test suite consists of two basic test types: Binary Tests and Output Tests. Binary conformance
tests are documents that should be accepted or rejected by the parser. Output tests are tests for valid
documents which are paired with a reference file as the canonical representation [WWW03] of the
input file. By comparing the output of the XML parser with the reference file, it can be ensured that
the parser provides the correct information.

There exist four different tests cases:

Valid Documents

The XML parser is required to accept these documents. For most test cases a reference file
exists.

Invalid documents

A validating XML parser has to report a violation of some validity constraint. The reported
error must meet the test case description.

Not well-formed documents

An XML parser has to report a fatal error. The reported error must meet the test case
description.

Optional errors

An XML parser is permitted to ignore these errors, or to report them. If an error is reported, the
error message must meet the test case description.

By using these tests, it could be ensured that the validating XML parser of the Haskell XML Toolbox
covers most aspects of the XML 1.0 specification [WWW01]. Because the XML TS is not complete,
it is not possible to claim conformance with the specification itself, but only with the XML TS. At
the moment the parser passes about 95% of these test cases, see Section A.2 for further details.

54

Chapter 5. Conclusion

5.2. The Haskell XML Toolbox in comparison to HaXml
and HXML

In this section the Haskell XML Toolbox is compared with HaXml [WWW21] and HXML
[WWW25]. Many valuable ideas of HaXml and HXML have been adopted by the Haskell XML
Toolbox. It is not the intention of this section to run down these great projects. The intention is to
show how their ideas have been extended and generalized.

The Haskell XML Toolbox, HaXml and HXML differ in the way how XML documents are
represented in Haskell. First the approaches of HXML and HaXml are introduced, after this the data
model of the Haskell XML Toolbox is compared with them.

In HXML, XML document subsets are represented as a Tree of XMLNodes. The hierarchical
structure of XML documents is modeled by the generic tree data type Tree. This type does not
distinguish between inner nodes and leafs. Leafs are just nodes with an empty list of children.

Example 5-1. Document subset in HXML

data Tree a = Tree a [Tree a]

type XML = Tree XMLNode
data XMLNode =

RTNode -- root node
| ELNode GI AttList -- element node: GI, attributes
| TXNode String -- text node
| PINode Name String -- processing instruction (target,value)
| CXNode String -- comment node
| ENNode Name -- general entity reference
deriving Show

DTDs are modeled totally different in HXML. They are represented by named fields and are not
stored in the tree model where the document subset is stored.

Example 5-2. DTD subset in HXML

data DTD = DTD {
elements :: FM.FM Name ELEMTYPE, -- elemtps / element types
attlists :: FM.FM Name [ATTDEF], -- elemtype.attdefs
genents :: FM.FM Name EntityText, -- general entities
parments :: FM.FM Name EntityText, -- parameter entities
notations:: [DCN], -- nots/notations
dtdname :: Name -- name (document type name)

} deriving Show

HaXml’s representation of XML documents differs totally from the approach HXML and the
Haskell XML Toolbox use. Instead of modeling XML documents with a generic tree type, HaXml
uses a more data centric approach. The whole structure of XML documents is modeled by different
algebraic data types. There exist special types for almost each production of the XML 1.0
specification [WWW01]. XML documents are modeled by the data type Document, which consists
of a Prolog and the document subset, an Element. This data model distinguishes clearly between
leafs and inner nodes. Leafs are types which constructors do not take any arguments.

55

Chapter 5. Conclusion

Example 5-3. XML documents in HaXml

data Document = Document Prolog (SymTab EntityDef) Element
data Prolog = Prolog (Maybe XMLDecl) (Maybe DocTypeDecl)
data XMLDecl = XMLDecl VersionInfo (Maybe EncodingDecl) (Maybe SDDecl)
...

The document subset is modeled in HaXml by the algebraic types Element and Content. An
Element has an attribute list and a list of Content types. If the content list is empty, the element is
a leaf. Together these types define a mutually recursive, multi-branch tree.

