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The is the Idris Tutorial. It will teach you about programming in the Idris Language.

Note: The documentation for Idris has been published under the Creative Commons CC0 License. As such to
the extent possible under law, The Idris Community has waived all copyright and related or neighboring rights to
Documentation for Idris.

More information concerning the CC0 can be found online at: http://creativecommons.org/publicdomain/zero/1.0/
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CHAPTER

ONE

INTRODUCTION

In conventional programming languages, there is a clear distinction between types and values. For example,
in Haskell, the following are types, representing integers, characters, lists of characters, and lists of any value
respectively:

• Int, Char, [Char], [a]

Correspondingly, the following values are examples of inhabitants of those types:

• 42, ’a’, "Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Dependent types allow types to “depend”
on values — in other words, types are a first class language construct and can be manipulated like any other value.
The standard example is the type of lists of a given length 1, Vect n a, where a is the element type and n is the
length of the list and can be an arbitrary term.

When types can contain values, and where those values describe properties, for example the length of a list, the
type of a function can begin to describe its own properties. Take for example the concatenation of two lists. This
operation has the property that the resulting list’s length is the sum of the lengths of the two input lists. We can
therefore give the following type to the app function, which concatenates vectors:

app : Vect n a -> Vect m a -> Vect (n + m) a

This tutorial introduces Idris, a general purpose functional programming language with dependent types. The goal
of the Idris project is to build a dependently typed language suitable for verifiable general purpose programming.
To this end, Idris is a compiled language which aims to generate efficient executable code. It also has a lightweight
foreign function interface which allows easy interaction with external C libraries.

Intended Audience

This tutorial is intended as a brief introduction to the language, and is aimed at readers already familiar with a
functional language such as Haskell or OCaml. In particular, a certain amount of familiarity with Haskell syntax
is assumed, although most concepts will at least be explained briefly. The reader is also assumed to have some
interest in using dependent types for writing and verifying systems software.

Example Code

This tutorial includes some example code, which has been tested with against Idris. These files are available with
the Idris distribution, so that you can try them out easily. They can be found under samples. It is, however,
strongly recommended that you type them in yourself, rather than simply loading and reading them.

1 Typically, and perhaps confusingly, referred to in the dependently typed programming literature as “vectors”
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CHAPTER

TWO

GETTING STARTED

Prerequisites

Before installing Idris, you will need to make sure you have all of the necessary libraries and tools. You will need:

• A fairly recent Haskell platform. Version 2013.2.0.0 should be sufficiently recent, though it is better to
be completely up to date.

• The GNU Multiple Precision Arithmetic Library (GMP) is available from MacPorts/Homebrew and all
major Linux distributions.

Downloading and Installing

The easiest way to install Idris, if you have all of the prerequisites, is to type:

cabal update; cabal install idris

This will install the latest version released on Hackage, along with any dependencies. If, however, you would
like the most up to date development version you can find it, as well as build instructions, on GitHub at:
https://github.com/idris-lang/Idris-dev.

If you haven’t previously installed anything using Cabal, then Idris may not be on your path. Should the Idris
executable not be found please ensure that you have added ~/.cabal/bin to your $PATH environment variable.
Mac OS X users may find they need to add ~/Library/Haskell/bin instead, and Windows users will
typically find that Cabal installs programs in %HOME%\AppData\Roaming\cabal\bin.

To check that installation has succeeded, and to write your first Idris program, create a file called hello.idr
containing the following text:

module Main

main : IO ()
main = putStrLn "Hello world"

If you are familiar with Haskell, it should be fairly clear what the program is doing and how it works, but if not,
we will explain the details later. You can compile the program to an executable by entering idris hello.idr
-o hello at the shell prompt. This will create an executable called hello, which you can run:

$ idris hello.idr -o hello
$ ./hello
Hello world

Please note that the dollar sign $ indicates the shell prompt! Some useful options to the Idris command are:

• -o prog to compile to an executable called prog.

• --check type check the file and its dependencies without starting the interactive environment.

5
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• --package pkg add package as dependency, e.g. --package contrib to make use of the contrib
package.

• --help display usage summary and command line options.

The Interactive Environment

Entering idris at the shell prompt starts up the interactive environment. You should see something like the
following:

$ idris
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.11

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Idris>

This gives a ghci style interface which allows evaluation of, as well as type checking of, expressions; theorem
proving, compilation; editing; and various other operations. The command :? gives a list of supported commands.
Below, we see an example run in which hello.idr is loaded, the type of main is checked and then the program
is compiled to the executable hello. Type checking a file, if successful, creates a bytecode version of the file (in
this case hello.ibc) to speed up loading in future. The bytecode is regenerated if the source file changes.

$ idris hello.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.11

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Type checking ./hello.idr

*hello> :t main
Main.main : IO ()

*hello> :c hello

*hello> :q
Bye bye
$ ./hello
Hello world

6 Chapter 2. Getting Started



CHAPTER

THREE

TYPES AND FUNCTIONS

Primitive Types

Idris defines several primitive types: Int, Integer and Float for numeric operations, Char and String
for text manipulation, and Ptr which represents foreign pointers. There are also several data types declared in
the library, including Bool, with values True and False. We can declare some constants with these types.
Enter the following into a file Prims.idr and load it into the Idris interactive environment by typing idris
Prims.idr:

module Prims

x : Int
x = 42

foo : String
foo = "Sausage machine"

bar : Char
bar = 'Z'

quux : Bool
quux = False

An Idris file consists of an optional module declaration (here module Prims) followed by an optional list of
imports and a collection of declarations and definitions. In this example no imports have been specified. However
Idris programs can consist of several modules and the definitions in each module each have their own namespace.
This is discussed further in Section Modules and Namespaces). When writing Idris programs both the order in
which definitions are given and indentation are significant. Functions and data types must be defined before use,
incidentally each definition must have a type declaration, for example see x : Int, foo : String, from
the above listing. New declarations must begin at the same level of indentation as the preceding declaration.
Alternatively, a semicolon ; can be used to terminate declarations.

A library module prelude is automatically imported by every Idris program, including facilities for IO, arith-
metic, data structures and various common functions. The prelude defines several arithmetic and comparison
operators, which we can use at the prompt. Evaluating things at the prompt gives an answer, and the type of the
answer. For example:

*prims> 6*6+6
42 : Integer

*prims> x == 6*6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive types. They are overloaded using
interfaces, as we will discuss in Section Interfaces and can be extended to work on user defined types. Boolean
expressions can be tested with the if...then...else construct, for example:

*prims> if x == 6 * 6 + 6 then "The answer!" else "Not the answer"
"The answer!" : String

7
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Data Types

Data types are declared in a similar way and with similar syntax to Haskell. Natural numbers and lists, for example,
can be declared as follows:

data Nat = Z | S Nat -- Natural numbers
-- (zero and successor)

data List a = Nil | (::) a (List a) -- Polymorphic lists

The above declarations are taken from the standard library. Unary natural numbers can be either zero (Z), or the
successor of another natural number (S k). Lists can either be empty (Nil) or a value added to the front of
another list (x :: xs). In the declaration for List, we used an infix operator ::. New operators such as this
can be added using a fixity declaration, as follows:

infixr 10 ::

Functions, data constructors and type constructors may all be given infix operators as names. They may be used
in prefix form if enclosed in brackets, e.g. (::). Infix operators can use any of the symbols:

:+-*\/=.?|&><!@$%^~#

Some operators built from these symbols can’t be user defined. These are :, =>, ->, <-, =, ?=, |, **, ==>, \,
%, ~, ?, and !.

Functions

Functions are implemented by pattern matching, again using a similar syntax to Haskell. The main difference is
that Idris requires type declarations for all functions, using a single colon : (rather than Haskell’s double colon
::). Some natural number arithmetic functions can be defined as follows, again taken from the standard library:

-- Unary addition
plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)

-- Unary multiplication
mult : Nat -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)

The standard arithmetic operators + and * are also overloaded for use by Nat, and are implemented using the
above functions. Unlike Haskell, there is no restriction on whether types and function names must begin with
a capital letter or not. Function names (plus and mult above), data constructors (Z, S, Nil and ::) and
type constructors (Nat and List) are all part of the same namespace. By convention, however, data types and
constructor names typically begin with a capital letter. We can test these functions at the Idris prompt:

Idris> plus (S (S Z)) (S (S Z))
4 : Nat
Idris> mult (S (S (S Z))) (plus (S (S Z)) (S (S Z)))
12 : Nat

Note: When displaying an element of Nat such as (S (S (S (S Z)))), Idris displays it as 4. The result of
plus (S (S Z)) (S (S Z)) is actually (S (S (S (S Z)))) which is the natural number 4. This can
be checked at the Idris prompt:

Idris> (S (S (S (S Z))))
4 : Nat

Like arithmetic operations, integer literals are also overloaded using interfaces, meaning that we can also test the
functions as follows:

8 Chapter 3. Types and Functions
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Idris> plus 2 2
4 : Nat
Idris> mult 3 (plus 2 2)
12 : Nat

You may wonder, by the way, why we have unary natural numbers when our computers have perfectly good
integer arithmetic built in. The reason is primarily that unary numbers have a very convenient structure which is
easy to reason about, and easy to relate to other data structures as we will see later. Nevertheless, we do not want
this convenience to be at the expense of efficiency. Fortunately, Idris knows about the relationship between Nat
(and similarly structured types) and numbers. This means it can optimise the representation, and functions such
as plus and mult.

where clauses

Functions can also be defined locally using where clauses. For example, to define a function which reverses a
list, we can use an auxiliary function which accumulates the new, reversed list, and which does not need to be
visible globally:

reverse : List a -> List a
reverse xs = revAcc [] xs where
revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented further than the outer function.

Note: Scope

Any names which are visible in the outer scope are also visible in the where clause (unless they have been
redefined, such as xs here). A name which appears only in the type will be in scope in the where clause if it is a
parameter to one of the types, i.e. it is fixed across the entire structure.

As well as functions, where blocks can include local data declarations, such as the following where MyLT is not
accessible outside the definition of foo:

foo : Int -> Int
foo x = case isLT of

Yes => x*2
No => x*4

where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

In general, functions defined in a where clause need a type declaration just like any top level function. However,
the type declaration for a function f can be omitted if:

• f appears in the right hand side of the top level definition

• The type of f can be completely determined from its first application

So, for example, the following definitions are legal:

even : Nat -> Bool
even Z = True
even (S k) = odd k where

odd Z = False
odd (S k) = even k

test : List Nat
test = [c (S 1), c Z, d (S Z)]

3.3. Functions 9
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where c x = 42 + x
d y = c (y + 1 + z y)

where z w = y + w

Dependent Types

First Class Types

In Idris, types are a first class language construct, meaning that they can be computed and manipulated (and passed
to functions) just like any other language construct. For example, we could write a function which computes a
type:

isSingleton : Bool -> Type
isSingleton True = Nat
isSingleton False = List Nat

This function calculates the appropriate type from a Bool which flags whether the type should be a singleton or
not. We can use this function to calculate a type anywhere that a type can be used. For example, it can be used to
calculate a return type:

mkSingle : (x : Bool) -> isSingleton x
mkSingle True = 0
mkSingle False = []

Or it can be used to have varying input types. The following function calculates either the sum of a list of Nat, or
returns the given Nat, depending on whether the singleton flag is true:

sum : (single : Bool) -> isSingleton single -> Nat
sum True x = x
sum False [] = 0
sum False (x :: xs) = x + sum False xs

Vectors

A standard example of a dependent data type is the type of “lists with length”, conventionally called vectors in
the dependent type literature. They are available as part of the Idris library, by importing Data.Vect, or we can
declare them as follows:

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that we have used the same constructor names as for List. Ad-hoc name overloading such as this is accepted
by Idris, provided that the names are declared in different namespaces (in practice, normally in different modules).
Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather different from the simple type declara-
tions above. We explicitly state the type of the type constructor Vect — it takes a Nat and a type as an argument,
where Type stands for the type of types. We say that Vect is indexed over Nat and parameterised by Type.
Each constructor targets a different part of the family of types. Nil can only be used to construct vectors with zero
length, and :: to construct vectors with non-zero length. In the type of ::, we state explicitly that an element of
type a and a tail of type Vect k a (i.e., a vector of length k) combine to make a vector of length S k.

