Îõ³h&V    Safe-Inferred hypergeometricCDF of the standard normal  N(0,1) hypergeometric &https://mathworld.wolfram.com/Erf.htmlerfhypergeometricˆ _pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \displaystyle\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_p)_n}{(b_1)_b\cdots(b_q)_n}\frac{z^n}{n!} *This iterates until the result stabilizes.hypergeometric a_1,\ldots,a_p hypergeometric b_1,\ldots,b_q hypergeometric z  Safe-Inferred hypergeometricConverges if and only if |x| < \sqrt{\nu} hypergeometric$Bessel functions of the first kind,  J_\alpha(x).hypergeometric hypergeometrica^{-1}x^a{}_1F_1(a;1+a;-x) hypergeometricIncomplete beta function, |z|<1Calculated with :B(z;a,b)=\displaystyle\frac{z^a}{a}{}_2F_1(a, 1-b; a+1; z) hypergeometric/I(z;a,b) = \displaystyle\frac{B(z;a,b)}{B(a,b)}hypergeometrichypergeometric=B(x, y) = \displaystyle\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} This uses  . under the hood to extend its domain somewhat. hypergeometric \Gamma(z) hypergeometric\text{log} (\Gamma(z))ÛLanczos approximation. This is exactly the approach described in Press, William H. et al. Numerical Recipes5, 3rd ed., extended to work on negative real numbers.hypergeometric\nu (degrees of freedom)hypergeometricxhypergeometric\alphahypergeometricxhypergeometricr (degrees of freedom)hypergeometric\chi^2hypergeometriczhypergeometricahypergeometricbhypergeometricnhypergeometricmhypergeometricx hypergeometric z         -hypergeometric-0.1.3.0-1A5Q4ves30d1DS1Nihk64lMath.HypergeometricMath.SpecialFunctionncdferfhypergeometrictcdfbessel1chisqcdfincbetafcdfbetagammagammalnincgammaregbeta