Example 5-4. Document subset in HaXml

data Element = Elem Name [Attribute] [Content]

type Attribute = (Name, AttValue)
data Content = CElem Element

| CString Bool CharData
| CRef Reference
| CMisc Misc

HaXml introduced the idea of using filter functions and combinators for processing parts of the
XML data model. The examples from the previous chapters show that this approach is very powerful
and flexible. The whole XML parser of the Haskell XML Toolbox bases on filters. The filters of
HaXml work for nodes of the type Content.

Example 5-5. The filter type of HaXml

type CFilter = Content -> [Content]

The Haskell XML Toolbox uses the most generic data model in contrast to HaXml and HXML. Its
data model is a generalization of the data models discusses above.

The generic tree data model NTree of the Haskell XML Toolbox forms the basis for representing
XML documents in Haskell. This type does not distinguish between inner nodes and leafs. Leafs are
just nodes with an empty child list. The most important aspect is that this generic tree data model
represents a whole XML document, including the DTD subset, the document subset and all other
logical units of XML. Two algebraic data types XNode and DTDElem are used to represent all logical
units of XML.

Example 5-6. XML documents represented in the Haskell XML Toolbox

data NTree node = NTree node (NTrees node)
type NTrees node = [NTree node]

type XmlTree = NTree XNode
type XmlTrees = NTrees XNode

data XNode =
XTag TagName TagAttrl

| XDTD DTDElem TagAttrl
| ...

56

Chapter 5. Conclusion

data DTDElem =
DOCTYPE

| ELEMENT
| ATTLIST
| ...

HXML uses the same generic data model as the Haskell XML Toolbox for representing the
document subset, but DTDs are represented by a totally different model: named fields. HaXml uses
special types for XML’s logical units. This leads to the fact that the DTD subset is modeled totally
different than the document subset.

The advantage of representing the whole XML document by one generic data type lies in the fact
that one unique design for processing the whole document can be used. Because all logical parts of
XML are modeled by one generic data model, filters (see Section 2.3) can be used to process the
whole XML document and not only parts as in HaXml and HXML.

HaXml’s filters can only work on the type Content that just represents a small part of XML
documents, the document subset. If one wants to process other parts of an XML document, one
cannot use filters any more, but has to implement special functions. The same applies for HXML.

The generalization used in the Haskell XML Toolbox makes the design of applications that process
whole XML documents very uniform. In effect the design of the whole XML parser of the Haskell
XML Toolbox bases on filters. Merging of the internal DTD part and external DTD part is done by
filters, checking the validity constraints of DTDs and document subsets is done by filters, or
processings like transforming the whole XmlTree back to XML is done by filters.

5.3. Conclusions and future work

The developed XML parser shows that the functional approach accomplishes the task of parsing and
validating XML by using fewer lines of code and producing a very short and compact program in
contrast to imperative languages. The packages hdom, hparser and hvalidator contain only
about 9.000 lines of code including lots of HDoc [WWW30] comments.

Although the program is compact, the code is understandable and maintainable, because the code is
more succinct and it follows a clear and simple design. The Haskell XML Toolbox introduced the
very general tree data type XmlTree for representing whole XML documents in Haskell. This
general data model makes it possible to base all processings of XML documents on filters. The
whole XML parser, presented in this thesis, bases on this uniform design.

Writing a validating XML parser is a quite complex task. It must cope with different encodings,
correct processing of entities and of course validation. Functional programming helps master this
complexity better than other methods.

In Haskell functions are just values and have no side effects. These qualities allow an easy use of
higher-order functions that take functions as arguments, return functions as a result or do both. The
filter combinators, which have been adopted from HaXml, form a powerful library for combining

57

Chapter 5. Conclusion

filter functions. Because all filters of the Haskell XML Toolbox share the same type, it is possible to
combine them freely with the use of filter combinators. All details of manipulating the XmlTree data
structure are hidden in these higher-order functions. In effect these filter combinators define problem
specific control structures that make it possible to program on a very high abstraction level. Errors
can be reduced, because programmers can use the filter combinators as standard functions for
processing the XmlTree.