We can define functions on dependent types such as Vect in the same way as on simple types such as List and
Nat above, by pattern matching. The type of a function over Vect will describe what happens to the lengths of
the vectors involved. For example, ++, defined as follows, appends two Vect:

10 Chapter 3. Types and Functions
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(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

The type of (++) states that the resulting vector’s length will be the sum of the input lengths. If we get the
definition wrong in such a way that this does not hold, Idris will not accept the definition. For example:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs -- BROKEN

When run through the Idris type checker, this results in the following:

$ idris vbroken.idr --check
vbroken.idr:9:23:When elaborating right hand side of Vect.++:
When elaborating an application of constructor Vect.:::

Type mismatch between
Vect (k + k) a (Type of xs ++ xs)

and
Vect (plus k m) a (Expected type)

Specifically:
Type mismatch between

plus k k
and

plus k m

This error message suggests that there is a length mismatch between two vectors — we needed a vector of length
k + m, but provided a vector of length k + k.

The Finite Sets

Finite sets, as the name suggests, are sets with a finite number of elements. They are available as part of the Idris
library, by importing Data.Fin, or can be declared as follows:

data Fin : Nat -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)

From the signature, we can see that this is a type constructor that takes a Nat, and produces a type. So this is not
a set in the sense of a collection that is a container of objects, rather it is the canonical set of unnamed elements,
as in “the set of 5 elements,” for example. Effectively, it is a type that captures integers that fall into the range of
zero to (n - 1) where n is the argument used to instantiate the Fin type. For example, Fin 5 can be thought
of as the type of integers between 0 and 4.

Let us look at the constructors in greater detail.

FZ is the zeroth element of a finite set with S k elements; FS n is the n+1th element of a finite set with S k
elements. Fin is indexed by a Nat, which represents the number of elements in the set. Since we can’t construct
an element of an empty set, neither constructor targets Fin Z.

As mentioned above, a useful application of the Fin family is to represent bounded natural numbers. Since the
first n natural numbers form a finite set of n elements, we can treat Fin n as the set of integers greater than or
equal to zero and less than n.

For example, the following function which looks up an element in a Vect, by a bounded index given as a Fin
n, is defined in the prelude:

index : Fin n -> Vect n a -> a
index FZ (x :: xs) = x
index (FS k) (x :: xs) = index k xs

3.4. Dependent Types 11
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This function looks up a value at a given location in a vector. The location is bounded by the length of the vector
(n in each case), so there is no need for a run-time bounds check. The type checker guarantees that the location is
no larger than the length of the vector, and of course no less than zero.

Note also that there is no case for Nil here. This is because it is impossible. Since there is no element of Fin Z,
and the location is a Fin n, then n can not be Z. As a result, attempting to look up an element in an empty vector
would give a compile time type error, since it would force n to be Z.

Implicit Arguments

Let us take a closer look at the type of index:

index : Fin n -> Vect n a -> a

It takes two arguments, an element of the finite set of n elements, and a vector with n elements of type a. But
there are also two names, n and a, which are not declared explicitly. These are implicit arguments to index. We
could also write the type of index as:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

Implicit arguments, given in braces {} in the type declaration, are not given in applications of index; their
values can be inferred from the types of the Fin n and Vect n a arguments. Any name beginning with a lower
case letter which appears as a parameter or index in a type declaration, which is not applied to any arguments,
will always be automatically bound as an implicit argument. Implicit arguments can still be given explicitly in
applications, using {a=value} and {n=value}, for example:

index {a=Int} {n=2} FZ (2 :: 3 :: Nil)

In fact, any argument, implicit or explicit, may be given a name. We could have declared the type of index as:

index : (i:Fin n) -> (xs:Vect n a) -> a

It is a matter of taste whether you want to do this — sometimes it can help document a function by making the
purpose of an argument more clear.

Furthermore, {} can be used to pattern match on the left hand side, i.e. {var = pat} gets an implicit variable
and attempts to pattern match on “pat”; For example :

isEmpty : Vect n a -> Bool
isEmpty {n = Z} _ = True
isEmpty {n = S k} _ = False

“using” notation

Sometimes it is useful to provide types of implicit arguments, particularly where there is a dependency ordering,
or where the implicit arguments themselves have dependencies. For example, we may wish to state the types of
the implicit arguments in the following definition, which defines a predicate on vectors (this is also defined in
Data.Vect, under the name Elem):

data IsElem : a -> Vect n a -> Type where
Here : {x:a} -> {xs:Vect n a} -> IsElem x (x :: xs)
There : {x,y:a} -> {xs:Vect n a} -> IsElem x xs -> IsElem x (y :: xs)

An instance of IsElem x xs states that x is an element of xs. We can construct such a predicate if the required
element is Here, at the head of the vector, or There, in the tail of the vector. For example:

testVec : Vect 4 Int
testVec = 3 :: 4 :: 5 :: 6 :: Nil

inVect : IsElem 5 Main.testVec
inVect = There (There Here)
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Important: Implicit Arguments and Scope

Within the type signature the typechecker will treat all variables that start with an lowercase letter and are not
applied to something else as an implicit variable. To get the above code example to compile you will need to
provide a qualified name for testVec. In the example above, we have assumed that the code lives within the
Main module.

If the same implicit arguments are being used a lot, it can make a definition difficult to read. To avoid this problem,
a using block gives the types and ordering of any implicit arguments which can appear within the block:

using (x:a, y:a, xs:Vect n a)
data IsElem : a -> Vect n a -> Type where

Here : IsElem x (x :: xs)
There : IsElem x xs -> IsElem x (y :: xs)

Note: Declaration Order and mutual blocks

In general, functions and data types must be defined before use, since dependent types allow functions to appear
as part of types, and their reduction behaviour to affect type checking. However, this restriction can be relaxed by
using a mutual block, which allows data types and functions to be defined simultaneously:

mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k

odd : Nat -> Bool
odd Z = False
odd (S k) = even k

In a mutual block, first all of the type declarations are added, then the function bodies. As a result, none of the
function types can depend on the reduction behaviour of any of the functions in the block.

I/O

Computer programs are of little use if they do not interact with the user or the system in some way. The difficulty
in a pure language such as Idris — that is, a language where expressions do not have side-effects — is that I/O is
inherently side-effecting. Therefore in Idris, such interactions are encapsulated in the type IO:

data IO a -- IO operation returning a value of type a

We’ll leave the definition of IO abstract, but effectively it describes what the I/O operations to be executed are,
rather than how to execute them. The resulting operations are executed externally, by the run-time system. We’ve
already seen one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of putStrLn explains that it takes a string, and returns an element of the unit type () via an I/O action.
There is a variant putStr which outputs a string without a newline:

putStrLn : String -> IO ()
putStr : String -> IO ()

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for reading and writing files, including:
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data File -- abstract
data Mode = Read | Write | ReadWrite

openFile : (f : String) -> (m : Mode) -> IO (Either FileError File)
closeFile : File -> IO ()

fGetLine : (h : File) -> IO (Either FileError String)
fPutStr : (h : File) -> (str : String) -> IO (Either FileError ())
fEOF : File -> IO Bool

Note that several of these return Either, since they may fail.

“do” notation

I/O programs will typically need to sequence actions, feeding the output of one computation into the input of the
next. IO is an abstract type, however, so we can’t access the result of a computation directly. Instead, we sequence
operations with do notation:

greet : IO ()
greet = do putStr "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

The syntax x <- iovalue executes the I/O operation iovalue, of type IO a, and puts the result, of type a
into the variable x. In this case, getLine returns an IO String, so name has type String. Indentation is
significant — each statement in the do block must begin in the same column. The return operation allows us to
inject a value directly into an IO operation:

return : a -> IO a

As we will see later, do notation is more general than this, and can be overloaded.

Laziness

Normally, arguments to functions are evaluated before the function itself (that is, Idris uses eager evaluation).
However, this is not always the best approach. Consider the following function:

ifThenElse : Bool -> a -> a -> a;
ifThenElse True t e = t;
ifThenElse False t e = e;

This function uses one of the t or e arguments, but not both (in fact, this is used to implement the
if...then...else construct as we will see later. We would prefer if only the argument which was used
was evaluated. To achieve this, Idris provides a Lazy data type, which allows evaluation to be suspended:

data Lazy : Type -> Type where
Delay : (val : a) -> Lazy a

Force : Lazy a -> a

A value of type Lazy a is unevaluated until it is forced by Force. The Idris type checker knows about the
Lazy type, and inserts conversions where necessary between Lazy a and a, and vice versa. We can therefore
write ifThenElse as follows, without any explicit use of Force or Delay:

ifThenElse : Bool -> Lazy a -> Lazy a -> a;
ifThenElse True t e = t;
ifThenElse False t e = e;
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Useful Data Types

Idris includes a number of useful data types and library functions (see the libs/ directory in the distribution).
This chapter describes a few of these. The functions described here are imported automatically by every Idris
program, as part of Prelude.idr.

List and Vect

We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that the constructor names are the same for each — constructor names (in fact, names in general) can be
overloaded, provided that they are declared in different namespaces (see Section Modules and Namespaces), and
will typically be resolved according to their type. As syntactic sugar, any type with the constructor names Nil
and :: can be written in list form. For example:

• [] means Nil

• [1,2,3] means 1 :: 2 :: 3 :: Nil

The library also defines a number of functions for manipulating these types. map is overloaded both for List
and Vect and applies a function to every element of the list or vector.

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect n a -> Vect n b
map f [] = []
map f (x :: xs) = f x :: map f xs

For example, given the following vector of integers, and a function to double an integer:

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

the function map can be used as follows to double every element in the vector:

*usefultypes> show (map double intVec)
"[2, 4, 6, 8, 10]" : String

For more details of the functions available on List and Vect, look in the library files:

• libs/prelude/Prelude/List.idr

• libs/base/Data/List.idr

• libs/base/Data/Vect.idr

• libs/base/Data/VectType.idr

Functions include filtering, appending, reversing, and so on. Also remember that Idris is still in development, so
if you don’t see the function you need, please feel free to add it and submit a patch!
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Aside: Anonymous functions and operator sections

There are actually neater ways to write the above expression. One way would be to use an anonymous function:

*usefultypes> show (map (\x => x * 2) intVec)
"[2, 4, 6, 8, 10]" : String

The notation \x => val constructs an anonymous function which takes one argument, x and returns the expres-
sion val. Anonymous functions may take several arguments, separated by commas, e.g. \x, y, z => val.
Arguments may also be given explicit types, e.g. \x : Int => x * 2, and can pattern match, e.g. \(x,
y) => x + y. We could also use an operator section:

*usefultypes> show (map (* 2) intVec)
"[2, 4, 6, 8, 10]" : String

(*2) is shorthand for a function which multiplies a number by 2. It expands to \x => x * 2. Similarly, (2*)
would expand to \x => 2 * x.

Maybe

Maybe describes an optional value. Either there is a value of the given type, or there isn’t:

data Maybe a = Just a | Nothing

Maybe is one way of giving a type to an operation that may fail. For example, looking something up in a List
(rather than a vector) may result in an out of bounds error:

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying a function to the value, if there
is one, or by providing a default value:

maybe : Lazy b -> Lazy (a -> b) -> Maybe a -> b

Note that the types of the first two arguments are wrapped in Lazy. Since only one of the two arguments will
actually be used, we mark them as Lazy in case they are large expressions where it would be wasteful to compute
and then discard them.

