module Graphics.Implicit.Export.Render where
import Prelude(Float, Bool, ceiling, ($), (/), fromIntegral, (+), (*), fromInteger, max, div, tail, map, concat, realToFrac, (==), (||), filter, not, reverse, (.), Integral, Eq, Integer, concatMap)
import Graphics.Implicit.Definitions (ℝ, ℝ2, ℝ3, Obj2, Obj3, TriangleMesh, Triangle, Polyline)
import Data.VectorSpace ((^-^))
import Graphics.Implicit.Export.Render.Interpolate (interpolate)
import Graphics.Implicit.Export.Render.GetSegs (getSegs)
import Graphics.Implicit.Export.Render.GetLoops (getLoops)
import Graphics.Implicit.Export.Render.TesselateLoops (tesselateLoop)
import Graphics.Implicit.Export.Render.HandleSquares (mergedSquareTris)
import Control.Parallel.Strategies (using, rdeepseq, parBuffer)
import Control.DeepSeq (NFData)
import Graphics.Implicit.Export.Render.HandlePolylines (cleanLoopsFromSegs)
getMesh :: ℝ3 -> ℝ3 -> ℝ -> Obj3 -> TriangleMesh
getMesh p1@(x1,y1,z1) p2 res obj =
let
(dx,dy,dz) = p2 ^-^ p1
nx :: Integral a => a
nx = ceiling $ dx / res
ny :: Integral a => a
ny = ceiling $ dy / res
nz :: Integral a => a
nz = ceiling $ dz / res
rx = dx / fromInteger nx
ry = dy / fromInteger ny
rz = dz / fromInteger nz
pXs = [ x1 + rx*n | n <- [0.. fromInteger nx] ]
pYs = [ y1 + ry*n | n <- [0.. fromInteger ny] ]
pZs = [ z1 + rz*n | n <- [0.. fromInteger nz] ]
par3DList :: forall t. NFData t => Integer -> Integer -> Integer -> ((Integer -> ℝ) -> Integer -> (Integer -> ℝ) -> Integer -> (Integer -> ℝ) -> Integer -> t) -> [[[t]]]
par3DList lenx leny lenz f =
[[[f
(\n -> x1 + rx*fromInteger (mx+n)) mx
(\n -> y1 + ry*fromInteger (my+n)) my
(\n -> z1 + rz*fromInteger (mz+n)) mz
| mx <- [0..lenx] ] | my <- [0..leny] ] | mz <- [0..lenz] ]
`using` (parBuffer (max 1 . fromInteger $ div lenz 32) rdeepseq)
objV = par3DList (nx+2) (ny+2) (nz+2) $ \x _ y _ z _ -> obj (x 0, y 0, z 0)
midsZ = [[[
interpolate (z0, objX0Y0Z0) (z1', objX0Y0Z1) (appAB obj x0 y0) res
| x0 <- pXs | objX0Y0Z0 <- objY0Z0 | objX0Y0Z1 <- objY0Z1
]| y0 <- pYs | objY0Z0 <- objZ0 | objY0Z1 <- objZ1
]| z0 <- pZs | z1' <- tail pZs | objZ0 <- objV | objZ1 <- tail objV
] `using` (parBuffer (max 1 . fromInteger $ div nz 32) rdeepseq)
midsY = [[[
interpolate (y0, objX0Y0Z0) (y1', objX0Y1Z0) (appAC obj x0 z0) res
| x0 <- pXs | objX0Y0Z0 <- objY0Z0 | objX0Y1Z0 <- objY1Z0
]| y0 <- pYs | y1' <- tail pYs | objY0Z0 <- objZ0 | objY1Z0 <- tail objZ0
]| z0 <- pZs | objZ0 <- objV
] `using` (parBuffer (max 1 $ fromInteger $ div nz 32) rdeepseq)
midsX = [[[
interpolate (x0, objX0Y0Z0) (x1', objX1Y0Z0) (appBC obj y0 z0) res
| x0 <- pXs | x1' <- tail pXs | objX0Y0Z0 <- objY0Z0 | objX1Y0Z0 <- tail objY0Z0
]| y0 <- pYs | objY0Z0 <- objZ0
]| z0 <- pZs | objZ0 <- objV
] `using` (parBuffer (max 1 $ fromInteger $ div nz 32) rdeepseq)
segsZ = [[[
map2 (inj3 z0) $ getSegs (x0,y0) (x1',y1') (obj **$ z0)