Because functions are just values in Haskell, they can be constructed at runtime. The XML parser
introduced in this thesis makes an extensive use of creating parameterized filter functions during
runtime. The whole validation process bases on this design.

It can be quite useful to use functional programming paradigms when writing programs in
imperative languages. Functional paradigms like higher-order functions for abstractions can be done
in Java by defining an interface that has only one function. This interface can be passed to other
functions or returned by a function. In C function pointers can be used for this task. But imperative
languages are not designed to support functional programming styles, so they cannot actively
support its paradigms. The main focus of these languages lies on the fact how a problem is solved,
e.g. the order in which computations are performed.

Unfortunately functional programming and functional programming languages are not very popular.
Two standard examples for functional programming are using a spreadsheet program like Excel and
querying a database with SQL. Another field where functional programming dominates is
transformation of SGML and XML documents. The Document Style Semantics and Specification
Language (DSSSL) [WWW09] bases on the functional programming language Scheme and is very
popular in the world of SGML publishing. The Extensible Stylesheet Language (XSL) [WWW07] is
its corresponding part for XML publishing. Functional programming languages are very well
equipped for this task, because the transformation process is a functional mapping from a structural
document as input to a formatted representation as output.

Sometimes it is said that functional programming languages lack of libraries. We do not know any
validating XML Parser written in Haskell and hope that the framework of the Haskell XML Toolbox
will be a useful tool for XML processing applications written in Haskell. The parser supports almost
fully the XML 1.0 specification with the exception of namespaces.

The Haskell XML Toolbox introduces a powerful approach for processing XML in Haskell. It
generalizes the ideas of HaXml and HXML. Whole XML documents are represented as a tree of
different nodes. This tree can be processed in a uniform way by using filter functions and filter
combinators.

Lots of great ideas of the projects HaXml and HXML have been taken into this project. We want to
thank their members for their great work and emphasis that all three projects are enrichments for the
Haskell community.

The Haskell XML Toolbox project will be maintained and enlarged at the University of Applied
Sciences Wedel. One student already wrote an XSLT processor on the basis of this project. Another
student is writing a program using the Haskell XML Toolbox for deriving Java classes from DTDs.

58

Appendix A. User handbook

A.1. System requirements

The Haskell XML Toolbox was developed with Hugs Version December 2001 [WWW20] and the
Glasgow Haskell Compiler (GHC) 5.04 [WWW19] on Linux systems. Testing on Windows systems
has not been done yet.

If you want to use the Haskell XML Toolbox in your own applications, just add the modules from the
directories hdom, hparser, hvalidator and parsec to the path of your compiler or interpreter. It
is planned to provide special GHC packages of the Haskell XML Toolbox in the near future.

To compile binary versions of the programs included in the Haskell XML Toolbox, the Glasgow
Haskell Compiler and GNU make are needed.

To build the API documentation you must have installed HDoc [WWW30]. If you run make hdoc

in the root directory of the Haskell XML Toolbox, the documentation will be generated and placed in
the directory doc/hdoc.

A.2. Missing features and known problems

Unfortunately the XML parser of the Haskell XML Toolbox does not support fully the XML 1.0
specification at the moment. We are working hard to implement the missing features in the near
future.

Missing features:

• Namespaces are not supported.

• Protocols like "http" and "file" are not yet supported due to a lack of libraries. We think of using
the curl command instead.

• General external entities are not yet processed.

• General entities in default values of attributes are not yet substituted.

Known problems:

• Line numbers are not yet reported for validity constraint errors.

• Under Hugs 98 only: The parser suffers a serious space fault when parsing large documents.