Tuples

Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

As syntactic sugar, we can write (a, b) which, according to context, means either Pair a b or MkPair a
b. Tuples can contain an arbitrary number of values, represented as nested pairs:

fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

*usefultypes> fst jim
"Jim" : String

*usefultypes> snd jim
(25, "Cambridge") : (Int, String)

*usefultypes> jim == ("Jim", (25, "Cambridge"))
True : Bool
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Dependent Pairs

Dependent pairs allow the type of the second element of a pair to depend on the value of the first element.
Traditionally, these are referred to as “sigma types”:

data Sigma : (a : Type) -> (P : a -> Type) -> Type where
MkSigma : {P : a -> Type} -> (x : a) -> P x -> Sigma a P

Again, there is syntactic sugar for this. (a : A ** P) is the type of a pair of A and P, where the name a can
occur inside P. ( a ** p ) constructs a value of this type. For example, we can pair a number with a Vect of
a particular length.

vec : (n : Nat ** Vect n Int)
vec = (2 ** [3, 4])

If you like, you can write it out the long way, the two are precisely equivalent.

vec : Sigma Nat (\n => Vect n Int)
vec = MkSigma 2 [3, 4]

The type checker could of course infer the value of the first element from the length of the vector. We can write
an underscore _ in place of values which we expect the type checker to fill in, so the above definition could also
be written as:

vec : (n : Nat ** Vect n Int)
vec = (_ ** [3, 4])

We might also prefer to omit the type of the first element of the pair, since, again, it can be inferred:

vec : (n ** Vect n Int)
vec = (_ ** [3, 4])

One use for dependent pairs is to return values of dependent types where the index is not necessarily known in
advance. For example, if we filter elements out of a Vect according to some predicate, we will not know in
advance what the length of the resulting vector will be:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

If the Vect is empty, the result is easy:

filter p Nil = (_ ** [])

In the :: case, we need to inspect the result of a recursive call to filter to extract the length and the vector
from the result. To do this, we use with notation, which allows pattern matching on intermediate values:

filter p (x :: xs) with (filter p xs)
| ( _ ** xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' )

We will see more on with notation later.

Records

Records are data types which collect several values (the record’s fields) together. Idris provides syntax for defining
records and automatically generating field access and update functions. Unlike the syntax used for data structures,
records in Idris follow a different syntax to that seen with Haskell. For example, we can represent a person’s name
and age in a record:

record Person where
constructor MkPerson
firstName, middleName, lastName : String
age : Int

fred : Person
fred = MkPerson "Fred" "Joe" "Bloggs" 30
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The constructor name is provided using the constructor keyword, and the fields are then given which are in
an indented block following the where keyword (here, firstName, middleName, lastName, and age). You
can declare multiple fields on a single line, provided that they have the same type. The field names can be used to
access the field values:

*record> firstName fred
"Fred" : String

*record> age fred
30 : Int

*record> :t firstName
firstName : Person -> String

We can also use the field names to update a record (or, more precisely, produce a copy of the record with the given
fields updated):

*record> record { firstName = "Jim" } fred
MkPerson "Jim" "Joe" "Bloggs" 30 : Person

*record> record { firstName = "Jim", age = 20 } fred
MkPerson "Jim" "Joe" "Bloggs" 20 : Person

The syntax record { field = val, ... } generates a function which updates the given fields in a
record.

Each record is defined in its own namespace, which means that field names can be reused in multiple records.

Records, and fields within records, can have dependent types. Updates are allowed to change the type of a field,
provided that the result is well-typed.

record Class where
constructor ClassInfo
students : Vect n Person
className : String

It is safe to update the students field to a vector of a different length because it will not affect the type of the
record:

addStudent : Person -> Class -> Class
addStudent p c = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")
ClassInfo [MkPerson "Fred" "Joe" "Bloggs" 30] "CS" : Class

Nested record update

Idris also provides a convenient syntax for accessing and updating nested records. For example, if a field is
accessible with the expression c (b (a x)), it can be updated using the following syntax:

record { a->b->c = val } x

This returns a new record, with the field accessed by the path a->b->c set to val. The syntax is first class, i.e.
record { a->b->c = val } itself has a function type. Symmetrically, the field can also be accessed with
the following syntax:

record { a->b->c } x

Dependent Records

Records can also be dependent on values. Records parameters, which are not subject to field updates. The
parameters appear as arguments to the resulting type, and are written following the record type name. For example,
a pair type could be defined as follows:
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record Prod a b where
constructor Times
fst : a
snd : b

Using the class record from the original introduction to records. The size of the class can be restricted using a
Vect and the size promoted to the type level by parameterising the record with the size. For example:

record SizedClass (size : Nat) where
constructor SizedClassInfo
students : Vect size Person
className : String

Note that it is no longer possible to use the addStudent function from earlier, since that would change the size
of the class. A function to add a student must now specify in the type that the size of the class has been increased
by one. As the size is specified using natural numbers, the new value can be incremented using the S constructor.

addStudent : Person -> SizedClass n -> SizedClass (S n)
addStudent p c = SizedClassInfo (p :: students c) (className c)

More Expressions

let bindings

Intermediate values can be calculated using let bindings:

mirror : List a -> List a
mirror xs = let xs' = reverse xs in

xs ++ xs'

We can do simple pattern matching in let bindings too. For example, we can extract fields from a record as
follows, as well as by pattern matching at the top level:

data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in

name ++ " is " ++ show age ++ " years old"

List comprehensions

Idris provides comprehension notation as a convenient shorthand for building lists. The general form is:

[ expression | qualifiers ]

This generates the list of values produced by evaluating the expression, according to the conditions given by
the comma separated qualifiers. For example, we can build a list of Pythagorean triples as follows:

pythag : Int -> List (Int, Int, Int)
pythag n = [ (x, y, z) | z <- [1..n], y <- [1..z], x <- [1..y],

x*x + y*y == z*z ]

The [a..b] notation is another shorthand which builds a list of numbers between a and b. Alternatively
[a,b..c] builds a list of numbers between a and c with the increment specified by the difference between
a and b. This works for any numeric type, using the count function from the prelude.
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case expressions

Another way of inspecting intermediate values of simple types is to use a case expression. The following func-
tion, for example, splits a string into two at a given character:

splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of

(x, y) => (x, strTail y)

break is a library function which breaks a string into a pair of strings at the point where the given function returns
true. We then deconstruct the pair it returns, and remove the first character of the second string.

A case expression can match several cases, for example, to inspect an intermediate value of type Maybe a.
Recall list_lookup which looks up an index in a list, returning Nothing if the index is out of bounds. We
can use this to write lookup_default, which looks up an index and returns a default value if the index is out
of bounds:

lookup_default : Nat -> List a -> a -> a
lookup_default i xs def = case list_lookup i xs of

Nothing => def
Just x => x

If the index is in bounds, we get the value at that index, otherwise we get a default value:

*usefultypes> lookup_default 2 [3,4,5,6] (-1)
5 : Integer

*usefultypes> lookup_default 4 [3,4,5,6] (-1)
-1 : Integer

Restrictions: The case construct is intended for simple analysis of intermediate expressions to avoid the need
to write auxiliary functions, and is also used internally to implement pattern matching let and lambda bindings.
It will only work if:

• Each branch matches a value of the same type, and returns a value of the same type.

• The type of the result is “known”. i.e. the type of the expression can be determined without type checking
the case-expression itself.
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CHAPTER

FOUR

INTERFACES

We often want to define functions which work across several different data types. For example, we would like
arithmetic operators to work on Int, Integer and Float at the very least. We would like == to work on the
majority of data types. We would like to be able to display different types in a uniform way.

To achieve this, we use interfaces, which are similar to type classes in Haskell or traits in Rust. To define an
interface, we provide a collection of overloadable functions. A simple example is the Show interface, which is
defined in the prelude and provides an interface for converting values to String:

interface Show a where
show : a -> String

This generates a function of the following type (which we call a method of the Show interface):

show : Show a => a -> String

We can read this as: “under the constraint that a has an implementation of Show, take an input a and return a
String.” An implementation of an interface is defined by giving definitions of the methods of the interface. For
example, the Show implementation for Nat could be defined as:

Show Nat where
show Z = "Z"
show (S k) = "s" ++ show k

Idris> show (S (S (S Z)))
"sssZ" : String

Only one implementation of an interface can be given for a type — implementations may not overlap. Implemen-
tation declarations can themselves have constraints. To help with resolution, the arguments of an implementation
must be constructors (either data or type constructors), variables or constants (i.e. you cannot give an implemen-
tation for a function). For example, to define a Show implementation for vectors, we need to know that there is a
Show implementation for the element type, because we are going to use it to convert each element to a String:

Show a => Show (Vect n a) where
show xs = "[" ++ show' xs ++ "]" where

show' : Vect n a -> String
show' Nil = ""
show' (x :: Nil) = show x
show' (x :: xs) = show x ++ ", " ++ show' xs

Default Definitions

The library defines an Eq interface which provides methods for comparing values for equality or inequality, with
implementations for all of the built-in types:

interface Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool
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To declare an implementation for a type, we have to give definitions of all of the methods. For example, for an
implementation of Eq for Nat:

Eq Nat where
Z == Z = True
(S x) == (S y) = x == y
Z == (S y) = False
(S x) == Z = False

x /= y = not (x == y)

It is hard to imagine many cases where the /= method will be anything other than the negation of the result of
applying the == method. It is therefore convenient to give a default definition for each method in the interface
declaration, in terms of the other method:

interface Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

A minimal complete implementation of Eq requires either == or /= to be defined, but does not require both. If a
method definition is missing, and there is a default definition for it, then the default is used instead.

Extending Interfaces

Interfaces can also be extended. A logical next step from an equality relation Eq is to define an ordering relation
Ord. We can define an Ord interface which inherits methods from Eq as well as defining some of its own:

data Ordering = LT | EQ | GT

interface Eq a => Ord a where
compare : a -> a -> Ordering

(<) : a -> a -> Bool
(>) : a -> a -> Bool
(<=) : a -> a -> Bool
(>=) : a -> a -> Bool
max : a -> a -> a
min : a -> a -> a

The Ord interface allows us to compare two values and determine their ordering. Only the compare method is
required; every other method has a default definition. Using this we can write functions such as sort, a function
which sorts a list into increasing order, provided that the element type of the list is in the Ord interface. We give
the constraints on the type variables left of the fat arrow =>, and the function type to the right of the fat arrow:

sort : Ord a => List a -> List a

Functions, interfaces and implementations can have multiple constraints. Multiple constraints are written in brack-
ets in a comma separated list, for example:

sortAndShow : (Ord a, Show a) => List a -> String
sortAndShow xs = show (sort xs)

Functors and Applicatives

So far, we have seen single parameter interfaces, where the parameter is of type Type. In general, there can be
any number of parameters (even zero), and the parameters can have any type. If the type of the parameter is not
Type, we need to give an explicit type declaration. For example, the Functor interface is defined in the prelude:
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interface Functor (f : Type -> Type) where
map : (m : a -> b) -> f a -> f b

A functor allows a function to be applied across a structure, for example to apply a function to every element in a
List:

Functor List where
map f [] = []
map f (x::xs) = f x :: map f xs

Idris> map (*2) [1..10]
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer

Having defined Functor, we can define Applicative which abstracts the notion of function application:

infixl 2 <*>

interface Functor f => Applicative (f : Type -> Type) where
pure : a -> f a
(<*>) : f (a -> b) -> f a -> f b

Monads and do-notation

The Monad interface allows us to encapsulate binding and computation, and is the basis of do-notation introduced
in Section “do” notation. It extends Applicative as defined above, and is defined as follows:

interface Applicative m => Monad (m : Type -> Type) where
(>>=) : m a -> (a -> m b) -> m b

Inside a do block, the following syntactic transformations are applied:

• x <- v; e becomes v >>= (\x => e)

• v; e becomes v >>= (\_ => e)

• let x = v; e becomes let x = v in e

IO has an implementation of Monad, defined using primitive functions. We can also define an implementation
for Maybe, as follows:

Monad Maybe where
Nothing >>= k = Nothing
(Just x) >>= k = k x

Using this we can, for example, define a function which adds two Maybe Int, using the monad to encapsulate
the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x' <- x -- Extract value from x

y' <- y -- Extract value from y
return (x' + y') -- Add them

This function will extract the values from x and y, if they are both available, or return Nothing if one or both
are not (“fail fast”). Managing the Nothing cases is achieved by the >>= operator, hidden by the do notation.

