Îõ³h* \      0.1.5.1 Safe-Inferred>hypergeometricCDF of the standard normal  N(0,1) hypergeometric &https://mathworld.wolfram.com/Erf.htmlerfhypergeometricEuler's transform:Õ \displaystyle _2F_1(a,b;c;z) = (1-z)^{-a} {}_2F_1\left(a,c-b;c;\frac{z}{z-1}\right) 'Koekoek, Roelef and Swarttouw, René F.  "https://arxiv.org/abs/math/9602214ÌThe Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue.hypergeometricˆ _pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \displaystyle\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_p)_n}{(b_1)_b\cdots(b_q)_n}\frac{z^n}{n!} The radius of convergence isò \rho = \begin{cases} \infty & \text{if} & pq+1 \\ \end{cases} *This iterates until the result stabilizes.hypergeometricahypergeometricbhypergeometricchypergeometriczhypergeometric a_1,\ldots,a_p hypergeometric b_1,\ldots,b_q hypergeometric z  Safe-Inferred ñ hypergeometricConverges if and only if |x| \leq \sqrt{\nu} hypergeometric$Bessel functions of the first kind,  J_\alpha(x).hypergeometric Éhttps://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html,Complete elliptic integral of the first kindhypergeometric ;https://mathworld.wolfram.com/Arithmetic-GeometricMean.htmlArithmetic-geometric meanhypergeometrichypergeometrica^{-1}x^a{}_1F_1(a;1+a;-x) hypergeometricIncomplete beta function,  |z|\leq 1Calculated with :B(z;a,b)=\displaystyle\frac{z^a}{a}{}_2F_1(a, 1-b; a+1; z) hypergeometric :https://mathworld.wolfram.com/RegularizedBetaFunction.htmlRegularized beta function,  |z|\leq 1/I(z;a,b) = \displaystyle\frac{B(z;a,b)}{B(a,b)} hypergeometric hypergeometric=B(x, y) = \displaystyle\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} This uses . under the hood to extend its domain somewhat. hypergeometric \Gamma(z)hypergeometric\text{log} (\Gamma(z))ÛLanczos approximation. This is exactly the approach described in Press, William H. et al. Numerical Recipes5, 3rd ed., extended to work on negative real numbers.hypergeometric\nu (degrees of freedom)hypergeometricxhypergeometric\alphahypergeometricxhypergeometricr (degrees of freedom)hypergeometric\chi^2 hypergeometriczhypergeometricahypergeometricb hypergeometriczhypergeometricahypergeometricb hypergeometricnhypergeometricmhypergeometricxhypergeometric z           -hypergeometric-0.1.5.1-3JAVDkhO0HXBKtSOr5skU4Math.HypergeometricMath.SpecialFunctionhypergeometricncdferfeulertcdfbessel1completeEllipticagmchisqcdfincbetaregbetafcdfbetagammagammalnincgamma