module Hydra.Sources.Test.Inference.AlgorithmW (algorithmWTests) where import Hydra.Kernel import Hydra.Testing import qualified Hydra.Dsl.Phantoms as Base import qualified Hydra.Dsl.Core as Core import Hydra.Dsl.Testing as Testing import Hydra.Dsl.ShorthandTypes import qualified Hydra.Dsl.Terms as Terms import qualified Hydra.Dsl.Types as Types import Hydra.Sources.Test.TestGraph import Hydra.Dsl.TTerms as TTerms import qualified Hydra.Dsl.TTypes as T import Hydra.Sources.Test.Inference.Fundamentals import qualified Data.Map as M import Prelude hiding (map, sum) algorithmWTests :: TTerm TestGroup algorithmWTests = supergroup "Algorithm W test cases" [ testGroupForSystemF] -- @wisnesky's original Algorithm W test cases, modified so as to normalize type variables testGroupForSystemF :: TTerm TestGroup testGroupForSystemF = subgroup "STLC to System F" [ -- --Untyped input: -- -- (\x. x) -- --System F type: -- -- (v0 -> v0) expectPoly 1 [] (lambda "x" $ var "x") ["t0"] (T.functionMany [T.var "t0", T.var "t0"]), -- --Untyped input: -- -- letrecs foo = (\x. x) -- -- in 42 -- --System F type: -- -- Nat expectMono 2 [] (lets [ "foo" >: lambda "x" $ var "x"] $ int32 42) T.int32, -- --Untyped input: -- -- let f = (\x. x) in (f 0) -- --System F type: -- -- Nat expectMono 3 [] (lets [ "f" >: lambda "x" $ var "x"] $ var "f" @@ int32 0) T.int32, -- --Untyped input: -- -- let f = ((\x. x) 0) in f -- --System F type: -- -- Nat expectMono 4 [] (lets [ "f" >: (lambda "x" $ var "x") @@ int32 0] $ var "f") T.int32, ---- TODO ----testAdt3 = TestCase "testAdt3" $ Abs "z" $ ExprConst (Fold "List") ---- @@ Var "z" ---- @@ ExprConst (Con "Nil") ---- @@ ExprConst (Con "Cons") ---- ----foldl :: TTerm ((b -> a -> b) -> b -> [a] -> b) ----cons :: TTerm (a -> [a] -> [a]) ---- ----[testAdt3] ----Untyped input: ---- (\z. (fold_List z Nil Cons)) ----Type inferred by Hindley-Milner: ---- (List v6 -> List v6) ---- ----System F translation: ---- (\z:List v6 . ((fold_List [List v6 ,v6]) z (Nil [v6]) (Cons [v6]))) ---- H.it "testAdt3" $ expectPolytype ---- () ---- [t0] (tFun t0 t0) -- -- --Untyped input: -- -- let sng = (\x. (cons x nil)) in sng -- --System F type: -- -- (v5 -> (List v5)) expectPoly 5 [] (lets [ "sng" >: lambda "x" $ list [var "x"]] $ var "sng") ["t0"] (T.function (T.var "t0") (T.list $ T.var "t0")), -- --Untyped input: -- -- let sng = (\x. (cons x nil)) in (pair (sng 0) (sng alice)) -- --System F type: -- -- ((List Nat) * (List String)) expectMono 6 [] (lets [ "sng" >: lambda "x" $ list [var "x"]] $ pair (var "sng" @@ int32 0) (var "sng" @@ string "alice")) (T.pair (T.list T.int32) (T.list T.string)), -- --Untyped input: -- -- letrecs + = (\x. (\y. (S (+ (P x) y)))) -- -- in (+ (S (S 0)) (S 0)) -- --System F type: -- -- Nat expectMono 7 [] (lets [ "+" >: lambdas ["x", "y"] (primSucc @@ (var "+" @@ (primPred @@ var "x") @@ var "y"))] $ var "+" @@ (primSucc @@ (primSucc @@ int32 0)) @@ (primSucc @@ int32 0)) T.int32, -- --Untyped input: -- -- letrecs f = (\x. (\y. (f 0 x))) -- -- in f -- --System F type: -- -- (Nat -> (Nat -> v5)) expectPoly 9 [] (lets [ "f" >: lambdas ["x", "y"] (var "f" @@ int32 0 @@ var "x")] $ var "f") ["t0"] (T.functionMany [T.int32, T.int32, T.var "t0"]), ----Untyped input: ---- letrec f = (\x. (\y. (f 0 x))) ---- g = (\xx. (\yy. (g 0 xx))) ---- in (pair f g) ----Type inferred by Hindley-Milner: ---- ((Int32 -> (Int32 -> v12)) * (Int32 -> (Int32 -> v14))) expectPoly 10 [] (lets [ "f">: lambdas ["x", "y"] (var "f" @@ int32 0 @@ var "x"), "g">: lambda "xx" $ lambda "yy" (var "g" @@ int32 0 @@ var "xx")] $ pair (var "f") (var "g")) ["t0", "t1"] (T.pair (T.functionMany [T.int32, T.int32, T.var "t0"]) (T.functionMany [T.int32, T.int32, T.var "t1"])), -- Note: in the following three test cases, the original Algorithm W implementation and the new inference -- implementation find slightly different results. This is a result of tradeoffs between stronger support -- for monomorphic recursion vs. stronger support for wide letrecs with polymorphism. -- --Untyped input: -- -- letrecs f = (\x. (\y. (g 0 x))) -- -- g = (\u. (\v. (f v 0))) -- -- in (pair f g) -- --System F type: -- -- ((v12 -> (Nat -> v13)) * (Nat -> (v15 -> v16))) expectPoly 11 [] (lets [ "f">: lambda "x" $ lambda "y" (var "g" @@ int32 0 @@ var "x"), "g">: lambda "u" $ lambda "v" (var "f" @@ var "v" @@ int32 0)] $ pair (var "f") (var "g")) ["t0", "t1", "t2", "t3"] (T.pair (T.functionMany [T.var "t0", T.int32, T.var "t1"]) (T.functionMany [T.int32, T.var "t2", T.var "t3"])), -- --Untyped input: -- -- letrecs f = (\x. (\y. (g 0 0))) -- -- g = (\u. (\v. (f v 0))) -- -- in (pair f g) -- --System F type: -- -- ((Nat -> (Nat -> v12)) * (Nat -> (Nat -> v14))) expectPoly 12 [] (lets [ "f">: lambda "x" $ lambda "y" (var "g" @@ int32 0 @@ int32 0), "g">: lambda "u" $ lambda "v" (var "f" @@ var "v" @@ int32 0)] $ pair (var "f") (var "g")) ["t0", "t1"] (T.pair (T.functionMany [T.int32, T.int32, T.var "t0"]) (T.functionMany [T.int32, T.int32, T.var "t1"])), -- --Untyped input: -- -- letrecs f = (\x. (\y. (g 0 x))) -- -- g = (\u. (\v. (f 0 0))) -- -- in (pair f g) -- --System F type: -- -- ((Nat -> (Nat -> v12)) * (Nat -> (Nat -> v14))) expectPoly 13 [] (lets [ "f">: lambda "x" $ lambda "y" (var "g" @@ int32 0 @@ var "x"), "g">: lambda "u" $ lambda "v" (var "f" @@ int32 0 @@ int32 0)] $ pair (var "f") (var "g")) ["t0", "t1"] (T.pair (T.functionMany [T.int32, T.int32, T.var "t0"]) (T.functionMany [T.int32, T.int32, T.var "t1"]))] where -- Placeholders for the primitives in @wisnesky's test cases; they are not necessarily the same functions, -- but they have the same types. primPred = primitive _math_neg primSucc = primitive _math_neg