*ifaces> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

*ifaces> m_add (Just 20) Nothing
Nothing : Maybe Int
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Pattern Matching Bind

Sometimes we want to pattern match immediately on the result of a function in do notation. For example, let’s say
we have a function readNumber which reads a number from the console, returning a value of the form Just
x if the number is valid, or Nothing otherwise:

readNumber : IO (Maybe Nat)
readNumber = do

input <- getLine
if all isDigit (unpack input)

then pure (Just (cast input))
else pure Nothing

If we then use it to write a function to read two numbers, returning Nothing if neither are valid, then we would
like to pattern match on the result of readNumber:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =
do x <- readNumber

case x of
Nothing => pure Nothing
Just x_ok => do y <- readNumber

case y of
Nothing => pure Nothing
Just y_ok => pure (Just (x_ok, y_ok))

If there’s a lot of error handling, this could get deeply nested very quickly! So instead, we can combine the bind
and the pattern match in one line. For example, we could try pattern matching on values of the form Just x_ok:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =
do Just x_ok <- readNumber

Just y_ok <- readNumber
pure (Just (x_ok, y_ok))

There is still a problem, however, because we’ve now omitted the case for Nothing so readNumbers is no
longer total! We can add the Nothing case back as follows:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =
do Just x_ok <- readNumber | Nothing => pure Nothing

Just y_ok <- readNumber | Nothing => pure Nothing
pure (Just (x_ok, y_ok))

The effect of this version of readNumbers is identical to the first (in fact, it is syntactic sugar for it and directly
translated back into that form). The first part of each statement (Just x_ok <- and Just y_ok <-) gives
the preferred binding - if this matches, execution will continue with the rest of the do block. The second part gives
the alternative bindings, of which there may be more than one.

!-notation

In many cases, using do-notation can make programs unnecessarily verbose, particularly in cases such as m_add
above where the value bound is used once, immediately. In these cases, we can use a shorthand version, as follows:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = return (!x + !y)

The notation !expr means that the expression expr should be evaluated and then implicitly bound. Conceptu-
ally, we can think of ! as being a prefix function with the following type:

(!) : m a -> a
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Note, however, that it is not really a function, merely syntax! In practice, a subexpression !expr will lift expr
as high as possible within its current scope, bind it to a fresh name x, and replace !expr with x. Expressions are
lifted depth first, left to right. In practice, !-notation allows us to program in a more direct style, while still giving
a notational clue as to which expressions are monadic.

For example, the expression:

let y = 42 in f !(g !(print y) !x)

is lifted to:

let y = 42 in do y' <- print y
x' <- x
g' <- g y' x'
f g'

Monad comprehensions

The list comprehension notation we saw in Section More Expressions is more general, and applies to anything
which has an implementation of both Monad and Alternative:

interface Applicative f => Alternative (f : Type -> Type) where
empty : f a
(<|>) : f a -> f a -> f a

In general, a comprehension takes the form [ exp | qual1, qual2, ..., qualn ] where quali can
be one of:

• A generator x <- e

• A guard, which is an expression of type Bool

• A let binding let x = e

To translate a comprehension [exp | qual1, qual2, ..., qualn], first any qualifier qual which is a
guard is translated to guard qual, using the following function:

guard : Alternative f => Bool -> f ()

Then the comprehension is converted to do notation:

do { qual1; qual2; ...; qualn; return exp; }

Using monad comprehensions, an alternative definition for m_add would be:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = [ x' + y' | x' <- x, y' <- y ]

Idiom brackets

While do notation gives an alternative meaning to sequencing, idioms give an alternative meaning to applica-
tion. The notation and larger example in this section is inspired by Conor McBride and Ross Paterson’s paper
“Applicative Programming with Effects” 1.

First, let us revisit m_add above. All it is really doing is applying an operator to two values extracted from Maybe
Int. We could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ = Nothing

1 Conor McBride and Ross Paterson. 2008. Applicative programming with effects. J. Funct. Program. 18, 1 (January 2008), 1-13.
DOI=10.1017/S0956796807006326 http://dx.doi.org/10.1017/S0956796807006326
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Using this, we can write an alternative m_add which uses this alternative notion of function application, with
explicit calls to m_app:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = m_app (m_app (Just (+)) x) y

Rather than having to insert m_app everywhere there is an application, we can use idiom brackets to do the job
for us. To do this, we can give Maybe an implementation of Applicative as follows, where <*> is defined in
the same way as m_app above (this is defined in the Idris library):

Applicative Maybe where
pure = Just

(Just f) <*> (Just a) = Just (f a)
_ <*> _ = Nothing

Using <*> we can use this implementation as follows, where a function application [| f a1 ...an |] is
translated into pure f <*> a1 <*> ... <*> an:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = [| x + y |]

An error-handling interpreter

Idiom notation is commonly useful when defining evaluators. McBride and Paterson describe such an evaluator 1,
for a language similar to the following:

data Expr = Var String -- variables
| Val Int -- values
| Add Expr Expr -- addition

Evaluation will take place relative to a context mapping variables (represented as Strings) to Int values, and
can possibly fail. We define a data type Eval to wrap an evaluator:

data Eval : Type -> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

Wrapping the evaluator in a data type means we will be able to provide implementations of interfaces for it later.
We begin by defining a function to retrieve values from the context during evaluation:

fetch : String -> Eval Int
fetch x = MkEval (\e => fetchVal e) where

fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs) = if (x == v)

then (Just val)
else (fetchVal xs)

When defining an evaluator for the language, we will be applying functions in the context of an Eval, so it
is natural to give Eval an implementation of Applicative. Before Eval can have an implementation of
Applicative it is necessary for Eval to have an implementation of Functor:

Functor Eval where
map f (MkEval g) = MkEval (\e => map f (g e))

Applicative Eval where
pure x = MkEval (\e => Just x)

(<*>) (MkEval f) (MkEval g) = MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing
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Evaluating an expression can now make use of the idiomatic application to handle errors:

eval : Expr -> Eval Int
eval (Var x) = fetch x
eval (Val x) = [| x |]
eval (Add x y) = [| eval x + eval y |]

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of

MkEval envFn => envFn env

Named Implementations

It can be desirable to have multiple implementations of an interface for the same type, for example to provide
alternative methods for sorting or printing values. To achieve this, implementations can be named as follows:

[myord] Ord Nat where
compare Z (S n) = GT
compare (S n) Z = LT
compare Z Z = EQ
compare (S x) (S y) = compare @{myord} x y

This declares an implementation as normal, but with an explicit name, myord. The syntax compare
@{myord} gives an explicit implementation to compare, otherwise it would use the default implementation
for Nat. We can use this, for example, to sort a list of Nat in reverse. Given the following list:

testList : List Nat
testList = [3,4,1]

We can sort it using the default Ord implementation, then the named implementation myord as follows, at the
Idris prompt:

*named_impl> show (sort testList)
"[sO, sssO, ssssO]" : String

*named_impl> show (sort @{myord} testList)
"[ssssO, sssO, sO]" : String

Determining Parameters

When an interface has more than one parameter, it can help resolution if the parameters used to find an implemen-
tation are restricted. For example:

interface Monad m => MonadState s (m : Type -> Type) | m where
get : m s
put : s -> m ()

In this interface, only m needs to be known to find an implementation of this interface, and s can then be determined
from the implementation. This is declared with the | m after the interface declaration. We call m a determining
parameter of the MonadState interface, because it is the parameter used to find an implementation.
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FIVE

MODULES AND NAMESPACES

An Idris program consists of a collection of modules. Each module includes an optional module declaration
giving the name of the module, a list of import statements giving the other modules which are to be imported,
and a collection of declarations and definitions of types, interfaces and functions. For example, the listing below
gives a module which defines a binary tree type BTree (in a file Btree.idr):

module Btree

data BTree a = Leaf
| Node (BTree a) a (BTree a)

insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = Btree.toList l ++ (v :: Btree.toList r)

toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

Then, this gives a main program (in a file bmain.idr) which uses the Btree module to sort a list:

module Main

import Btree

main : IO ()
main = do let t = toTree [1,8,2,7,9,3]

print (Btree.toList t)

The same names can be defined in multiple modules. This is possible because in practice names are qualified with
the name of the module. The names defined in the Btree module are, in full:

• Btree.BTree

• Btree.Leaf

• Btree.Node

• Btree.insert

• Btree.toList

• Btree.toTree

If names are otherwise unambiguous, there is no need to give the fully qualified name. Names can be disam-
biguated either by giving an explicit qualification, or according to their type.
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There is no formal link between the module name and its filename, although it is generally advisable to use the
same name for each. An import statement refers to a filename, using dots to separate directories. For example,
import foo.bar would import the file foo/bar.idr, which would conventionally have the module dec-
laration module foo.bar. The only requirement for module names is that the main module, with the main
function, must be called Main—although its filename need not be Main.idr.

Export Modifiers

Idris allows for fine-grained control over the visibility of a module’s contents. By default, all names defined in a
module are kept private. This aides in specification of a minimal interface and for internal details to be left hidden.
Idris allows for functions, types, and interfaces to be marked as: private, export, or public export.
Their general meaning is as follows:

• private meaning that it’s not exported at all. This is the default.

• export meaning that its top level type is exported.

• public export meaning that the entire definition is exported.

A further restriction in modifying the visibility is that definitions must not refer to anything within a lower level of
visibility. For example, public export definitions cannot use private names, and export types cannot use
private names. This is to prevent private names leaking into a module’s interface.

Meaning for Functions

• export the type is exported

• public export the type and definition are exported, and the definition can be used after it is imported.
In other words, the definition itself is considered part of the module’s interface. The long name public
export is intended to make you think twice about doing this.

Note: Type synonyms in Idris are created by writing a function. When setting the visibility for a module, it might
be a good idea to public export all type synonyms if they are to be used outside the module. Otherwise, Idris
won’t know what the synonym is a synonym for.

Meaning for Data Types

For data types, the meanings are:

• export the type constructor is exported

• public export the type constructor and data constructors are exported

Meaning for Interfaces

For interfaces, the meanings are:

• export the interface name is exported

• public export the interface name, method names and default definitions are exported

BTree Revisited

For our BTree module, it makes sense for the tree data type and the functions to be exported as export, as we
see below:
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module BTree

export data BTree a = Leaf
| Node (BTree a) a (BTree a)

export
insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

export
toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = Btree.toList l ++ (v :: Btree.toList r)

export
toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

%access Directive

Finally, the default export mode can be changed with the %access directive, for example:

module Btree

%access export

data BTree a = Leaf
| Node (BTree a) a (BTree a)

insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = Btree.toList l ++ (v :: Btree.toList r)

toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

In this case, any function with no access modifier will be exported as export, rather than left private.

Propagating Inner Module API’s

Additionally, a module can re-export a module it has imported, by using the public modifier on an import.
For example:

module A

import B
import public C

public a : AType a = ...

The module A will export the name a, as well as any public or abstract names in module C, but will not re-export
anything from module B.
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Explicit Namespaces

Defining a module also defines a namespace implicitly. However, namespaces can also be given explicitly. This is
most useful if you wish to overload names within the same module:

module Foo

namespace x
test : Int -> Int
test x = x * 2

namespace y
test : String -> String
test x = x ++ x

This (admittedly contrived) module defines two functions with fully qualified names foo.x.test and
foo.y.test, which can be disambiguated by their types:

*foo> test 3
6 : Int

*foo> test "foo"
"foofoo" : String

Parameterised blocks

Groups of functions can be parameterised over a number of arguments using a parameters declaration, for
example:

parameters (x : Nat, y : Nat)
addAll : Nat -> Nat
addAll z = x + y + z

The effect of a parameters block is to add the declared parameters to every function, type and data constructor
within the block. Specifically, adding the parameters to the front of the argument list. Outside the block, the
parameters must be given explicitly. The addAll function, when called from the REPL, will thus have the
following type signature.

*params> :t addAll
addAll : Nat -> Nat -> Nat -> Nat

and the following definition.

addAll : (x : Nat) -> (y : Nat) -> (z : Nat) -> Nat
addAll x y z = x + y + z

Parameters blocks can be nested, and can also include data declarations, in which case the parameters are added
explicitly to all type and data constructors. They may also be dependent types with implicit arguments:

parameters (y : Nat, xs : Vect x a)
data Vects : Type -> Type where
MkVects : Vect y a -> Vects a

append : Vects a -> Vect (x + y) a
append (MkVects ys) = xs ++ ys

To use Vects or append outside the block, we must also give the xs and y arguments. Here, we can use
placeholders for the values which can be inferred by the type checker:

*params> show (append _ _ (MkVects _ [1,2,3] [4,5,6]))
"[1, 2, 3, 4, 5, 6]" : String
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PACKAGES

Idris includes a simple build system for building packages and executables from a named package description file.
These files can be used with the Idris compiler to manage the development process .

