-- Implicit CAD. Copyright (C) 2011, Christopher Olah (chris@colah.ca) -- Released under the GNU GPL, see LICENSE -- We'd like to parse openscad code, with some improvements, for backwards compatability. -- This file provides primitive objects for the openscad parser. -- The code is fairly straightforward; an explanation of how -- the first one works is provided. {-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, FlexibleInstances, FlexibleContexts, TypeSynonymInstances, UndecidableInstances, ScopedTypeVariables, OverlappingInstances #-} module Graphics.Implicit.ExtOpenScad.Primitives (primitives) where import Graphics.Implicit.Definitions import Graphics.Implicit.ExtOpenScad.Definitions import Graphics.Implicit.ExtOpenScad.Util.ArgParser import Graphics.Implicit.ExtOpenScad.Util.OVal import qualified Graphics.Implicit.Primitives as Prim import Data.Maybe (fromMaybe, isNothing) import qualified Data.Either as Either import Data.Either (either) import qualified Control.Monad as Monad import Data.VectorSpace primitives :: [(String, [OVal] -> ArgParser (IO [OVal]) )] primitives = [ sphere, cube, square, cylinder, circle, polygon, union, difference, intersect, translate, scale, rotate, extrude, pack, shell, rotateExtrude, unit ] -- **Exmaple of implementing a module** -- sphere is a module without a suite named sphere, -- this means that the parser will look for this like -- sphere(args...); sphere = moduleWithoutSuite "sphere" $ do example "sphere(3);" example "sphere(r=5);" -- What are the arguments? -- The radius, r, which is a (real) number. -- Because we don't provide a default, this ends right -- here if it doesn't get a suitable argument! r :: ℝ <- argument "r" `doc` "radius of the sphere" -- So what does this module do? -- It adds a 3D object, a sphere of radius r, -- using the sphere implementation in Prim -- (Graphics.Implicit.Primitives) addObj3 $ Prim.sphere r cube = moduleWithoutSuite "cube" $ do -- examples example "cube(size = [2,3,4], center = true, r = 0.5);" example "cube(4);" -- arguments ((x1,x2), (y1,y2), (z1,z2)) <- do x :: Either ℝ ℝ2 <- argument "x" `doc` "x or x-interval" y :: Either ℝ ℝ2 <- argument "y" `doc` "y or y-interval" z :: Either ℝ ℝ2 <- argument "z" `doc` "z or z-interval" center :: Bool <- argument "center" `doc` "should center? (non-intervals)" `defaultTo` False let toInterval' = toInterval center return (either (toInterval center) id x, either (toInterval center) id y, either (toInterval center) id z) <|> do size :: Either ℝ ℝ3 <- argument "size" `doc` "square size" center :: Bool <- argument "center" `doc` "should center?" `defaultTo` False let (x,y, z) = either (\w -> (w,w,w)) id size return (toInterval center x, toInterval center y, toInterval center z) r :: ℝ <- argument "r" `doc` "radius of rounding" `defaultTo` 0 -- Tests test "cube(4);" `eulerCharacteristic` 2 test "cube(size=[2,3,4]);" `eulerCharacteristic` 2 addObj3 $ Prim.rect3R r (x1, y1, z1) (x2, y2, z2) square = moduleWithoutSuite "square" $ do -- examples example "square(x=[-2,2], y=[-1,5]);" example "square(size = [3,4], center = true, r = 0.5);" example "square(4);" -- arguments ((x1,x2), (y1,y2)) <- do x :: Either ℝ ℝ2 <- argument "x" `doc` "x or x-interval" y :: Either ℝ ℝ2 <- argument "y" `doc` "y or y-interval" center :: Bool <- argument "center" `doc` "should center? (non-intervals)" `defaultTo` False let toInterval' = toInterval center return (either (toInterval center) id x, either (toInterval center) id y) <|> do size :: Either ℝ ℝ2 <- argument "size" `doc` "square size" center :: Bool <- argument "center" `doc` "should center?" `defaultTo` False let (x,y) = either (\w -> (w,w)) id size return (toInterval center x, toInterval center y) r :: ℝ <- argument "r" `doc` "radius of rounding" `defaultTo` 0 -- Tests test "square(2);" `eulerCharacteristic` 0 test "square(size=[2,3]);" `eulerCharacteristic` 0 addObj2 $ Prim.rectR r (x1, y1) (x2, y2) cylinder = moduleWithoutSuite "cylinder" $ do example "cylinder(r=10, h=30, center=true);" example "cylinder(r1=4, r2=6, h=10);" example "cylinder(r=5, h=10, $fn = 6);" -- arguments r :: ℝ <- argument "r" `defaultTo` 1 `doc` "radius of cylinder" h :: Either ℝ ℝ2 <- argument "h" `defaultTo` (Left 1) `doc` "height of cylinder" r1 :: ℝ <- argument "r1" `defaultTo` 1 `doc` "bottom radius; overrides r" r2 :: ℝ <- argument "r2" `defaultTo` 1 `doc` "top radius; overrides r" fn :: ℕ <- argument "$fn" `defaultTo` (-1) `doc` "number of sides, for making prisms" center :: Bool <- argument "center" `defaultTo` False `doc` "center cylinder with respect to z?" -- Tests test "cylinder(r=10, h=30, center=true);" `eulerCharacteristic` 0 test "cylinder(r=5, h=10, $fn = 6);" `eulerCharacteristic` 0 let (h1, h2) = either (toInterval center) id h dh = h2 - h1 shift = if h1 == 0 then id else Prim.translate (0,0,h1) -- The result is a computation state modifier that adds a 3D object, -- based on the args. addObj3 $ if r1 == 1 && r2 == 1 then let obj2 = if fn < 0 then Prim.circle r else Prim.polygonR 0 $ let sides = fromIntegral fn in [(r*cos θ, r*sin θ )| θ <- [2*pi*n/sides | n <- [0.0 .. sides - 1.0]]] obj3 = Prim.extrudeR 0 obj2 dh in shift $ obj3 else shift $ Prim.cylinder2 r1 r2 dh circle = moduleWithoutSuite "circle" $ do example "circle(r=10); // circle" example "circle(r=5, $fn=6); //hexagon" -- Arguments r :: ℝ <- argument "r" `doc` "radius of the circle" fn :: ℕ <- argument "$fn" `doc` "if defined, makes a regular polygon with n sides instead of a circle" `defaultTo` (-1) test "circle(r=10);" `eulerCharacteristic` 0 addObj2 $ if fn < 3 then Prim.circle r else Prim.polygonR 0 $ let sides = fromIntegral fn in [(r*cos θ, r*sin θ )| θ <- [2*pi*n/sides | n <- [0.0 .. sides - 1.0]]] polygon = moduleWithoutSuite "polygon" $ do example "polygon ([(0,0), (0,10), (10,0)]);" points :: [ℝ2] <- argument "points" `doc` "vertices of the polygon" paths :: [ℕ ] <- argument "paths" `doc` "order to go through vertices; ignored for now" `defaultTo` [] r :: ℝ <- argument "r" `doc` "rounding of the polygon corners; ignored for now" `defaultTo` 0 case paths of [] -> addObj2 $ Prim.polygonR 0 points _ -> return $ return [] union = moduleWithSuite "union" $ \children -> do r :: ℝ <- argument "r" `defaultTo` 0.0 `doc` "Radius of rounding for the union interface" return $ return $ if r > 0 then objReduce (Prim.unionR r) (Prim.unionR r) children else objReduce Prim.union Prim.union children intersect = moduleWithSuite "intersection" $ \children -> do r :: ℝ <- argument "r" `defaultTo` 0.0 `doc` "Radius of rounding for the intersection interface" return $ return $ if r > 0 then objReduce (Prim.intersectR r) (Prim.intersectR r) children else objReduce Prim.intersect Prim.intersect children difference = moduleWithSuite "difference" $ \children -> do r :: ℝ <- argument "r" `defaultTo` 0.0 `doc` "Radius of rounding for the difference interface" return $ return $ if r > 0 then objReduce (Prim.differenceR r) (Prim.differenceR r) children else objReduce Prim.difference Prim.difference children translate = moduleWithSuite "translate" $ \children -> do example "translate ([2,3]) circle (4);" example "translate ([5,6,7]) sphere(5);" (x,y,z) <- do x :: ℝ <- argument "x" `doc` "x amount to translate"; y :: ℝ <- argument "y" `doc` "y amount to translate"; z :: ℝ <- argument "z" `doc` "z amount to translate" `defaultTo` 0; return (x,y,z); <|> do v :: Either ℝ (Either ℝ2 ℝ3) <- argument "v" `doc` "vector to translate by" return $ case v of Left x -> (x,0,0) Right (Left (x,y) ) -> (x,y,0) Right (Right (x,y,z)) -> (x,y,z) return $ return $ objMap (Prim.translate (x,y)) (Prim.translate (x,y,z)) children deg2rad x = x / 180.0 * pi -- This is mostly insane rotate = moduleWithSuite "rotate" $ \children -> do a <- argument "a" `doc` "value to rotate by; angle or list of angles" v <- argument "v" `defaultTo` (0, 0, 1) `doc` "Vector to rotate around if a is a single angle" -- caseOType matches depending on whether size can be coerced into -- the right object. See Graphics.Implicit.ExtOpenScad.Util -- Entries must be joined with the operator <||> -- Final entry must be fall through. return $ return $ caseOType a $ ( \θ -> objMap (Prim.rotate $ deg2rad θ) (Prim.rotate3V (deg2rad θ) v) children ) <||> ( \(yz,zx,xy) -> objMap (Prim.rotate $ deg2rad xy ) (Prim.rotate3 (deg2rad yz, deg2rad zx, deg2rad xy) ) children ) <||> ( \(yz,zx) -> objMap (id ) (Prim.rotate3 (deg2rad yz, deg2rad zx, 0)) children ) <||> ( \_ -> [] ) scale = moduleWithSuite "scale" $ \children -> do example "scale(2) square(5);" example "scale([2,3]) square(5);" example "scale([2,3,4]) cube(5);" v :: Either ℝ (Either ℝ2 ℝ3) <- argument "v" `doc` "vector or scalar to scale by" let scaleObjs strech2 strech3 = objMap (Prim.scale strech2) (Prim.scale strech3) children return $ return $ case v of Left x -> scaleObjs (x,1) (x,1,1) Right (Left (x,y)) -> scaleObjs (x,y) (x,y,1) Right (Right (x,y,z)) -> scaleObjs (x,y) (x,y,z) extrude = moduleWithSuite "linear_extrude" $ \children -> do example "linear_extrude(10) square(5);" height :: Either ℝ (ℝ -> ℝ -> ℝ) <- argument "height" `defaultTo` (Left 1) `doc` "height to extrude to..." center :: Bool <- argument "center" `defaultTo` False `doc` "center? (the z component)" twist :: Maybe (Either ℝ (ℝ -> ℝ)) <- argument "twist" `defaultTo` Nothing `doc` "twist as we extrude, either a total amount to twist or a function..." scale :: Maybe (Either ℝ (ℝ -> ℝ)) <- argument "scale" `defaultTo` Nothing `doc` "scale according to this funciton as we extrud..." translate :: Maybe (Either ℝ2 (ℝ -> ℝ2)) <- argument "translate" `defaultTo` Nothing `doc` "translate according to this funciton as we extrude..." r :: ℝ <- argument "r" `defaultTo` 0 `doc` "round the top?" let degRotate = (\θ (x,y) -> (x*cos(θ)+y*sin(θ), y*cos(θ)-x*sin(θ))) . (*(2*pi/360)) heightn = case height of Left h -> h Right f -> f 0 0 height' = case height of Right f -> Right $ uncurry f Left a -> Left a shiftAsNeeded = if center then Prim.translate (0,0,-heightn/2.0) else id funcify :: (VectorSpace a, Fractional (Scalar a)) => Either a (ℝ -> a) -> ℝ -> a funcify (Left val) h = realToFrac (h/heightn) *^ val funcify (Right f ) h = f h twist' = fmap funcify twist scale' = fmap funcify scale translate' = fmap funcify translate return $ return $ obj2UpMap ( \obj -> case height of Left constHeight | isNothing twist && isNothing scale && isNothing translate -> shiftAsNeeded $ Prim.extrudeR r obj constHeight _ -> shiftAsNeeded $ Prim.extrudeRM r twist' scale' translate' obj height' ) children rotateExtrude = moduleWithSuite "rotate_extrude" $ \children -> do example "rotate_extrude() translate(20) circle(10);" totalRot :: ℝ <- argument "a" `defaultTo` 360 `doc` "angle to sweep" r :: ℝ <- argument "r" `defaultTo` 0 translate :: Either ℝ2 (ℝ -> ℝ2) <- argument "translate" `defaultTo` Left (0,0) let n = fromIntegral $ round $ totalRot / 360 cap = (360*n /= totalRot) || (Either.either ( /= (0,0)) (\f -> f 0 /= f totalRot) ) translate capM = if cap then Just r else Nothing return $ return $ obj2UpMap (Prim.rotateExtrude totalRot capM translate) children {-rotateExtrudeStatement = moduleWithSuite "rotate_extrude" $ \suite -> do h <- realArgument "h" center <- boolArgumentWithDefault "center" False twist <- realArgumentWithDefault 0.0 r <- realArgumentWithDefault "r" 0.0 getAndModUpObj2s suite (\obj -> Prim.extrudeRMod r (\θ (x,y) -> (x*cos(θ)+y*sin(θ), y*cos(θ)-x*sin(θ)) ) obj h) -} shell = moduleWithSuite "shell" $ \children-> do w :: ℝ <- argument "w" `doc` "width of the shell..." return $ return $ objMap (Prim.shell w) (Prim.shell w) children -- Not a perenant solution! Breaks if can't pack. pack = moduleWithSuite "pack" $ \children -> do example "pack ([45,45], sep=2) { circle(10); circle(10); circle(10); circle(10); }" -- arguments size :: ℝ2 <- argument "size" `doc` "size of 2D box to pack objects within" sep :: ℝ <- argument "sep" `doc` "mandetory space between objects" -- The actual work... return $ let (obj2s, obj3s, others) = divideObjs children in if not $ null obj3s then case Prim.pack3 size sep obj3s of Just solution -> return $ OObj3 solution : (map OObj2 obj2s ++ others) Nothing -> do putStrLn "Can't pack given objects in given box with present algorithm" return children else case Prim.pack2 size sep obj2s of Just solution -> return $ OObj2 solution : others Nothing -> do putStrLn "Can't pack given objects in given box with present algorithm" return children unit = moduleWithSuite "unit" $ \children -> do example "unit(\"inch\") {..}" -- arguments unit :: String <- argument "unit" `doc` "the unit you wish to work in" let mmRatio "inch" = Just 25.4 mmRatio "in" = mmRatio "inch" mmRatio "foot" = Just 304.8 mmRatio "ft" = mmRatio "foot" mmRatio "yard" = Just 914.4 mmRatio "yd" = mmRatio "yard" mmRatio "mm" = Just 1 mmRatio "cm" = Just 10 mmRatio "dm" = Just 100 mmRatio "m" = Just 1000 mmRatio "km" = Just 1000000 mmRatio "µm" = Just 0.001 mmRatio "um" = mmRatio "µm" mmRatio "nm" = Just 0.0000001 mmRatio _ = Nothing -- The actual work... return $ case mmRatio unit of Nothing -> do putStrLn $ "unrecognized unit " ++ unit return children Just r -> return $ objMap (Prim.scale (r,r)) (Prim.scale (r,r,r)) children --------------- (<|>) :: ArgParser a -> ArgParser a -> ArgParser a (<|>) = Monad.mplus moduleWithSuite name modArgMapper = (name, modArgMapper) moduleWithoutSuite name modArgMapper = (name, \suite -> modArgMapper) addObj3 :: SymbolicObj3 -> ArgParser (IO [OVal]) addObj3 x = return $ return [OObj3 x] addObj2 :: SymbolicObj2 -> ArgParser (IO [OVal]) addObj2 x = return $ return [OObj2 x] objMap obj2mod obj3mod (x:xs) = case x of OObj2 obj2 -> OObj2 (obj2mod obj2) : objMap obj2mod obj3mod xs OObj3 obj3 -> OObj3 (obj3mod obj3) : objMap obj2mod obj3mod xs a -> a : objMap obj2mod obj3mod xs objMap _ _ [] = [] objReduce obj2reduce obj3reduce l = case divideObjs l of ( [], [], others) -> others ( [], obj3s, others) -> OObj3 (obj3reduce obj3s) : others (obj2s, [], others) -> OObj2 (obj2reduce obj2s) : others (obj2s, obj3s, others) -> OObj2 (obj2reduce obj2s) : OObj3 (obj3reduce obj3s) : others obj2UpMap obj2upmod (x:xs) = case x of OObj2 obj2 -> OObj3 (obj2upmod obj2) : obj2UpMap obj2upmod xs a -> a : obj2UpMap obj2upmod xs obj2UpMap _ [] = [] toInterval center h = if center then (-h/2, h/2) else (0, h)