module Text.Parser.Core import public Control.Delayed %default total -- TODO: Add some primitives for helping with error messages. -- e.g. perhaps set a string to state what we're currently trying to -- parse, or to say what the next expected token is in words ||| Description of a language's grammar. The `tok` parameter is the type ||| of tokens, and the `consumes` flag is True if the language is guaranteed ||| to be non-empty - that is, successfully parsing the language is guaranteed ||| to consume some input. export data Grammar : (tok : Type) -> (consumes : Bool) -> Type -> Type where Empty : (val : ty) -> Grammar tok False ty Terminal : (tok -> Maybe a) -> Grammar tok True a NextIs : (tok -> Bool) -> Grammar tok False tok EOF : Grammar tok False () Fail : String -> Grammar tok c ty Commit : Grammar tok False () SeqEat : Grammar tok True a -> Inf (a -> Grammar tok c2 b) -> Grammar tok True b SeqEmpty : {c1, c2 : Bool} -> Grammar tok c1 a -> (a -> Grammar tok c2 b) -> Grammar tok (c1 || c2) b Alt : {c1, c2 : Bool} -> Grammar tok c1 ty -> Grammar tok c2 ty -> Grammar tok (c1 && c2) ty ||| Sequence two grammars. If either consumes some input, the sequence is ||| guaranteed to consume some input. If the first one consumes input, the ||| second is allowed to be recursive (because it means some input has been ||| consumed and therefore the input is smaller) export %inline (>>=) : {c1 : Bool} -> Grammar tok c1 a -> inf c1 (a -> Grammar tok c2 b) -> Grammar tok (c1 || c2) b (>>=) {c1 = False} = SeqEmpty (>>=) {c1 = True} = SeqEat ||| Sequence two grammars. If either consumes some input, the sequence is ||| guaranteed to consume input. This is an explicitly non-infinite version ||| of `>>=`. export seq : Grammar tok c1 a -> (a -> Grammar tok c2 b) -> Grammar tok (c1 || c2) b seq = SeqEmpty ||| Sequence a grammar followed by the grammar it returns. export join : {c1 : Bool} -> Grammar tok c1 (Grammar tok c2 a) -> Grammar tok (c1 || c2) a join {c1 = False} p = SeqEmpty p id join {c1 = True} p = SeqEat p id ||| Give two alternative grammars. If both consume, the combination is ||| guaranteed to consume. export (<|>) : Grammar tok c1 ty -> Grammar tok c2 ty -> Grammar tok (c1 && c2) ty (<|>) = Alt ||| Allows the result of a grammar to be mapped to a different value. export Functor (Grammar tok c) where map f (Empty val) = Empty (f val) map f (Fail msg) = Fail msg map f (Terminal g) = Terminal (\t => map f (g t)) map f (Alt x y) = Alt (map f x) (map f y) map f (SeqEat act next) = SeqEat act (\val => map f (next val)) map f (SeqEmpty act next) = SeqEmpty act (\val => map f (next val)) -- The remaining constructors (NextIs, EOF, Commit) have a fixed type, -- so a sequence must be used. map {c = False} f p = SeqEmpty p (Empty . f) ||| Sequence a grammar with value type `a -> b` and a grammar ||| with value type `a`. If both succeed, apply the function ||| from the first grammar to the value from the second grammar. ||| Guaranteed to consume if either grammar consumes. export (<*>) : Grammar tok c1 (a -> b) -> Grammar tok c2 a -> Grammar tok (c1 || c2) b (<*>) x y = SeqEmpty x (\f => map f y) ||| Sequence two grammars. If both succeed, use the value of the first one. ||| Guaranteed to consume if either grammar consumes. export (<*) : Grammar tok c1 a -> Grammar tok c2 b -> Grammar tok (c1 || c2) a (<*) x y = map const x <*> y ||| Sequence two grammars. If both succeed, use the value of the second one. ||| Guaranteed to consume if either grammar consumes. export (*>) : Grammar tok c1 a -> Grammar tok c2 b -> Grammar tok (c1 || c2) b (*>) x y = map (const id) x <*> y ||| Produce a grammar that can parse a different type of token by providing a ||| function converting the new token type into the original one. export mapToken : (a -> b) -> Grammar b c ty -> Grammar a c ty mapToken f (Empty val) = Empty val mapToken f (Terminal g) = Terminal (g . f) mapToken f (NextIs g) = SeqEmpty (NextIs (g . f)) (Empty . f) mapToken f EOF = EOF mapToken f (Fail msg) = Fail msg mapToken f Commit = Commit mapToken f (SeqEat act next) = SeqEat (mapToken f act) (\x => mapToken f (next x)) mapToken f (SeqEmpty act next) = SeqEmpty (mapToken f act) (\x => mapToken f (next x)) mapToken f (Alt x y) = Alt (mapToken f x) (mapToken f y) ||| Always succeed with the given value. export pure : (val : ty) -> Grammar tok False ty pure = Empty ||| Check whether the next token satisfies a predicate export nextIs : (tok -> Bool) -> Grammar tok False tok nextIs = NextIs ||| Look at the next token in the input export peek : Grammar tok False tok peek = nextIs (const True) ||| Succeeds if running the predicate on the next token returns Just x, ||| returning x. Otherwise fails. export terminal : (tok -> Maybe a) -> Grammar tok True a terminal = Terminal ||| Always fail with a message export