Package Descriptions

A package description includes the following:

• A header, consisting of the keyword package followed by the package name.

• Fields describing package contents, <field> = <value>

At least one field must be the modules field, where the value is a comma separated list of modules. For example,
given an idris package maths that has modules Maths.idr, Maths.NumOps.idr, Maths.BinOps.idr,
and Maths.HexOps.idr, the corresponding package file would be:

package maths

modules = Maths
, Maths.NumOps
, Maths.BinOps
, Maths.HexOps

Other examples of package files can be found in the libs directory of the main Idris repository, and in third-party
libraries. More details including a complete listing of available fields can be found in ref-sect-packages.

Using Package files

Given an Idris package file maths.ipkg it can be used with the Idris compiler as follows:

• idris --build maths.ipkg will build all modules in the package

• idris --install maths.ipkg will install the package, making it accessible by other Idris libraries
and programs.

• idris --clean maths.ipkg will delete all intermediate code and executable files generated when
building.

• idris --mkdoc maths.ipkg will build HTML documentation for your package in the folder
maths_doc in your project’s root directory.

• idris --checkpkg maths.ipkg will type check all modules in the package only. This differs from
build that type checks and generates code.

• idris --testpkg maths.ipkg will compile and run any embedded tests you have specified in the
tests parameter. More information about testing is given in the next section.

Once the maths package has been installed, the command line option --package maths makes it accessible
(abbreviated to -p maths). For example:
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idris -p maths Main.idr
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TESTING IDRIS PACKAGES

The integrated build system includes a simple testing framework. This framework collects functions listed in the
ipkg file under tests. All test functions must return IO ().

When you enter idris --testpkg yourmodule.ipkg, the build system creates a temporary file in a
fresh environment on your machine by listing the tests functions under a single main function. It compiles this
temporary file to an executable and then executes it.

The tests themselves are responsible for reporting their success or failure. Test functions commonly use
putStrLn to report test results. The test framework does not impose any standards for reporting and conse-
quently does not aggregate test results.

For example, lets take the following list of functions that are defined in a module called NumOps for a sample
package maths.

module Maths.NumOps

double : Num a => a -> a
double a = a + a

triple : Num a => a -> a
triple a = a + double a

A simple test module, with a qualified name of Test.NumOps can be declared as

module Test.NumOps

import Maths.NumOps

assertEq : Eq a => (given : a) -> (expected : a) -> IO ()
assertEq g e = if g == e

then putStrLn "Test Passed"
else putStrLn "Test Failed"

assertNotEq : Eq a => (given : a) -> (expected : a) -> IO ()
assertNotEq g e = if not (g == e)

then putStrLn "Test Passed"
else putStrLn "Test Failed"

testDouble : IO ()
testDouble = assertEq (double 2) 4

testTriple : IO ()
testTriple = assertNotEq (triple 2) 5

The functions assertEq and assertNotEq are used to run expected passing, and failing, equality tests. The
actual tests are testDouble and testTriple, and are declared in the maths.ipkg file as follows:

package maths

modules = Maths.NumOps
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, Test.NumOps

tests = Test.NumOps.testDouble
, Test.NumOps.testTriple

The testing framework can then be invoked using idris --testpkg maths.ipkg:

> idris --testpkg maths.ipkg
Type checking ./Maths/NumOps.idr
Type checking ./Test/NumOps.idr
Type checking /var/folders/63/np5g0d5j54x1s0z12rf41wxm0000gp/T/idristests144128232716531729.idr
Test Passed
Test Passed

Note how both tests have reported success by printing Test Passed as we arranged for with the assertEq
and assertNoEq functions.
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EXAMPLE: THE WELL-TYPED INTERPRETER

In this section, we’ll use the features we’ve seen so far to write a larger example, an interpreter for
a simple functional programming language, with variables, function application, binary operators and an
if...then...else construct. We will use the dependent type system to ensure that any programs which
can be represented are well-typed.

Representing Languages

First, let us define the types in the language. We have integers, booleans, and functions, represented by Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete Idris type — remember that types are first
class, so can be calculated just like any other value:

interpTy : Ty -> Type
interpTy TyInt = Integer
interpTy TyBool = Bool
interpTy (TyFun A T) = interpTy A -> interpTy T

We’re going to define a representation of our language in such a way that only well-typed programs can be
represented. We’ll index the representations of expressions by their type, and the types of local variables (the
context). The context can be represented using the Vect data type, and as it will be used regularly it will be
represented as an implicit argument. To do so we define everything in a using block (keep in mind that everything
after this point needs to be indented so as to be inside the using block):

using (G:Vect n Ty)

Expressions are indexed by the types of the local variables, and the type of the expression itself:

data Expr : Vect n Ty -> Ty -> Type

The full representation of expressions is:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t -> HasType (FS k) (u :: G) t

data Expr : Vect n Ty -> Ty -> Type where
Var : HasType i G t -> Expr G t
Val : (x : Integer) -> Expr G TyInt
Lam : Expr (a :: G) t -> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a -> Expr G t
Op : (interpTy a -> interpTy b -> interpTy c) ->

Expr G a -> Expr G b -> Expr G c
If : Expr G TyBool ->

Lazy (Expr G a) ->
Lazy (Expr G a) -> Expr G a
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The code above makes use of the Vect and Fin types from the Idris standard library. We import them because
they are not provided in the prelude:

import Data.Vect
import Data.Fin

Since expressions are indexed by their type, we can read the typing rules of the language from the definitions of
the constructors. Let us look at each constructor in turn.

We use a nameless representation for variables — they are de Bruijn indexed. Variables are represented by a proof
of their membership in the context, HasType i G T, which is a proof that variable i in context G has type T.
This is defined as follows:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t -> HasType (FS k) (u :: G) t

We can treat Stop as a proof that the most recently defined variable is well-typed, and Pop n as a proof that, if the
nth most recently defined variable is well-typed, so is the n+1th. In practice, this means we use Stop to refer to
the most recently defined variable, Pop Stop to refer to the next, and so on, via the Var constructor:

Var : HasType i G t -> Expr G t

So, in an expression \x,\y. x y, the variable x would have a de Bruijn index of 1, represented as Pop
Stop, and y 0, represented as Stop. We find these by counting the number of lambdas between the definition
and the use.

A value carries a concrete representation of an integer:

Val : (x : Integer) -> Expr G TyInt

A lambda creates a function. In the scope of a function of type a -> t, there is a new local variable of type a,
which is expressed by the context index:

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

We allow arbitrary binary operators, where the type of the operator informs what the types of the arguments must
be:

Op : (interpTy a -> interpTy b -> interpTy c) ->
Expr G a -> Expr G b -> Expr G c

Finally, If expressions make a choice given a boolean. Each branch must have the same type, and we will evaluate
the branches lazily so that only the branch which is taken need be evaluated:

If : Expr G TyBool ->
Lazy (Expr G a) ->
Lazy (Expr G a) ->
Expr G a

Writing the Interpreter

When we evaluate an Expr, we’ll need to know the values in scope, as well as their types. Env is an environment,
indexed over the types in scope. Since an environment is just another form of list, albeit with a strongly specified
connection to the vector of local variable types, we use the usual :: and Nil constructors so that we can use the
usual list syntax. Given a proof that a variable is defined in the context, we can then produce a value from the
environment:
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data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup Stop (x :: xs) = x
lookup (Pop k) (x :: xs) = lookup k xs

Given this, an interpreter is a function which translates an Expr into a concrete Idris value with respect to a
specific environment:

interp : Env G -> Expr G t -> interpTy t

The complete interpreter is defined as follows, for reference. For each constructor, we translate it into the corre-
sponding Idris value:

interp env (Var i) = lookup i env
interp env (Val x) = x
interp env (Lam sc) = \x => interp (x :: env) sc
interp env (App f s) = interp env f (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

Let us look at each case in turn. To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which interprets the scope of the lambda with
a new value in the environment. So, a function in the object language is translated to an Idris function:

interp env (Lam sc) = \x => interp (x :: env) sc

For an application, we interpret the function and its argument and apply it directly. We know that interpreting f
must produce a function, because of its type:

interp env (App f s) = interp env f (interp env s)

Operators and conditionals are, again, direct translations into the equivalent Idris constructs. For operators, we ap-
ply the function to its operands directly, and for If, we apply the Idris if...then...else construct directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

Testing

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x is written as follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))

More interestingly, a factorial function fact (e.g. \x. if (x == 0) then 1 else (fact (x-1)

* x)), can be written as:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))

(Val 1)
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(Op (*) (App fact (Op (-) (Var Stop) (Val 1)))
(Var Stop)))

Running

To finish, we write a main program which interprets the factorial function on user input:

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
printLn (interp [] fact (cast x))

Here, cast is an overloaded function which converts a value from one type to another if possible. Here, it
converts a string to an integer, giving 0 if the input is invalid. An example run of this program at the Idris
interactive environment is:

$ idris interp.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.11

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Type checking ./interp.idr

*interp> :exec
Enter a number: 6
720

*interp>

Aside: cast

The prelude defines an interface Cast which allows conversion between types:

interface Cast from to where
cast : from -> to

It is a multi-parameter interface, defining the source type and object type of the cast. It must be possible for the
type checker to infer both parameters at the point where the cast is applied. There are casts defined between all of
the primitive types, as far as they make sense.
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NINE

VIEWS AND THE “WITH” RULE

Dependent pattern matching

Since types can depend on values, the form of some arguments can be determined by the value of others. For
example, if we were to write down the implicit length arguments to (++), we’d see that the form of the length
argument was determined by whether the vector was empty or not:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z} [] ys = ys
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys

If n was a successor in the [] case, or zero in the :: case, the definition would not be well typed.

The with rule — matching intermediate values

Very often, we need to match on the result of an intermediate computation. Idris provides a construct for this,
the with rule, inspired by views in Epigram 1, which takes account of the fact that matching on a value in a
dependently typed language can affect what we know about the forms of other values. In its simplest form, the
with rule adds another argument to the function being defined, e.g. we have already seen a vector filter function,
defined as follows:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)
filter p [] = ( _ ** [] )
filter p (x :: xs) with (filter p xs)
| ( _ ** xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' )

Here, the with clause allows us to deconstruct the result of filter p xs. Effectively, it adds this value as an
extra argument, which we place after the vertical bar.

If the intermediate computation itself has a dependent type, then the result can affect the forms of other arguments
— we can learn the form of one value by testing another. For example, a Nat is either even or odd. If it’s even it
will be the sum of two equal Nat. Otherwise, it is the sum of two equal Nat plus one:

data Parity : Nat -> Type where
Even : Parity (n + n)
Odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether it is even or odd and constructs
the predicate accordingly.

parity : (n:Nat) -> Parity n

We’ll come back to the definition of parity shortly. We can use it to write a function which converts a natural
number to a list of binary digits (least significant first) as follows, using the with rule:

1 Conor McBride and James McKinna. 2004. The view from the left. J. Funct. Program. 14, 1 (January 2004), 69-111.
DOI=10.1017/S0956796803004829 http://dx.doi.org/10.1017/S0956796803004829ñ
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natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)

natToBin (j + j) | Even = False :: natToBin j
natToBin (S (j + j)) | Odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result of parity k depends on k. So,
as well as the patterns for the result of the intermediate computation (Even and odd) right of the |, we also write
how the results affect the other patterns left of the |. Note that there is a function in the patterns (+) and repeated
occurrences of j—this is allowed because another argument has determined the form of these patterns.

