Îõ³h&Ý Safe-Inferred)hypergeometricCDF of the standard normal  N(0,1) hypergeometric &https://mathworld.wolfram.com/Erf.htmlerfhypergeometricˆ _pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \displaystyle\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_p)_n}{(b_1)_b\cdots(b_q)_n}\frac{z^n}{n!} ÙThis iterates until the result stabilizes, so don't use it on arbitrary-precision types!hypergeometric a_1,\ldots,a_p hypergeometric b_1,\ldots,b_q hypergeometric z  Safe-InferredÑhypergeometricIncomplete beta function.Calculated with :B(z;a,b)=\displaystyle\frac{z^a}{a}{}_2F_1(a, 1-b; a+1; z)hypergeometric=B(x, y) = \displaystyle\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} This uses . under the hood to extend its domain somewhat.hypergeometric \Gamma(z)hypergeometric\text{log} (\Gamma(z))ÛLanczos approximation. This is exactly the approach described in Press, William H. et al. Numerical Recipes5, 3rd ed., extended to work on negative real numbers.hypergeometriczhypergeometricahypergeometricbhypergeometric z  hypergeometric-0.1.1.0-inplaceMath.HypergeometricMath.SpecialFunctionncdferfhypergeometricincbetabetagammagammaln