fail : String -> Grammar tok c ty fail = Fail ||| Succeed if the input is empty export eof : Grammar tok False () eof = EOF ||| Commit to an alternative; if the current branch of an alternative ||| fails to parse, no more branches will be tried export commit : Grammar tok False () commit = Commit data ParseResult : List tok -> (consumes : Bool) -> Type -> Type where Failure : {xs : List tok} -> (committed : Bool) -> (err : String) -> (rest : List tok) -> ParseResult xs c ty EmptyRes : (committed : Bool) -> (val : ty) -> (more : List tok) -> ParseResult more False ty NonEmptyRes : (committed : Bool) -> (val : ty) -> (more : List tok) -> ParseResult (x :: xs ++ more) c ty -- Take the result of an alternative branch, reset the commit flag to -- the commit flag from the outer alternative, and weaken the 'consumes' -- flag to take both alternatives into account weakenRes : {whatever, c : Bool} -> {xs : List tok} -> (com' : Bool) -> ParseResult xs c ty -> ParseResult xs (whatever && c) ty weakenRes com' (Failure com msg ts) = Failure com' msg ts weakenRes {whatever=True} com' (EmptyRes com val xs) = EmptyRes com' val xs weakenRes {whatever=False} com' (EmptyRes com val xs) = EmptyRes com' val xs weakenRes com' (NonEmptyRes com val more) = NonEmptyRes com' val more shorter : (more : List tok) -> .(ys : List tok) -> LTE (S (length more)) (S (length (ys ++ more))) shorter more [] = lteRefl shorter more (x :: xs) = LTESucc (lteSuccLeft (shorter more xs)) doParse : {c : Bool} -> (commit : Bool) -> (xs : List tok) -> (act : Grammar tok c ty) -> ParseResult xs c ty doParse com xs act with (sizeAccessible xs) doParse com xs (Empty val) | sml = EmptyRes com val xs doParse com [] (Fail str) | sml = Failure com str [] doParse com (x :: xs) (Fail str) | sml = Failure com str (x :: xs) doParse com xs Commit | sml = EmptyRes True () xs doParse com [] (Terminal f) | sml = Failure com "End of input" [] doParse com (x :: xs) (Terminal f) | sml = maybe (Failure com "Unrecognised token" (x :: xs)) (\a => NonEmptyRes com {xs=[]} a xs) (f x) doParse com [] EOF | sml = EmptyRes com () [] doParse com (x :: xs) EOF | sml = Failure com "Expected end of input" (x :: xs) doParse com [] (NextIs f) | sml = Failure com "End of input" [] doParse com (x :: xs) (NextIs f) | sml = if f x then EmptyRes com x (x :: xs) else Failure com "Unrecognised token" (x :: xs) doParse com xs (Alt x y) | sml with (doParse False xs x | sml) doParse com xs (Alt x y) | sml | Failure com' msg ts = if com' -- If the alternative had committed, don't try the -- other branch (and reset commit flag) then Failure com msg ts else weakenRes com (doParse False xs y | sml) -- Successfully parsed the first option, so use the outer commit flag doParse com xs (Alt x y) | sml | (EmptyRes _ val xs) = EmptyRes com val xs doParse com (z :: (ys ++ more)) (Alt x y) | sml | (NonEmptyRes _ val more) = NonEmptyRes com val more doParse com xs (SeqEmpty act next) | (Access morerec) = case doParse com xs act | Access morerec of Failure com msg ts => Failure com msg ts EmptyRes com val xs => case doParse com xs (next val) | (Access morerec) of Failure com' msg ts => Failure com' msg ts EmptyRes com' val xs => EmptyRes com' val xs NonEmptyRes com' val more => NonEmptyRes com' val more NonEmptyRes {x} {xs=ys} com val more => case (doParse com more (next val) | morerec _ (shorter more ys)) of Failure com' msg ts => Failure com' msg ts EmptyRes com' val _ => NonEmptyRes com' val more NonEmptyRes {x=x1} {xs=xs1} com' val more' => rewrite appendAssociative (x :: ys) (x1 :: xs1) more' in NonEmptyRes com' val more' doParse com xs (SeqEat act next) | sml with (doParse com xs act | sml) doParse com xs (SeqEat act next) | sml | Failure com' msg ts = Failure com' msg ts doParse com (x :: (ys ++ more)) (SeqEat act next) | (Access morerec) | (NonEmptyRes com' val more) = case doParse com' more (next val) | morerec _ (shorter more ys) of Failure com' msg ts => Failure com' msg ts EmptyRes com' val _ => NonEmptyRes com' val more NonEmptyRes {x=x1} {xs=xs1} com' val more' => rewrite appendAssociative (x :: ys) (x1 :: xs1) more' in NonEmptyRes com' val more' -- This next line is not strictly necessary, but it stops the coverage -- checker taking a really long time and eating lots of memory... doParse _ _ _ | sml = Failure True "Help the coverage checker!" [] public export data ParseError tok = Error String (List tok) ||| Parse a list of tokens according to the given grammar. If successful, ||| returns a pair of the parse result and the unparsed tokens (the remaining ||| input). export parse : (act : Grammar tok c ty) -> (xs : List tok) -> Either (ParseError tok) (ty, List tok) parse act xs = case doParse False xs act of Failure _ msg ts => Left (Error msg ts) EmptyRes _ val rest => pure (val, rest) NonEmptyRes _ val rest => pure (val, rest)