(objX0Y0Z0, objX1Y0Z0, objX0Y1Z0, objX1Y1Z0)
(midA0, midA1, midB0, midB1)
|x0<-pXs|x1'<-tail pXs|midB0<-mX'' |midB1<-mX'T |midA0<-mY'' |midA1<-tail mY''
|objX0Y0Z0<-objY0Z0|objX1Y0Z0<-tail objY0Z0|objX0Y1Z0<-objY1Z0|objX1Y1Z0<-tail objY1Z0
]|y0<-pYs|y1'<-tail pYs|mX'' <-mX' |mX'T <-tail mX'|mY'' <-mY'
|objY0Z0 <- objZ0 | objY1Z0 <- tail objZ0
]|z0<-pZs |mX' <-midsX| mY' <-midsY
|objZ0 <- objV
] `using` (parBuffer (max 1 $ fromInteger $ div nz 32) rdeepseq)
segsY = [[[
map2 (inj2 y0) $ getSegs (x0,z0) (x1',z1') (obj *$* y0)
(objX0Y0Z0,objX1Y0Z0,objX0Y0Z1,objX1Y0Z1)
(midA0, midA1, midB0, midB1)
|x0<-pXs|x1'<-tail pXs|midB0<-mB'' |midB1<-mBT' |midA0<-mA'' |midA1<-tail mA''
|objX0Y0Z0<-objY0Z0|objX1Y0Z0<-tail objY0Z0|objX0Y0Z1<-objY0Z1|objX1Y0Z1<-tail objY0Z1
]|y0<-pYs| mB'' <-mB' |mBT' <-mBT |mA'' <-mA'
|objY0Z0 <- objZ0 | objY0Z1 <- objZ1
]|z0<-pZs|z1'<-tail pZs|mB' <-midsX|mBT <-tail midsX|mA' <-midsZ
|objZ0 <- objV | objZ1 <- tail objV
] `using` (parBuffer (max 1 $ fromInteger $ div nz 32) rdeepseq)
segsX = [[[
map2 (inj1 x0) $ getSegs (y0,z0) (y1',z1') (obj $** x0)
(objX0Y0Z0,objX0Y1Z0,objX0Y0Z1,objX0Y1Z1)
(midA0, midA1, midB0, midB1)
|x0<-pXs| midB0<-mB'' |midB1<-mBT' |midA0<-mA'' |midA1<-mA'T
|objX0Y0Z0<-objY0Z0|objX0Y1Z0<- objY1Z0|objX0Y0Z1<-objY0Z1|objX0Y1Z1<- objY1Z1
]|y0<-pYs|y1'<-tail pYs|mB'' <-mB' |mBT' <-mBT |mA'' <-mA' |mA'T <-tail mA'
|objY0Z0 <-objZ0 |objY1Z0 <-tail objZ0 |objY0Z1 <-objZ1 |objY1Z1 <-tail objZ1
]|z0<-pZs|z1'<-tail pZs|mB' <-midsY|mBT <-tail midsY|mA' <-midsZ
|objZ0 <- objV | objZ1 <- tail objV
] `using` (parBuffer (max 1 $ fromInteger $ div nz 32) rdeepseq)
sqTris = [[[
concatMap (tesselateLoop res obj) $ getLoops $ concat [
segX''',
mapR segX''T,
mapR segY''',
segY'T',
segZ''',
mapR segZT''
]
| segZ'''<- segZ''| segZT''<- segZT'
| segY'''<- segY''| segY'T'<- segY'T
| segX'''<- segX''| segX''T<- tail segX''
]| segZ'' <- segZ' | segZT' <- segZT
| segY'' <- segY' | segY'T <- tail segY'
| segX'' <- segX'
]| segZ' <- segsZ | segZT <- tail segsZ
| segY' <- segsY
| segX' <- segsX
] `using` (parBuffer (max 1 $ fromInteger $ div nz 32) rdeepseq)
in cleanupTris $ mergedSquareTris $ concat $ concat $ concat sqTris
cleanupTris :: TriangleMesh -> TriangleMesh
cleanupTris tris =
let
toFloat :: ℝ -> Float
toFloat = realToFrac
floatPoint :: (ℝ, ℝ, ℝ) -> (Float, Float, Float)
floatPoint (a,b,c) = (toFloat a, toFloat b, toFloat c)
isDegenerateTriFloat :: Eq t => (t,t,t) -> Bool
isDegenerateTriFloat (a,b,c) = (a == b) || (b == c) || (a == c)
isDegenerateTri :: Triangle -> Bool
isDegenerateTri (a, b, c) = isDegenerateTriFloat (floatPoint a, floatPoint b, floatPoint c)
in filter (not . isDegenerateTri) tris
getContour :: ℝ2 -> ℝ2 -> ℝ -> Obj2 -> [Polyline]
getContour p1@(x1, y1) p2 res obj =
let
(dx,dy) = p2 ^-^ p1
nx :: Integral a => a