59

Appendix A. User handbook

A.3. Directory structure

doc

Contains the documentation: this thesis and the generated HDoc documentation

examples

Contains some example applications for using the parser, filter functions and filter
combinators. Includes HXmlParser, a command line well-formedness checker and validator.

hdom

Sources of package hdom.

hparser

Sources of package hparser.

hvalidator

Sources of package hvalidator.

parsec

Sources of the free monadic parser combinator library Parsec. Parsec is already distributed with
Hugs and GHC, but we had some problems with different behaviors of these libraries.

A.4. HXmlParser - Well-formedness checker and
validator

The Haskell XML Toolbox comes with a command line tool for checking if XML documents are
well-formed and valid. To build this tool with GHC, run make HXmlParser in the root directory of
the Haskell XML Toolbox. This will produce the binary file HXmlParser that will be stored in the
root directory. The sources of this tool are located in the directory examples.

When checking an invalid XML file, HXmlParser will report errors to stderr and quit with an exit
code of "-1". If there are no errors in the document, the tool will just quit without any message.

If you run HXmlParser without any arguments, the usage information is displayed:

Usage:
--source "filename" - source file (required)
--encoding "charset" - document encoding
--trace "level" - trace level (0-4)

-h - this help
-v - display a message if document is well-formed or valid
-w - well-formed check only

-op - output parsed document
-opt - output XmlTree of parsed document
-oph - output Haskell type of parsed document

60

Appendix A. User handbook

Only for validity checks:
-ot - output transformed document
-ott - output XmlTree of transformed document
-oth - output Haskell type of transformed document

-oc - output canonicalized document
-oct - output XmlTree of canonicalized document
-och - output Haskell type of canonicalized document

A.5. Check the XML parser with the XML Test Suites

The XML parser of the Haskell XML Toolbox was elaborately tested with the XML Test Suites from
the W3C [WWW02]. If you want to run these checks on your own, you can use the tool
RunTestCases that is distributed with the Haskell XML Toolbox.

First you have to download the test cases from the W3C [WWW02] and extract them in an own
directory. To test the XML parser with these test cases, you have to build the program
RunTestCases. Executing make RunTestCases in the root directory of the Haskell XML
Toolbox will compile this program.

The XML Test Suites contain test cases from different organizations and people. RunTestCases
must be called with a test case description file as argument from the directories: ibm, oasis, sun or
xmltest.

Perhaps a dummy root node must be added to these files to form a valid XML document.
RunTestCases cannot process the root file that combines all theses description files.

When being executed, RunTestCases will ask what type of test shall be performed. The type
entered must correspond to the tests listed in the test case description file. RunTestCases will only
execute these test cases.

If the option "show detailed information" is set, RunTestCases will display the XmlTree in
addition if a test fails.

Example A-1. Executing RunTestCases

RunTestCases ibm_oasis_valid.xml

Which kind of test shall be performed?
([1] - valid | 2 - invalid | 3 - not-wf | 4 - error):

Show detailed information? (j/[n])

61

Appendix A. User handbook

A.6. Performance and profiling

Time and space profiling is very useful to optimize programs and remove bottlenecks. We already
added the ability of profiling to the XML parser, but did not use this information yet. The main focus
of the parser lays on a clear and easy design at the moment.

A.6.1. Usage information

The validating XML parser can be analyzed with the time and space profiling system of the Glasgow
Haskell Compiler (GHC). Cost centers have been added for all main computations, so that it could
be measured which parts of the parser consume most time and memory.

The tool Profiling can be used to run these tests with the XML parser. It can be built by executing
make Profiling in the root directory of the Haskell XML Toolbox.

Profiling must be executed with an XML file as test input and several different parameters that
influence GHC’s profiling behavior. These parameters are described in depth in the documentation of
GHC.