We will return to this function in Section Provisional Definitions to complete the definition of parity.
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TEN

THEOREM PROVING

Equality

Idris allows propositional equalities to be declared, allowing theorems about programs to be stated and proved.
Equality is built in, but conceptually has the following definition:

data (=) : a -> b -> Type where
Refl : x = x

Equalities can be proposed between any values of any types, but the only way to construct a proof of equality is if
values actually are equal. For example:

fiveIsFive : 5 = 5
fiveIsFive = Refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = Refl

The Empty Type

There is an empty type, ⊥, which has no constructors. It is therefore impossible to construct an element of the
empty type, at least without using a partially defined or general recursive function (see Section Totality Checking
for more details). We can therefore use the empty type to prove that something is impossible, for example zero is
never equal to a successor:

disjoint : (n : Nat) -> Z = S n -> Void
disjoint n p = replace {P = disjointTy} p ()

where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = Void

There is no need to worry too much about how this function works — essentially, it applies the library function
replace, which uses an equality proof to transform a predicate. Here we use it to transform a value of a type
which can exist, the empty tuple, to a value of a type which can’t, by using a proof of something which can’t exist.

Once we have an element of the empty type, we can prove anything. void is defined in the library, to assist with
proofs by contradiction.

void : Void -> a

Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine we want to prove the following
theorem about the reduction behaviour of plus:
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plusReduces : (n:Nat) -> plus Z n = n

We’ve written down the statement of the theorem as a type, in just the same way as we would write the type of
a program. In fact there is no real distinction between proofs and programs. A proof, as far as we are concerned
here, is merely a program with a precise enough type to guarantee a particular property of interest.

We won’t go into details here, but the Curry-Howard correspondence 1 explains this relationship. The proof itself
is trivial, because plus Z n normalises to n by the definition of plus:

plusReduces n = Refl

It is slightly harder if we try the arguments the other way, because plus is defined by recursion on its first argument.
The proof also works by recursion on the first argument to plus, namely n.

plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = Refl
plusReducesZ (S k) = cong (plusReducesZ k)

cong is a function defined in the library which states that equality respects function application:

cong : {f : t -> u} -> a = b -> f a = f b

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS Z m = Refl
plusReducesS (S k) m = cong (plusReducesS k m)

Even for trivial theorems like these, the proofs are a little tricky to construct in one go. When things get even
slightly more complicated, it becomes too much to think about to construct proofs in this ‘batch mode’.

Idris provides interactive editing capabilities, which can help with building proofs. For more details on building
proofs interactively in an editor, see proofs-index.

Totality Checking

If we really want to trust our proofs, it is important that they are defined by total functions — that is, a function
which is defined for all possible inputs and is guaranteed to terminate. Otherwise we could construct an element
of the empty type, from which we could prove anything:

-- making use of 'hd' being partially defined
empty1 : Void
empty1 = hd [] where

hd : List a -> a
hd (x :: xs) = x

-- not terminating
empty2 : Void
empty2 = empty2

Internally, Idris checks every definition for totality, and we can check at the prompt with the :total command.
We see that neither of the above definitions is total:

*theorems> :total empty1
possibly not total due to: empty1#hd

not total as there are missing cases

*theorems> :total empty2
possibly not total due to recursive path empty2

1 Timothy G. Griffin. 1989. A formulae-as-type notion of control. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL ‘90). ACM, New York, NY, USA, 47-58. DOI=10.1145/96709.96714
http://doi.acm.org/10.1145/96709.96714
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Note the use of the word “possibly” — a totality check can, of course, never be certain due to the undecidability
of the halting problem. The check is, therefore, conservative. It is also possible (and indeed advisable, in the case
of proofs) to mark functions as total so that it will be a compile time error for the totality check to fail:

total empty2 : Void
empty2 = empty2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to recursive path empty2

Reassuringly, our proof in Section The Empty Type that the zero and successor constructors are disjoint is total:

*theorems> :total disjoint
Total

The totality check is, necessarily, conservative. To be recorded as total, a function f must:

• Cover all possible inputs

• Be well-founded — i.e. by the time a sequence of (possibly mutually) recursive calls reaches f again, it
must be possible to show that one of its arguments has decreased.

• Not use any data types which are not strictly positive

• Not call any non-total functions

Directives and Compiler Flags for Totality

By default, Idris allows all well-typed definitions, whether total or not. However, it is desirable for functions to be
total as far as possible, as this provides a guarantee that they provide a result for all possible inputs, in finite time.
It is possible to make total functions a requirement, either:

• By using the --total compiler flag.

• By adding a %default total directive to a source file. All definitions after this will be required to be
total, unless explicitly flagged as partial.

All functions after a %default total declaration are required to be total. Correspondingly, after a %default
partial declaration, the requirement is relaxed.

Finally, the compiler flag --warnpartial causes to print a warning for any undeclared partial function.

Totality checking issues

Please note that the totality checker is not perfect! Firstly, it is necessarily conservative due to the undecidability
of the halting problem, so many programs which are total will not be detected as such. Secondly, the current
implementation has had limited effort put into it so far, so there may still be cases where it believes a function is
total which is not. Do not rely on it for your proofs yet!

Hints for totality

In cases where you believe a program is total, but Idris does not agree, it is possible to give hints to the checker
to give more detail for a termination argument. The checker works by ensuring that all chains of recursive calls
eventually lead to one of the arguments decreasing towards a base case, but sometimes this is hard to spot. For
example, the following definition cannot be checked as total because the checker cannot decide that filter
(<= x) xs will always be smaller than (x :: xs):

qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)

= qsort (filter (< x) xs) ++
(x :: qsort (filter (>= x) xs))

10.4. Totality Checking 45



The Idris Tutorial, Release 0.11

The function assert_smaller, defined in the Prelude, is intended to address this problem:

assert_smaller : a -> a -> a
assert_smaller x y = y

It simply evaluates to its second argument, but also asserts to the totality checker that y is structurally smaller
than x. This can be used to explain the reasoning for totality if the checker cannot work it out itself. The above
example can now be written as:

total
qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)

= qsort (assert_smaller (x :: xs) (filter (< x) xs)) ++
(x :: qsort (assert_smaller (x :: xs) (filter (>= x) xs)))

The expression assert_smaller (x :: xs) (filter (<= x) xs) asserts that the result of the fil-
ter will always be smaller than the pattern (x :: xs).

In more extreme cases, the function assert_total marks a subexpression as always being total:

assert_total : a -> a
assert_total x = x

In general, this function should be avoided, but it can be very useful when reasoning about primitives or externally
defined functions (for example from a C library) where totality can be shown by an external argument.
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ELEVEN

PROVISIONAL DEFINITIONS

Sometimes when programming with dependent types, the type required by the type checker and the type of the
program we have written will be different (in that they do not have the same normal form), but nevertheless
provably equal. For example, recall the parity function:

data Parity : Nat -> Type where
Even : Parity (n + n)
Odd : Parity (S (n + n))

We’d like to implement this as follows:

parity : (n:Nat) -> Parity n
parity Z = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
parity (S (S (j + j))) | Even = Even {n=S j}
parity (S (S (S (j + j)))) | Odd = Odd {n=S j}

This simply states that zero is even, one is odd, and recursively, the parity of k+2 is the same as the parity of
k. Explicitly marking the value of n is even and odd is necessary to help type inference. Unfortunately, the type
checker rejects this:

viewsbroken.idr:12:10:When elaborating right hand side of ViewsBroken.parity:
Type mismatch between

Parity (plus (S j) (S j))
and

Parity (S (S (plus j j)))

Specifically:
Type mismatch between

plus (S j) (S j)
and

S (S (plus j j))

The type checker is telling us that (j+1)+(j+1) and 2+j+j do not normalise to the same value. This is because
plus is defined by recursion on its first argument, and in the second value, there is a successor symbol on the
second argument, so this will not help with reduction. These values are obviously equal — how can we rewrite
the program to fix this problem?

Provisional definitions

Provisional definitions help with this problem by allowing us to defer the proof details until a later point. There
are two main reasons why they are useful.

• When prototyping, it is useful to be able to test programs before finishing all the details of proofs.

• When reading a program, it is often much clearer to defer the proof details so that they do not distract the
reader from the underlying algorithm.
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Provisional definitions are written in the same way as ordinary definitions, except that they introduce the right
hand side with a ?= rather than =. We define parity as follows:

parity : (n:Nat) -> Parity n
parity Z = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
parity (S (S (j + j))) | Even ?= Even {n=S j}
parity (S (S (S (j + j)))) | Odd ?= Odd {n=S j}

When written in this form, instead of reporting a type error, Idris will insert a hole standing for a theorem which
will correct the type error. Idris tells us we have two proof obligations, with names generated from the module
and function names:

*views> :m
Global holes:

[views.parity_lemma_2,views.parity_lemma_1]

The first of these has the following type:

*views> :p views.parity_lemma_1

---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (plus (S j) (S j))) -> Parity (S (S (plus j j)))

-views.parity_lemma_1>

The two arguments are j, the variable in scope from the pattern match, and value, which is the value we gave in
the right hand side of the provisional definition. Our goal is to rewrite the type so that we can use this value. We
can achieve this using the following theorem from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

We need to use compute again to unfold the definition of plus:

-views.parity_lemma_1> compute

---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (S (plus j (S j)))) -> Parity (S (S (plus j j)))

After applying intros we have:

-views.parity_lemma_1> intros

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (plus j j)))

Then we apply the plusSuccRightSucc rewrite rule, symmetrically, to j and j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole3} : Parity (S (plus j (S j)))

sym is a function, defined in the library, which reverses the order of the rewrite:

sym : l = r -> r = l
sym Refl = Refl
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We can complete this proof using the trivial tactic, which finds value in the premises. The proof of the
second lemma proceeds in exactly the same way.

We can now test the natToBin function from Section The with rule — matching intermediate values at the
prompt. The number 42 is 101010 in binary. The binary digits are reversed:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String

Suspension of Disbelief

Idris requires that proofs be complete before compiling programs (although evaluation at the prompt is possible
without proof details). Sometimes, especially when prototyping, it is easier not to have to do this. It might even
be beneficial to test programs before attempting to prove things about them — if testing finds an error, you know
you had better not waste your time proving something!

Therefore, Idris provides a built-in coercion function, which allows you to use a value of the incorrect types:

believe_me : a -> b

Obviously, this should be used with extreme caution. It is useful when prototyping, and can also be ap-
propriate when asserting properties of external code (perhaps in an external C library). The “proof” of
views.parity_lemma_1 using this is:

views.parity_lemma_2 = proof {
intro;
intro;
exact believe_me value;

}

The exact tactic allows us to provide an exact value for the proof. In this case, we assert that the value we gave
was correct.

Example: Binary numbers

Previously, we implemented conversion to binary numbers using the Parity view. Here, we show how to use
the same view to implement a verified conversion to binary. We begin by indexing binary numbers over their Nat
equivalent. This is a common pattern, linking a representation (in this case Binary) with a meaning (in this case
Nat):

data Binary : Nat -> Type where
BEnd : Binary Z
BO : Binary n -> Binary (n + n)
BI : Binary n -> Binary (S (n + n))

BO and BI take a binary number as an argument and effectively shift it one bit left, adding either a zero or one as
the new least significant bit. The index, n + n or S (n + n) states the result that this left shift then add will
have to the meaning of the number. This will result in a representation with the least significant bit at the front.

Now a function which converts a Nat to binary will state, in the type, that the resulting binary number is a faithful
representation of the original Nat:

natToBin : (n:Nat) -> Binary n

The Parity view makes the definition fairly simple — halving the number is effectively a right shift after all —
although we need to use a provisional definition in the Odd case:

natToBin : (n:Nat) -> Binary n
natToBin Z = BEnd
natToBin (S k) with (parity k)
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natToBin (S (j + j)) | Even = BI (natToBin j)
natToBin (S (S (j + j))) | Odd ?= BO (natToBin (S j))

The problem with the Odd case is the same as in the definition of parity, and the proof proceeds in the same
way:

natToBin_lemma_1 = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j j);
trivial;

}

To finish, we’ll implement a main program which reads an integer from the user and outputs it in binary.

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (natToBin (fromInteger (cast x)))

For this to work, of course, we need a Show implementation for Binary n:

Show (Binary n) where
show (BO x) = show x ++ "0"
show (BI x) = show x ++ "1"
show BEnd = ""

50 Chapter 11. Provisional Definitions



CHAPTER

TWELVE

INTERACTIVE EDITING

By now, we have seen several examples of how Idris’ dependent type system can give extra confidence in a
function’s correctness by giving a more precise description of its intended behaviour in its type. We have also seen
an example of how the type system can help with EDSL development by allowing a programmer to describe the
type system of an object language. However, precise types give us more than verification of programs — we can
also exploit types to help write programs which are correct by construction.