nx = ceiling $ dx / res
ny :: Integral a => a
ny = ceiling $ dy / res
rx = dx/fromInteger nx
ry = dy/fromInteger ny
pYs = [ y1 + ry*n | n <- [0.. fromInteger ny] ]
pXs = [ x1 + rx*n | n <- [0.. fromInteger nx] ]
par2DList :: forall t. NFData t => Integer -> Integer -> ((Integer -> ℝ) -> Integer -> (Integer -> ℝ) -> Integer -> t) -> [[t]]
par2DList lenx leny f =
[[ f
(\n -> x1 + rx*fromIntegral (mx+n)) mx
(\n -> y1 + ry*fromIntegral (my+n)) my
| mx <- [0..lenx] ] | my <- [0..leny] ]
`using` (parBuffer (max 1 $ fromInteger $ div leny 32) rdeepseq)
objV = par2DList (nx+2) (ny+2) $ \x _ y _ -> obj (x 0, y 0)
midsY = [[
interpolate (y0, objX0Y0) (y1', objX0Y1) (obj $* x0) res
| x0 <- pXs | objX0Y0 <- objY0 | objX0Y1 <- objY1
]| y0 <- pYs | y1' <- tail pYs | objY0 <- objV | objY1 <- tail objV
] `using` (parBuffer (max 1 $ fromInteger $ div ny 32) rdeepseq)
midsX = [[
interpolate (x0, objX0Y0) (x1', objX1Y0) (obj *$ y0) res
| x0 <- pXs | x1' <- tail pXs | objX0Y0 <- objY0 | objX1Y0 <- tail objY0
]| y0 <- pYs | objY0 <- objV
] `using` (parBuffer (max 1 $ fromInteger $ div ny 32) rdeepseq)
segs = [[
getSegs (x0,y0) (x1',y1') obj
(objX0Y0, objX1Y0, objX0Y1, objX1Y1)
(midA0, midA1, midB0, midB1)
|x0<-pXs|x1'<-tail pXs|midB0<-mX'' |midB1<-mX'T |midA0<-mY'' |midA1<-tail mY''
|objX0Y0<-objY0|objX1Y0<-tail objY0|objX0Y1<-objY1|objX1Y1<-tail objY1
]|y0<-pYs|y1'<-tail pYs|mX'' <-midsX|mX'T <-tail midsX|mY'' <-midsY
|objY0 <- objV | objY1 <- tail objV
] `using` (parBuffer (max 1 $ fromInteger $ div ny 32) rdeepseq)
in cleanLoopsFromSegs $ concat $ concat $ segs
inj1 :: forall t t1 t2. t -> (t1, t2) -> (t, t1, t2)
inj1 a (b,c) = (a,b,c)
inj2 :: forall t t1 t2. t1 -> (t, t2) -> (t, t1, t2)
inj2 b (a,c) = (a,b,c)
inj3 :: forall t t1 t2. t2 -> (t, t1) -> (t, t1, t2)
inj3 c (a,b) = (a,b,c)
($**) :: forall t t1 t2 t3. ((t1, t2, t3) -> t) -> t1 -> (t2, t3) -> t
infixr 0 $**
(*$*) :: forall t t1 t2 t3. ((t1, t2, t3) -> t) -> t2 -> (t1, t3) -> t
infixr 0 *$*
(**$) :: forall t t1 t2 t3. ((t1, t2, t3) -> t) -> t3 -> (t1, t2) -> t
infixr 0 **$
($*) :: forall t t1 t2. ((t1, t2) -> t) -> t1 -> t2 -> t
infixr 0 $*
(*$) :: forall t t1 t2. ((t1, t2) -> t) -> t2 -> t1 -> t
infixr 0 *$
f $* a = \b -> f (a,b)
f *$ b = \a -> f (a,b)
f $** a = \(b,c) -> f (a,b,c)
f *$* b = \(a,c) -> f (a,b,c)
f **$ c = \(a,b) -> f (a,b,c)
appAB :: forall t t1 t2 t3. ((t1, t2, t3) -> t) -> t1 -> t2 -> t3 -> t
appAB f a b = \c -> f (a,b,c)
appBC :: forall t t1 t2 t3. ((t1, t2, t3) -> t) -> t2 -> t3 -> t1 -> t
appBC f b c = \a -> f (a,b,c)
appAC :: forall t t1 t2 t3. ((t1, t2, t3) -> t) -> t1 -> t3 -> t2 -> t
appAC f a c = \b -> f (a,b,c)
map2 :: forall a b. (a -> b) -> [[a]] -> [[b]]
map2 f = map (map f)
map2R :: forall a a1. (a1 -> a) -> [[a1]] -> [[a]]
map2R f = map (reverse . map f)
mapR :: forall a. [[a]] -> [[a]]
mapR = map reverse