Îõ³h&ÇŠ   Safe-InferredhypergeometricCDF of the standard normal  N(0,1) hypergeometric &https://mathworld.wolfram.com/Erf.htmlerfhypergeometricˆ _pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \displaystyle\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_p)_n}{(b_1)_b\cdots(b_q)_n}\frac{z^n}{n!} *This iterates until the result stabilizes.hypergeometric a_1,\ldots,a_p hypergeometric b_1,\ldots,b_q hypergeometric z  Safe-Inferredx hypergeometricConverges if and only if |x| < \sqrt{\nu} hypergeometric hypergeometrica^{-1}x^a{}_1F_1(a;1+a;-x) hypergeometricIncomplete beta function, |z|<1Calculated with :B(z;a,b)=\displaystyle\frac{z^a}{a}{}_2F_1(a, 1-b; a+1; z) hypergeometric/I(z;a,b) = \displaystyle\frac{B(z;a,b)}{B(a,b)}hypergeometrichypergeometric=B(x, y) = \displaystyle\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} This uses  . under the hood to extend its domain somewhat.hypergeometric \Gamma(z) hypergeometric\text{log} (\Gamma(z))ÛLanczos approximation. This is exactly the approach described in Press, William H. et al. Numerical Recipes5, 3rd ed., extended to work on negative real numbers.hypergeometric\nu (degrees of freedom)hypergeometricxhypergeometricr (degrees of freedom)hypergeometric\chi^2hypergeometriczhypergeometricahypergeometricbhypergeometricnhypergeometricmhypergeometricx hypergeometric z         hypergeometric-0.1.2.0-inplaceMath.HypergeometricMath.SpecialFunctionncdferfhypergeometrictcdfchisqcdfincbetafcdfbetagammagammalnincgammaregbeta