Four predefined profiling types have been added to the Makefile in the root directory of the Haskell
XML Toolbox. The input file of Profiling can be set by the variable PROFILING_INPUT.

Predefined profiling targets:

make runprofiling1

Time and allocation profiling - Generate profiling information in XML format and display
them with the tool ghcprof of GHC.

make runprofiling2

Time and allocation profiling - Generate profiling information in text format and display them
with less.

make runprofiling4

Heap profiling - Break down the graph by the cost-center stack which produced the data.

make runprofiling4

Heap profiling - Break down the graph by the retainer set.

A.6.2. How to interpret the results

This section will show how to interpret the results from the profiling tests. The W3C
Recommendation of the Extensible Hypertext Markup Language (XHTML) and its Strict DTD was
chosen as test input. The test machine was a Pentium 4 with 1.6 GHz and 256 MB memory, running
Debian 3.0.

62

Appendix A. User handbook

The results from time and space profiling show that most time and memory is consumed by the
function procesDTD. This function provides substitution of parameter entities in the internal and
external DTD part. The next resource intensive function is parseXmlDoc that does the parsing of an
XML document and constructs an XmlTree representation from it.

total time = 1.26 secs (63 ticks @ 20 ms)
total alloc = 102,664,004 bytes (excludes profiling overheads)

COST CENTER MODULE %time %alloc

processDTD HdomParser 27.0 45.6
parseXmlDoc HdomParser 19.0 29.3
buildAllValFcts DocValidation 14.3 5.0
validateAttributes DTDValidation 12.7 0.5
processGeneralEntities HdomParser 7.9 9.6
MAIN MAIN 6.3 5.0
buildAllTransFcts DocTransformation 4.8 1.8
IdVal.validateIds Validation 4.8 1.1
validateElements DTDValidation 3.2 0.2
getXmlContents HdomParser 0.0 1.1

The ranking of the cost centers might have changed dramatically if the profiling tests are performed
with other documents. In this case, parameter entities are exhaustively used in the Strict DTD of
XHTML. It is not astonishing that the function that handles their substitution takes the most time and
space. Another important aspect is the ratio of the DTD subset and the document subset. If for
example the DTD subset is very large, its processing functions might take a large percentage of time
and space consumption, too.

Heap profiling produces graphs that show the memory consumption of the cost centers during
execution time. These graphs show very clearly how the program execution behavior of Haskell
programs differs from programs written in imperative languages. Haskell uses lazy evaluation when
evaluating expressions. Arguments to functions are evaluated only when they are needed. Functions
only calculate their result as much as it is needed by other functions that called them.

Lazy evaluation leads to the fact that Haskell programs do not have a strict sequential evaluation
order, but that they resemble a stream. The graphs show very clearly this execution behavior. First
the parsing functions are started, after producing enough output, processing of the DTD starts. In the
end the validation process starts calculations. The graphs show that almost all functions work in
parallel after they have enough input.

63

Appendix B. MIT License

The Haskell XML Toolbox shall be used be many people and is therefore distributed under the MIT
License.

The MIT License

Copyright (c) 2002 Uwe Schmidt, Martin Schmidt

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

64

Bibliography

Print resources
[Thompson99] The craft of Functional Programming: 2nd Edition, Simon Thompson, Addison

Wesley, 1999, 0-201-34275-8.

[Hudak00] The Haskell School of Expression: Learning functional programming through
multimedia, Paul Hudak, Cambridge University Press, 2000, 0-521-64408-9.

[Brzozowski64] Derivatives of Regular Expressions, Janusz A. Brzozowski, Journal of the ACM,
Volume 11, Issue 4, 1964.

Online resources
[WWW01] Extensible Markup Language (XML) 1.0, W3C, 2000,

http://www.w3.org/TR/2000/REC-xml-20001006 .

[WWW02] Extensible Markup Language (XML) Conformance Test Suites,
http://www.w3.org/XML/Test/ .