The Idris REPL provides several commands for inspecting and modifying parts of programs, based on their types,
such as case splitting on a pattern variable, inspecting the type of a hole, and even a basic proof search mechanism.
In this section, we explain how these features can be exploited by a text editor, and specifically how to do so in
Vim. An interactive mode for Emacs is also available.

Editing at the REPL

The REPL provides a number of commands, which we will describe shortly, which generate new program frag-
ments based on the currently loaded module. These take the general form

:command [line number] [name]

That is, each command acts on a specific source line, at a specific name, and outputs a new program fragment.
Each command has an alternative form, which updates the source file in-place:

:command! [line number] [name]

When the REPL is loaded, it also starts a background process which accepts and responds to REPL commands,
using idris --client. For example, if we have a REPL running elsewhere, we can execute commands such
as:

$ idris --client ':t plus'
Prelude.Nat.plus : Nat -> Nat -> Nat
$ idris --client '2+2'
4 : Integer

A text editor can take advantage of this, along with the editing commands, in order to provide interactive editing
support.

Editing Commands

:addclause

The :addclause n f command (abbreviated :ac n f) creates a template definition for the function named
f declared on line n. For example, if the code beginning on line 94 contains:

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c
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then :ac 94 vzipWith will give:

vzipWith f xs ys = ?vzipWith_rhs

The names are chosen according to hints which may be given by a programmer, and then made unique by the
machine by adding a digit if necessary. Hints can be given as follows:

%name Vect xs, ys, zs, ws

This declares that any names generated for types in the Vect family should be chosen in the order xs, ys, zs,
ws.

:casesplit

The :casesplit n x command, abbreviated :cs n x, splits the pattern variable x on line n into the various
pattern forms it may take, removing any cases which are impossible due to unification errors. For example, if the
code beginning on line 94 is:

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f xs ys = ?vzipWith_rhs

then :cs 96 xs will give:

vzipWith f [] ys = ?vzipWith_rhs_1
vzipWith f (x :: xs) ys = ?vzipWith_rhs_2

That is, the pattern variable xs has been split into the two possible cases [] and x :: xs. Again, the names
are chosen according to the same heuristic. If we update the file (using :cs!) then case split on ys on the same
line, we get:

vzipWith f [] [] = ?vzipWith_rhs_3

That is, the pattern variable ys has been split into one case [], Idris having noticed that the other possible case y
:: ys would lead to a unification error.

:addmissing

The :addmissing n f command, abbreviated :am n f, adds the clauses which are required to make the
function f on line n cover all inputs. For example, if the code beginning on line 94 is

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1

then :am 96 vzipWith gives:

vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

That is, it notices that there are no cases for non-empty vectors, generates the required clauses, and eliminates the
clauses which would lead to unification errors.

:proofsearch

The :proofsearch n f command, abbreviated :ps n f, attempts to find a value for the hole f on line n by
proof search, trying values of local variables, recursive calls and constructors of the required family. Optionally, it
can take a list of hints, which are functions it can try applying to solve the hole. For example, if the code beginning
on line 94 is:
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vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1
vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

then :ps 96 vzipWith_rhs_1 will give

[]

This works because it is searching for a Vect of length 0, of which the empty vector is the only possibility.
Similarly, and perhaps surprisingly, there is only one possibility if we try to solve :ps 97 vzipWith_rhs_2:

f x y :: (vzipWith f xs ys)

This works because vzipWith has a precise enough type: The resulting vector has to be non-empty (a ::); the
first element must have type c and the only way to get this is to apply f to x and y; finally, the tail of the vector
can only be built recursively.

:makewith

The :makewith n f command, abbreviated :mw n f, adds a with to a pattern clause. For example, recall
parity. If line 10 is:

parity (S k) = ?parity_rhs

then :mw 10 parity will give:

parity (S k) with (_)
parity (S k) | with_pat = ?parity_rhs

If we then fill in the placeholder _ with parity k and case split on with_pat using :cs 11 with_pat
we get the following patterns:

parity (S (plus n n)) | even = ?parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2

Note that case splitting has normalised the patterns here (giving plus rather than +). In any case, we see that
using interactive editing significantly simplifies the implementation of dependent pattern matching by showing a
programmer exactly what the valid patterns are.

Interactive Editing in Vim

The editor mode for Vim provides syntax highlighting, indentation and interactive editing support using the com-
mands described above. Interactive editing is achieved using the following editor commands, each of which update
the buffer directly:

• \d adds a template definition for the name declared on the current line (using :addclause).

• \c case splits the variable at the cursor (using :casesplit).

• \m adds the missing cases for the name at the cursor (using :addmissing).

• \w adds a with clause (using :makewith).

• \o invokes a proof search to solve the hole under the cursor (using :proofsearch).

• \p invokes a proof search with additional hints to solve the hole under the cursor (using
:proofsearch).

There are also commands to invoke the type checker and evaluator:

• \t displays the type of the (globally visible) name under the cursor. In the case of a hole, this displays
the context and the expected type.
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• \e prompts for an expression to evaluate.

• \r reloads and type checks the buffer.

Corresponding commands are also available in the Emacs mode. Support for other editors can be added in a
relatively straightforward manner by using idris -client.
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THIRTEEN

SYNTAX EXTENSIONS

Idris supports the implementation of Embedded Domain Specific Languages (EDSLs) in several ways 1. One way,
as we have already seen, is through extending do notation. Another important way is to allow extension of the
core syntax. In this section we describe two ways of extending the syntax: syntax rules and dsl notation.

syntax rules

We have seen if...then...else expressions, but these are not built in. Instead, we can define a function in
the prelude as follows (we have already seen this function in Section Laziness):

ifThenElse : (x:Bool) -> Lazy a -> Lazy a -> a;
ifThenElse True t e = t;
ifThenElse False t e = e;

and then extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = ifThenElse test t e;

The left hand side of a syntax declaration describes the syntax rule, and the right hand side describes its expan-
sion. The syntax rule itself consists of:

• Keywords — here, if, then and else, which must be valid identifiers

• Non-terminals — included in square brackets, [test], [t] and [e] here, which stand for arbitrary
expressions. To avoid parsing ambiguities, these expressions cannot use syntax extensions at the top level
(though they can be used in parentheses).

• Names — included in braces, which stand for names which may be bound on the right hand side.

• Symbols — included in quotations marks, e.g. :=. This can also be used to include reserved words in
syntax rules, such as let or in.

The limitations on the form of a syntax rule are that it must include at least one symbol or keyword, and there must
be no repeated variables standing for non-terminals. Any expression can be used, but if there are two non-terminals
in a row in a rule, only simple expressions may be used (that is, variables, constants, or bracketed expressions).
Rules can use previously defined rules, but may not be recursive. The following syntax extensions would therefore
be valid:

syntax [var] ":=" [val] = Assign var val;
syntax [test] "?" [t] ":" [e] = if test then t else e;
syntax select [x] from [t] "where" [w] = SelectWhere x t w;
syntax select [x] from [t] = Select x t;

Syntax macros can be further restricted to apply only in patterns (i.e., only on the left hand side of a pattern match
clause) or only in terms (i.e. everywhere but the left hand side of a pattern match clause) by being marked as

1 Edwin Brady and Kevin Hammond. 2012. Resource-Safe systems programming with embedded domain specific languages. In Proceed-
ings of the 14th international conference on Practical Aspects of Declarative Languages (PADL‘12), Claudio Russo and Neng-Fa Zhou (Eds.).
Springer-Verlag, Berlin, Heidelberg, 242-257. DOI=10.1007/978-3-642-27694-1_18 http://dx.doi.org/10.1007/978-3-642-27694-1_18
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pattern or term syntax rules. For example, we might define an interval as follows, with a static check that the
lower bound is below the upper bound using so:

data Interval : Type where
MkInterval : (lower : Float) -> (upper : Float) ->

so (lower < upper) -> Interval

We can define a syntax which, in patterns, always matches oh for the proof argument, and in terms requires a
proof term to be provided:

pattern syntax "[" [x] "..." [y] "]" = MkInterval x y oh
term syntax "[" [x] "..." [y] "]" = MkInterval x y ?bounds_lemma

In terms, the syntax [x...y] will generate a proof obligation bounds_lemma (possibly renamed).

Finally, syntax rules may be used to introduce alternative binding forms. For example, a for loop binds a variable
on each iteration:

syntax for {x} in [xs] ":" [body] = forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:

putStrLn ("Number " ++ show x)
putStrLn "Done!"

Note that we have used the {x} form to state that x represents a bound variable, substituted on the right hand side.
We have also put in in quotation marks since it is already a reserved word.

dsl notation

The well-typed interpreter in Section Example: The Well-Typed Interpreter is a simple example of a common pro-
gramming pattern with dependent types. Namely: describe an object language and its type system with dependent
types to guarantee that only well-typed programs can be represented, then program using that representation. Us-
ing this approach we can, for example, write programs for serialising binary data 2 or running concurrent processes
safely 3.

Unfortunately, the form of object language programs makes it rather hard to program this way in practice. Recall
the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))

(Val 1) (Op (*) (App fact (Op (-) (Var Stop) (Val 1)))
(Var Stop)))

Since this is a particularly useful pattern, Idris provides syntax overloading 1 to make it easier to program in such
object languages:

mkLam : TTName -> Expr (t::g) t' -> Expr g (TyFun t t')
mkLam _ body = Lam body

dsl expr
variable = Var
index_first = Stop
index_next = Pop
lambda = mkLam

2 Edwin C. Brady. 2011. IDRIS —: systems programming meets full dependent types. In Proceedings of the 5th ACM workshop
on Programming languages meets program verification (PLPV ‘11). ACM, New York, NY, USA, 43-54. DOI=10.1145/1929529.1929536
http://doi.acm.org/10.1145/1929529.1929536

3 Edwin Brady and Kevin Hammond. 2010. Correct-by-Construction Concurrency: Using Dependent Types to Verify Implementations of
Effectful Resource Usage Protocols. Fundam. Inf. 102, 2 (April 2010), 145-176. http://dl.acm.org/citation.cfm?id=1883636
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A dsl block describes how each syntactic construct is represented in an object language. Here, in the expr
language, any variable is translated to the Var constructor, using Pop and Stop to construct the de Bruijn index
(i.e., to count how many bindings since the variable itself was bound); and any lambda is translated to a Lam
constructor. The mkLam function simply ignores its first argument, which is the name that the user chose for the
variable. It is also possible to overload let and dependent function syntax (pi) in this way. We can now write
fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) (app fact (Op (-) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded. We can take this further, using
idiom brackets, by declaring:

(<*>) : (f : Lazy (Expr G (TyFun a t))) -> Expr G a -> Expr G t
(<*>) f a = App f a

pure : Expr G a -> Expr G a
pure = id

Note that there is no need for these to be part of an implementation of Applicative, since idiom bracket
notation translates directly to the names <*> and pure, and ad-hoc type-directed overloading is allowed. We can
now say:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) [| fact (Op (-) x (Val 1)) |] x))

With some more ad-hoc overloading and use of interfaces, and a new syntax rule, we can even go as far as:

syntax "IF" [x] "THEN" [t] "ELSE" [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0 THEN 1 ELSE [| fact (x - 1) |] * x)
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CHAPTER

FOURTEEN

MISCELLANY

In this section we discuss a variety of additional features:

• auto, implicit, and default arguments;

• literate programming;

• interfacing with external libraries through the foreign function

• interface;

• type providers;

• code generation; and

• the universe hierarchy.

Auto implicit arguments

We have already seen implicit arguments, which allows arguments to be omitted when they can be inferred by the
type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

In other situations, it may be possible to infer arguments not by type checking but by searching the context for an
appropriate value, or constructing a proof. For example, the following definition of head which requires a proof
that the list is non-empty:

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x

If the list is statically known to be non-empty, either because its value is known or because a proof already exists
in the context, the proof can be constructed automatically. Auto implicit arguments allow this to happen silently.
We define head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x

The auto annotation on the implicit argument means that Idris will attempt to fill in the implicit argument by
searching for a value of the appropriate type. It will try the following, in order:

• Local variables, i.e. names bound in pattern matches or let bindings, with exactly the right type.

• The constructors of the required type. If they have arguments, it will search recursively up to a maximum
depth of 100.

• Local variables with function types, searching recursively for the arguments.
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• Any function with the appropriate return type which is marked with the %hint annotation.

In the case that a proof is not found, it can be provided explicitly as normal:

head xs {p = ?headProof}

More generally, we can fill in implicit arguments with a default value by annotating them with default. The
definition above is equivalent to:

head : (xs : List a) ->
{default proof { trivial; } p : isCons xs = True} -> a

head (x :: xs) = x

Implicit conversions

Idris supports the creation of implicit conversions, which allow automatic conversion of values from one type to
another when required to make a term type correct. This is intended to increase convenience and reduce verbosity.
A contrived but simple example is the following:

implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x

In general, we cannot append an Int to a String, but the implicit conversion function intString can convert
x to a String, so the definition of test is type correct. An implicit conversion is implemented just like any
other function, but given the implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is, implicit conversions cannot be chained. Implicit
conversions of simple types, as above, are however discouraged! More commonly, an implicit conversion would
be used to reduce verbosity in an embedded domain specific language, or to hide details of a proof. Such examples
are beyond the scope of this tutorial.

Literate programming

Like Haskell, Idris supports literate programming. If a file has an extension of .lidr then it is assumed to be a
literate file. In literate programs, everything is assumed to be a comment unless the line begins with a greater than
sign >, for example:

> module literate

This is a comment. The main program is below

> main : IO ()
> main = putStrLn "Hello literate world!\n"

An additional restriction is that there must be a blank line between a program line (beginning with >) and a
comment line (beginning with any other character).

Foreign function calls

For practical programming, it is often necessary to be able to use external libraries, particularly for interfacing with
the operating system, file system, networking, et cetera. Idris provides a lightweight foreign function interface
for achieving this, as part of the prelude. For this, we assume a certain amount of knowledge of C and the gcc
compiler. First, we define a datatype which describes the external types we can handle:
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data FTy = FInt | FFloat | FChar | FString | FPtr | FUnit

Each of these corresponds directly to a C type. Respectively: int, double, char, char*, void* and void.
There is also a translation to a concrete Idris type, described by the following function:

interpFTy : FTy -> Type
interpFTy FInt = Int
interpFTy FFloat = Float
interpFTy FChar = Char
interpFTy FString = String
interpFTy FPtr = Ptr
interpFTy FUnit = ()

A foreign function is described by a list of input types and a return type, which can then be converted to an Idris
type:

ForeignTy : (xs:List FTy) -> (t:FTy) -> Type

A foreign function is assumed to be impure, so ForeignTy builds an IO type, for example:

Idris> ForeignTy [FInt, FString] FString
Int -> String -> IO String : Type

Idris> ForeignTy [FInt, FString] FUnit
Int -> String -> IO () : Type

We build a call to a foreign function by giving the name of the function, a list of argument types and the return
type. The built in construct mkForeign converts this description to a function callable by Idris:

data Foreign : Type -> Type where
FFun : String -> (xs:List FTy) -> (t:FTy) ->

Foreign (ForeignTy xs t)

mkForeign : Foreign x -> x

Note that the compiler expects mkForeign to be fully applied to build a complete foreign function call. For
example, the putStr function is implemented as follows, as a call to an external function putStr defined in
the run-time system:

putStr : String -> IO ()
putStr x = mkForeign (FFun "putStr" [FString] FUnit) x

Include and linker directives

Foreign function calls are translated directly to calls to C functions, with appropriate conversion between the Idris
representation of a value and the C representation. Often this will require extra libraries to be linked in, or extra
header and object files. This is made possible through the following directives:

• %lib target x — include the libx library. If the target is C this is equivalent to pass-
ing the -lx option to gcc. If the target is Java the library will be interpreted as a
groupId:artifactId:packaging:version dependency coordinate for maven.

• %include target x — use the header file or import x for the given back end target.

• %link target x.o — link with the object file x.o when using the given back end target.

• %dynamic x.so — dynamically link the interpreter with the shared object x.so.

Testing foreign function calls

Normally, the Idris interpreter (used for typechecking and at the REPL) will not perform IO actions. Additionally,
as it neither generates C code nor compiles to machine code, the %lib, %include and %link directives have
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no effect. IO actions and FFI calls can be tested using the special REPL command :x EXPR, and C libraries
can be dynamically loaded in the interpreter by using the :dynamic command or the %dynamic directive. For
example:

Idris> :dynamic libm.so
Idris> :x unsafePerformIO ((mkForeign (FFun "sin" [FFloat] FFloat)) 1.6)
0.9995736030415051 : Float

Type Providers

Idris type providers, inspired by F#’s type providers, are a means of making our types be “about” something in the
world outside of Idris. For example, given a type that represents a database schema and a query that is checked
against it, a type provider could read the schema of a real database during type checking.

Idris type providers use the ordinary execution semantics of Idris to run an IO action and extract the result. This
result is then saved as a constant in the compiled code. It can be a type, in which case it is used like any other
type, or it can be a value, in which case it can be used as any other value, including as an index in types.

Type providers are still an experimental extension. To enable the extension, use the %language directive:

%language TypeProviders

A provider p for some type t is simply an expression of type IO (Provider t). The %provide directive
causes the type checker to execute the action and bind the result to a name. This is perhaps best illustrated with
a simple example. The type provider fromFile reads a text file. If the file consists of the string Int, then the
type Int will be provided. Otherwise, it will provide the type Nat.

strToType : String -> Type
strToType "Int" = Int
strToType _ = Nat

fromFile : String -> IO (Provider Type)
fromFile fname = do str <- readFile fname

return (Provide (strToType (trim str)))

We then use the %provide directive:

%provide (T1 : Type) with fromFile "theType"

foo : T1
foo = 2

If the file named theType consists of the word Int, then foo will be an Int. Otherwise, it will be a Nat.
When Idris encounters the directive, it first checks that the provider expression fromFile theType has type
IO (Provider Type). Next, it executes the provider. If the result is Provide t, then T1 is defined as t.
Otherwise, the result is an error.

Our datatype Provider t has the following definition:

data Provider a = Error String
| Provide a

We have already seen the Provide constructor. The Error constructor allows type providers to return useful
error messages. The example in this section was purposefully simple. More complex type provider implementa-
tions, including a statically-checked SQLite binding, are available in an external collection 1.

C Target

The default target of Idris is C. Compiling via :
1 https://github.com/david-christiansen/idris-type-providers
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$ idris hello.idr -o hello

is equivalent to :

$ idris --codegen C hello.idr -o hello

When the command above is used, a temporary C source is generated, which is then compiled into an executable
named hello.

In order to view the generated C code, compile via :

$ idris hello.idr -S -o hello.c

To turn optimisations on, use the %flag C pragma within the code, as is shown below :

module Main
%flag C "-O3"

factorial : Int -> Int
factorial 0 = 1
factorial n = n * (factorial (n-1))

main : IO ()
main = do

putStrLn $ show $ factorial 3

JavaScript Target

Idris is capable of producing JavaScript code that can be run in a browser as well as in the NodeJS environment
or alike. One can use the FFI to communicate with the JavaScript ecosystem.

Code Generation

Code generation is split into two separate targets. To generate code that is tailored for running in the browser issue
the following command:

$ idris --codegen javascript hello.idr -o hello.js

The resulting file can be embedded into your HTML just like any other JavaScript code.

Generating code for NodeJS is slightly different. Idris outputs a JavaScript file that can be directly executed via
node.

$ idris --codegen node hello.idr -o hello
$ ./hello
Hello world

Take into consideration that the JavaScript code generator is using console.log to write text to stdout, this
means that it will automatically add a newline to the end of each string. This behaviour does not show up in the
NodeJS code generator.

Using the FFI

To write a useful application we need to communicate with the outside world. Maybe we want to manipulate the
DOM or send an Ajax request. For this task we can use the FFI. Since most JavaScript APIs demand callbacks
we need to extend the FFI so we can pass functions as arguments.

The JavaScript FFI works a little bit differently than the regular FFI. It uses positional arguments to directly insert
our arguments into a piece of JavaScript code.
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One could use the primitive addition of JavaScript like so:

module Main

primPlus : Int -> Int -> IO Int
primPlus a b = mkForeign (FFun "%0 + %1" [FInt, FInt] FInt) a b

main : IO ()
main = do

a <- primPlus 1 1
b <- primPlus 1 2
print (a, b)

Notice that the %n notation qualifies the position of the n-th argument given to our foreign function starting from
0. When you need a percent sign rather than a position simply use %% instead.

Passing functions to a foreign function is very similar. Let’s assume that we want to call the following function
from the JavaScript world:

function twice(f, x) {
return f(f(x));

}

We obviously need to pass a function f here (we can infer it from the way we use f in twice, it would be more
obvious if JavaScript had types).

The JavaScript FFI is able to understand functions as arguments when you give it something of type FFunction.
The following example code calls twice in JavaScript and returns the result to our Idris program:

module Main

twice : (Int -> Int) -> Int -> IO Int
twice f x = mkForeign (

FFun "twice(%0,%1)" [FFunction FInt FInt, FInt] FInt
) f x

main : IO ()
main = do

a <- twice (+1) 1
print a

The program outputs 3, just like we expected.

Including external JavaScript files

Whenever one is working with JavaScript one might want to include external libraries or just some functions that
she or he wants to call via FFI which are stored in external files. The JavaScript and NodeJS code generators
understand the %include directive. Keep in mind that JavaScript and NodeJS are handled as different code
generators, therefore you will have to state which one you want to target. This means that you can include
different files for JavaScript and NodeJS in the same Idris source file.

So whenever you want to add an external JavaScript file you can do this like so:

For NodeJS:

%include Node "path/to/external.js"

And for use in the browser:

%include JavaScript "path/to/external.js"

The given files will be added to the top of the generated code.
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Including NodeJS modules

The NodeJS code generator can also include modules with the %lib directive.

%lib Node "fs"

This directive compiles into the following JavaScript

var fs = require("fs");

Shrinking down generated JavaScript

Idris can produce very big chunks of JavaScript code. However, the generated code can be minified using the
closure-compiler from Google. Any other minifier is also suitable but closure-compiler offers ad-
vanced compilation that does some aggressive inlining and code elimination. Idris can take full advantage of this
compilation mode and it’s highly recommended to use it when shipping a JavaScript application written in Idris.

Cumulativity

Since values can appear in types and vice versa, it is natural that types themselves have types. For example:

*universe> :t Nat
Nat : Type

*universe> :t Vect
Vect : Nat -> Type -> Type

But what about the type of Type? If we ask Idris it reports

*universe> :t Type
Type : Type 1

If Type were its own type, it would lead to an inconsistency due to Girard’s paradox , so internally there is a
hierarchy of types (or universes):

Type : Type 1 : Type 2 : Type 3 : ...

Universes are cumulative, that is, if x : Type n we can also have that x : Type m, as long as n <
m. The typechecker generates such universe constraints and reports an error if any inconsistencies are found.
Ordinarily, a programmer does not need to worry about this, but it does prevent (contrived) programs such as the
following:

myid : (a : Type) -> a -> a
myid _ x = x

idid : (a : Type) -> a -> a
idid = myid _ myid

The application of myid to itself leads to a cycle in the universe hierarchy — myid’s first argument is a Type,
which cannot be at a lower level than required if it is applied to itself.
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FIFTEEN

FURTHER READING

Further information about Idris programming, and programming with dependent types in general, can be obtained
from various sources:

• The Idris web site (http://www.idris-lang.org/) and by asking questions on the mailing list.

• The IRC channel #idris, on chat.freenode.net.

• The wiki (https://github.com/idris-lang/Idris-dev/wiki/) has further user provided information, in par-
ticular:

– https://github.com/idris-lang/Idris-dev/wiki/Manual

– https://github.com/idris-lang/Idris-dev/wiki/Language-Features

• Examining the prelude and exploring the samples in the distribution. The Idris source can be found
online at: https://github.com/idris-lang/Idris-dev.

• Existing projects on the Idris Hackers web space: http://idris-hackers.github.io.

• Various papers (e.g. 1, 2, and 3). Although these mostly describe older versions of Idris.
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