[WWW03] Canonical XML, Version 1.0, John Boyer,
http://www.w3.org/TR/2001/REC-xml-c14n-20010315 .

[WWW04] XML Syntax Quick Reference, Mulberry Technologies, Inc.,
http://www.mulberrytech.com/quickref/XMLquickref.pdf .

[WWW05] Document Object Model (DOM), W3C DOM Working Group,
http://www.w3.org/DOM/ .

[WWW06] JDOM, http://www.jdom.org .

[WWW07] The Extensible Stylesheet Language (XSL), XSL Working Group,
http://www.w3.org/Style/XSL/ .

[WWW08] XML Schema, C. M. Sperberg-McQueen, Henry Thompson,
http://www.w3.org/XML/Schema .

[WWW09] ISO/IEC 10179:1996 - Document Style Semantics and Specification Language, James
Clark, http://www.jclark.com/dsssl/ .

[WWW10] Simple API for XML (SAX), David Brownell, http://www.saxproject.org/ .

[WWW11] Haskell.org, http://www.haskell.org .

[WWW12] Haskell Brooks Curry, J. O’Connor, E. F. Robertson,
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Curry.html .

[WWW13] About Haskell, Based on a paper by Simon Peyton Jones., December 2001,
http://www.haskell.org/aboutHaskell.html .

65

[WWW14] A Gentle Introduction to Haskell, Version 98, Paul Hudak, John Peterson, Joseph Fasel,
June 2000, http://www.haskell.org/tutorial/index.html .

[WWW15] The Haskell 98 Report, Simon Peyton Jones, John Hughes et al.,
http://www.haskell.org/onlinereport/ .

[WWW16] The Haskell 98 Library Report, Simon Peyton Jones, John Hughes et al.,
http://www.haskell.org/onlinelibrary/ .

[WWW17] The Haskell Bookshelf , http://www.haskell.org/bookshelf/ .

[WWW18] Why Functional Programming Matters, John Hughes,
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html , 1984.

[WWW19] GHC, http://www.haskell.org/ghc .

[WWW20] Hugs, http://www.haskell.org/hugs .

[WWW21] HaXml: Haskell and XML, Malcolm Wallace, Colin Runciman,
http://www.cs.york.ac.uk/fp/HaXml/ .

[WWW22] Haskell and XML: Generic Combinators or Type-Based Translation?, Malcolm Wallace,
Colin Runciman, John Boyer, http://www.cs.york.ac.uk/fp/HaXml/icfp99.html .

[WWW23] The HaXml functional programming model for XML, David Mertz, October 2001,
http://www-106.ibm.com/developerworks/xml/library/x-matters14.html .

[WWW24] Functional Programming and XML, Bijan Parsia, 2000,
http://www.xml.com/lpt/a/2001/02/14/functional.html .

[WWW25] HXML, Joe English, http://www.flightlab.com/~joe/hxml/ .

[WWW26] How to validate XML, Joe English, 1999,
http://www.flightlab.com/~joe/sgml/validate.html .

[WWW27] Regular Expression Package. Posted to comp.compilers., Mark Hopkins, 1994,
http://compilers.iecc.com/comparch/article/94-02-109 ftp://iecc.com/pub/file/regex.tar.gz .

[WWW28] An algorithm for RELAX NG validation, James Clark, February 2002,
http://www.thaiopensource.com/relaxng/derivative.html .

[WWW29] Parsec, Daan Leijen, http://www.cs.uu.nl/~daan/parsec.html .

[WWW30] HDoc, Armin Groesslinger, http://www.fmi.uni-passau.de/~groessli/hdoc/ .

66

Affidavit

I hereby declare that this master thesis has been written only by the undersigned and without any
assistance from third parties.

Furthermore, I confirm that no sources have been used in the preparation of this thesis other than
those indicated in the thesis itself.

Hamburg, 2002-09-02

--
Place, Date Signature

.

67

