-- | -- Copyright: (C) 2013 Amgen, Inc. -- -- Vectors that can be passed to and from R with no copying at all. These -- vectors are an instance of "Data.Vector.Storable", where the memory is -- allocated from the R heap, in such a way that they can be converted to -- a 'SEXP' through simple pointer arithmetic (see 'toSEXP') /in constant time/. -- -- The main difference between "Data.Vector.SEXP" and "Data.Vector.Storable" is -- that the former uses a header-prefixed data layout (the header immediately -- precedes the payload of the vector). This means that no additional pointer -- dereferencing is needed to reach the vector data. The trade-off is that most -- slicing operations are O(N) instead of O(1). -- -- If you make heavy use of slicing, then it's best to convert to -- a "Data.Vector.Storable" vector first, using 'unsafeToStorable'. -- -- Note that since 'unstream' relies on slicing operations, it will still be an -- O(N) operation but it will copy vector data twice (instead of once). {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ViewPatterns #-} module Data.Vector.SEXP ( Vector(..) , Mutable.MVector(..) , ElemRep , VECTOR , Data.Vector.SEXP.fromSEXP , unsafeFromSEXP , Data.Vector.SEXP.toSEXP , unsafeToSEXP -- * Accessors -- ** Length information , length , null -- ** Indexing , (!) , (!?) , head , last , unsafeIndex , unsafeHead , unsafeLast -- ** Monadic indexing , indexM , headM , lastM , unsafeIndexM , unsafeHeadM , unsafeLastM -- ** Extracting subvectors (slicing) , slice , init , take , drop , tail , splitAt , unsafeTail , unsafeSlice , unsafeDrop , unsafeTake , unsafeInit -- * Construction -- ** Initialisation , empty , singleton , replicate , generate , iterateN -- ** Monadic initialisation , replicateM , generateM , create -- ** Unfolding , unfoldr , unfoldrN , constructN , constructrN -- ** Enumeration , enumFromN , enumFromStepN , enumFromTo , enumFromThenTo -- ** Concatenation , cons , snoc , (++) , concat -- ** Restricting memory usage , force -- * Modifying vectors -- ** Bulk updates , (//) -- , update_ , unsafeUpd -- , unsafeUpdate_ -- ** Accumulations , accum -- , accumulate_ , unsafeAccum -- , unsafeAccumulate_ -- ** Permutations , reverse -- , backpermute -- , unsafeBackpermute -- ** Safe destructive updates -- , modify -- * Elementwise operations -- ** Mapping , map , imap , concatMap -- ** Monadic mapping , mapM , mapM_ , forM , forM_ -- ** Zipping , zipWith , zipWith3 , zipWith4 , zipWith5 , zipWith6 , izipWith , izipWith3 , izipWith4 , izipWith5 , izipWith6 -- ** Monadic zipping , zipWithM , zipWithM_ -- * Working with predicates -- ** Filtering , filter , ifilter , filterM , takeWhile , dropWhile -- ** Partitioning , partition , unstablePartition , span , break -- ** Searching , elem , notElem , find , findIndex -- , findIndices , elemIndex -- , elemIndices -- * Folding , foldl , foldl1 , foldl' , foldl1' , foldr , foldr1 , foldr' , foldr1' , ifoldl , ifoldl' , ifoldr , ifoldr' -- ** Specialised folds , all , any -- , and -- , or , sum , product , maximum , maximumBy , minimum , minimumBy , minIndex , minIndexBy , maxIndex , maxIndexBy -- ** Monadic folds , foldM , foldM' , fold1M , fold1M' , foldM_ , foldM'_ , fold1M_ , fold1M'_ -- * Prefix sums (scans) , prescanl , prescanl' , postscanl , postscanl' , scanl , scanl' , scanl1 , scanl1' , prescanr , prescanr' , postscanr , postscanr' , scanr , scanr' , scanr1 , scanr1' -- * Conversions -- ** Lists , toList , fromList , fromListN -- ** Mutable vectors , freeze , thaw , copy , unsafeFreeze , unsafeThaw , unsafeCopy -- ** SEXP specific helpers. , toString , toByteString , unsafeWithByteString ) where import Control.Exception (evaluate) import Control.Monad.R.Class import Control.Monad.R.Internal import Control.Memory.Region import Data.Vector.SEXP.Base import Data.Vector.SEXP.Mutable (MVector) import qualified Data.Vector.SEXP.Mutable as Mutable import qualified Data.Vector.SEXP.Mutable.Internal as Mutable import Foreign.R ( SEXP(..) ) import qualified Foreign.R as R import Foreign.R.Type ( SEXPTYPE(Char) ) import Control.Monad.ST (ST, runST) import Data.Int import Data.Proxy (Proxy(..)) import Data.Reflection (Reifies(..), reify) import qualified Data.Vector.Generic as G import Data.Vector.Generic.New (run) import Data.ByteString ( ByteString ) import qualified Data.ByteString as B import qualified Data.ByteString.Unsafe as B import Control.Applicative hiding (empty) #if MIN_VERSION_vector(0,11,0) import qualified Data.Vector.Fusion.Bundle.Monadic as Bundle import Data.Vector.Fusion.Bundle.Monadic (sSize, sElems) import Data.Vector.Fusion.Bundle.Size (Size(Unknown), smaller) import Data.Vector.Fusion.Bundle (lift) import qualified Data.Vector.Fusion.Stream.Monadic as Stream import qualified Data.List as List #else import qualified Data.Vector.Fusion.Stream as Stream import qualified Data.Vector.Fusion.Stream.Monadic as MStream #endif import Control.Monad.Primitive ( PrimMonad, unsafeInlineIO, unsafePrimToPrim ) import qualified Control.DeepSeq as DeepSeq import Data.Word ( Word8 ) import Foreign ( Storable, Ptr, castPtr, peekElemOff ) import Foreign.ForeignPtr (ForeignPtr, withForeignPtr) import Foreign.Marshal.Array ( copyArray ) import qualified GHC.Foreign as GHC import qualified GHC.ForeignPtr as GHC import GHC.IO.Encoding.UTF8 #if __GLASGOW_HASKELL__ >= 708 import qualified GHC.Exts as Exts #endif import System.IO.Unsafe import Prelude ( Eq(..) , Enum , Monad(..) , Num(..) , Ord(..) , Show(..) , Bool , IO , Maybe , Ordering , String , (.) , ($) , fromIntegral , seq , uncurry ) import qualified Prelude newtype ForeignSEXP (ty::SEXPTYPE) = ForeignSEXP (ForeignPtr ()) -- | Create a 'ForeignSEXP' from 'SEXP'. foreignSEXP :: PrimMonad m => SEXP s ty -> m (ForeignSEXP ty) foreignSEXP sx@(SEXP ptr) = unsafePrimToPrim $ do R.preserveObject sx ForeignSEXP <$> GHC.newConcForeignPtr (castPtr ptr) (R.releaseObject sx) withForeignSEXP :: ForeignSEXP ty -> (SEXP s ty -> IO r) -> IO r withForeignSEXP (ForeignSEXP fptr) f = withForeignPtr fptr $ \ptr -> f (SEXP (castPtr ptr)) -- | Immutable vectors. The second type paramater is a phantom parameter -- reflecting at the type level the tag of the vector when viewed as a 'SEXP'. -- The tag of the vector and the representation type are related via 'ElemRep'. data Vector s (ty :: SEXPTYPE) a = Vector { vectorBase :: {-# UNPACK #-} !(ForeignSEXP ty) , vectorOffset :: {-# UNPACK #-} !Int32 , vectorLength :: {-# UNPACK #-} !Int32 } instance (Eq a, VECTOR s ty a) => Eq (Vector s ty a) where a == b = toList a == toList b instance (Show a, VECTOR s ty a) => Show (Vector s ty a) where show v = "fromList " Prelude.++ showList (toList v) "" -- | Internal wrapper type for reflection. First type parameter is the reified -- type to reflect. newtype W t ty s a = W { unW :: Vector s ty a } withW :: proxy t -> Vector s ty a -> W t ty s a withW _ v = W v proxyFW :: (W t ty s a -> r) -> Vector s ty a -> p t -> r proxyFW f v p = f (withW p v) proxyFW2 :: (W t tya s a -> W t tyb s b -> r) -> Vector s tya a -> Vector s tyb b -> p t -> r proxyFW2 f v1 v2 p = f (withW p v1) (withW p v2) proxyW :: W t ty s a -> p t -> Vector s ty a proxyW v _ = unW v type instance G.Mutable (W t ty s) = Mutable.W t ty instance (Reifies t (AcquireIO s), VECTOR s ty a) => G.Vector (W t ty s) a where {-# INLINE basicUnsafeFreeze #-} basicUnsafeFreeze (Mutable.unW -> Mutable.MVector sx off len) = do fp <- foreignSEXP sx return $ W $ Vector fp off len {-# INLINE basicUnsafeThaw #-} basicUnsafeThaw (unW -> Vector fp off len) = unsafePrimToPrim $ withForeignSEXP fp $ \ptr -> do sx' <- acquireIO (R.release ptr) return $ Mutable.withW p $ Mutable.MVector (R.unsafeRelease sx') off len where AcquireIO acquireIO = reflect (Proxy :: Proxy t) p = Proxy :: Proxy t basicLength (unW -> Vector _ _ len) = fromIntegral len {-# INLINE basicUnsafeSlice #-} basicUnsafeSlice (fromIntegral ->i) (fromIntegral ->n) (unW -> Vector fp off _len) = W $ Vector fp (off + i) n {-# INLINE basicUnsafeIndexM #-} basicUnsafeIndexM v i = return . unsafeInlineIO $ peekElemOff (unsafeToPtr (unW v)) i {-# INLINE basicUnsafeCopy #-} basicUnsafeCopy mv v = unsafePrimToPrim $ copyArray (Mutable.unsafeToPtr (Mutable.unW mv)) (unsafeToPtr (unW v)) (G.basicLength v) {-# INLINE elemseq #-} elemseq _ = seq #if __GLASGOW_HASKELL__ >= 708 instance VECTOR s ty a => Exts.IsList (Vector s ty a) where type Item (Vector s ty a) = a fromList = fromList fromListN = fromListN toList = toList #endif -- | Return Pointer of the first element of the vector storage. unsafeToPtr :: Storable a => Vector s ty a -> Ptr a {-# INLINE unsafeToPtr #-} unsafeToPtr (Vector fp off len) = unsafeInlineIO $ withForeignSEXP fp $ \sx -> return $ Mutable.unsafeToPtr $ Mutable.MVector sx off len -- | /O(n)/ Create an immutable vector from a 'SEXP'. Because 'SEXP's are -- mutable, this function yields an immutable /copy/ of the 'SEXP'. fromSEXP :: (VECTOR s ty a) => SEXP s ty -> Vector s ty a fromSEXP s = phony $ \p -> runST $ do w <- run (proxyFW G.clone (unsafeFromSEXP s) p) v <- G.unsafeFreeze w return (unW v) -- | /O(1)/ Unsafe convert a mutable 'SEXP' to an immutable vector without -- copying. The mutable vector must not be used after this operation, lest one -- runs the risk of breaking referential transparency. unsafeFromSEXP :: VECTOR s ty a => SEXP s ty -> Vector s ty a unsafeFromSEXP s = unsafeInlineIO $ do sxp <- foreignSEXP s l <- R.length s return $ Vector sxp 0 (fromIntegral l) -- | /O(n)/ Yield a (mutable) copy of the vector as a 'SEXP'. toSEXP :: VECTOR s ty a => Vector s ty a -> SEXP s ty toSEXP s = phony $ \p -> runST $ do w <- run (proxyFW G.clone s p) v <- G.unsafeFreeze w return (unsafeToSEXP (unW v)) -- | /O(1)/ Unsafely convert an immutable vector to a (mutable) 'SEXP' without -- copying. The immutable vector must not be used after this operation. unsafeToSEXP :: VECTOR s ty a => Vector s ty a -> SEXP s ty unsafeToSEXP (Vector (ForeignSEXP fsx) _ _) = unsafePerformIO $ -- XXX withForeignPtr fsx $ return . R.sexp . castPtr -- | /O(n)/ Convert a character vector into a 'String'. toString :: Vector s 'Char Word8 -> String toString v = unsafeInlineIO $ GHC.peekCStringLen utf8 ( castPtr $ unsafeToPtr v , fromIntegral $ vectorLength v) -- | /O(n)/ Convert a character vector into a strict 'ByteString'. toByteString :: Vector s 'Char Word8 -> ByteString toByteString v = unsafeInlineIO $ B.packCStringLen ( castPtr $ unsafeToPtr v , fromIntegral $ vectorLength v) -- | This function is unsafe and ByteString should not be used -- outside of the function. Any change to bytestring will be -- reflected in the source vector, thus breaking referencial -- transparancy. unsafeWithByteString :: DeepSeq.NFData a => Vector s 'Char Word8 -> (ByteString -> IO a) -> a unsafeWithByteString v f = unsafeInlineIO $ do x <- B.unsafePackCStringLen (castPtr $ unsafeToPtr v ,fromIntegral $ vectorLength v) w <- DeepSeq.force <$> f x evaluate w ------------------------------------------------------------------------ -- Vector API -- ------------------------------------------------------------------------ -- Length ------------------------------------------------------------------------ -- | /O(1)/ Yield the length of the vector. length :: VECTOR s ty a => Vector s ty a -> Int {-# INLINE length #-} length v = phony $ proxyFW G.length v -- | /O(1)/ Test whether a vector if empty null :: VECTOR s ty a => Vector s ty a -> Bool {-# INLINE null #-} null v = phony $ proxyFW G.null v ------------------------------------------------------------------------ -- Indexing ------------------------------------------------------------------------ -- | O(1) Indexing (!) :: VECTOR s ty a => Vector s ty a -> Int -> a {-# INLINE (!) #-} (!) v i = phony $ proxyFW (G.! i) v -- | O(1) Safe indexing (!?) :: VECTOR s ty a => Vector s ty a -> Int -> Maybe a {-# INLINE (!?) #-} (!?) v i = phony $ proxyFW (G.!? i) v -- | /O(1)/ First element head :: VECTOR s ty a => Vector s ty a -> a {-# INLINE head #-} head v = phony $ proxyFW G.head v -- | /O(1)/ Last element last :: VECTOR s ty a => Vector s ty a -> a {-# INLINE last #-} last v = phony $ proxyFW G.last v -- | /O(1)/ Unsafe indexing without bounds checking unsafeIndex :: VECTOR s ty a => Vector s ty a -> Int -> a {-# INLINE unsafeIndex #-} unsafeIndex v i = phony $ proxyFW (`G.unsafeIndex` i) v -- | /O(1)/ First element without checking if the vector is empty unsafeHead :: VECTOR s ty a => Vector s ty a -> a {-# INLINE unsafeHead #-} unsafeHead v = phony $ proxyFW G.unsafeHead v -- | /O(1)/ Last element without checking if the vector is empty unsafeLast :: VECTOR s ty a => Vector s ty a -> a {-# INLINE unsafeLast #-} unsafeLast v = phony $ proxyFW G.unsafeLast v ------------------------------------------------------------------------ -- Monadic indexing ------------------------------------------------------------------------ -- | /O(1)/ Indexing in a monad. -- -- The monad allows operations to be strict in the vector when necessary. -- Suppose vector copying is implemented like this: -- -- > copy mv v = ... write mv i (v ! i) ... -- -- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@ -- would unnecessarily retain a reference to @v@ in each element written. -- -- With 'indexM', copying can be implemented like this instead: -- -- > copy mv v = ... do -- > x <- indexM v i -- > write mv i x -- -- Here, no references to @v@ are retained because indexing (but /not/ the -- elements) is evaluated eagerly. -- indexM :: (VECTOR s ty a, Monad m) => Vector s ty a -> Int -> m a {-# INLINE indexM #-} indexM v i = phony $ proxyFW (`G.indexM` i) v -- | /O(1)/ First element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. headM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE headM #-} headM v = phony $ proxyFW G.headM v -- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. lastM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE lastM #-} lastM v = phony $ proxyFW G.lastM v -- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an -- explanation of why this is useful. unsafeIndexM :: (VECTOR s ty a, Monad m) => Vector s ty a -> Int -> m a {-# INLINE unsafeIndexM #-} unsafeIndexM v = phony $ proxyFW G.unsafeIndexM v -- | /O(1)/ First element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeHeadM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE unsafeHeadM #-} unsafeHeadM v = phony $ proxyFW G.unsafeHeadM v -- | /O(1)/ Last element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeLastM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE unsafeLastM #-} unsafeLastM v = phony $ proxyFW G.unsafeLastM v ------------------------------------------------------------------------ -- Extracting subvectors (slicing) ------------------------------------------------------------------------ -- | /O(N)/ Yield a slice of the vector with copying it. The vector must -- contain at least @i+n@ elements. slice :: VECTOR s ty a => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector s ty a -> Vector s ty a {-# INLINE slice #-} slice i n v = phony $ unW . proxyFW (G.slice i n) v -- | /O(N)/ Yield all but the last element, this operation will copy an array. -- The vector may not be empty. init :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE init #-} init v = phony $ unW . proxyFW G.init v -- | /O(N)/ Copy all but the first element. The vector may not be empty. tail :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE tail #-} tail v = phony $ unW . proxyFW G.tail v -- | /O(N)/ Yield at the first @n@ elements with copying. The vector may -- contain less than @n@ elements in which case it is returned unchanged. take :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE take #-} take i v = phony $ unW . proxyFW (G.take i) v -- | /O(N)/ Yield all but the first @n@ elements with copying. The vector may -- contain less than @n@ elements in which case an empty vector is returned. drop :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE drop #-} drop i v = phony $ unW . proxyFW (G.drop i) v -- | /O(N)/ Yield the first @n@ elements paired with the remainder with copying. -- -- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@ -- but slightly more efficient. {-# INLINE splitAt #-} splitAt :: VECTOR s ty a => Int -> Vector s ty a -> (Vector s ty a, Vector s ty a) splitAt i v = phony $ (\(a,b) -> (unW a, unW b)) . proxyFW (G.splitAt i) v -- | /O(N)/ Yield a slice of the vector with copying. The vector must -- contain at least @i+n@ elements but this is not checked. unsafeSlice :: VECTOR s ty a => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector s ty a -> Vector s ty a {-# INLINE unsafeSlice #-} unsafeSlice i j v = phony $ unW . proxyFW (G.unsafeSlice i j) v -- | /O(N)/ Yield all but the last element with copying. The vector may not -- be empty but this is not checked. unsafeInit :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE unsafeInit #-} unsafeInit v = phony $ unW . proxyFW G.unsafeInit v -- | /O(N)/ Yield all but the first element with copying. The vector may not -- be empty but this is not checked. unsafeTail :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE unsafeTail #-} unsafeTail v = phony $ unW . proxyFW G.unsafeTail v -- | /O(N)/ Yield the first @n@ elements with copying. The vector must -- contain at least @n@ elements but this is not checked. unsafeTake :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE unsafeTake #-} unsafeTake i v = phony $ unW . proxyFW (G.unsafeTake i) v -- | /O(N)/ Yield all but the first @n@ elements with copying. The vector -- must contain at least @n@ elements but this is not checked. unsafeDrop :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE unsafeDrop #-} unsafeDrop i v = phony $ unW . proxyFW (G.unsafeDrop i) v -- Initialisation -- -------------- -- | /O(1)/ Empty vector empty :: VECTOR s ty a => Vector s ty a {-# INLINE empty #-} empty = phony $ proxyW G.empty -- | /O(1)/ Vector with exactly one element singleton :: VECTOR s ty a => a -> Vector s ty a {-# INLINE singleton #-} singleton a = phony $ proxyW (G.singleton a) -- | /O(n)/ Vector of the given length with the same value in each position replicate :: VECTOR s ty a => Int -> a -> Vector s ty a {-# INLINE replicate #-} replicate i v = phony $ proxyW (G.replicate i v) -- | /O(n)/ Construct a vector of the given length by applying the function to -- each index generate :: VECTOR s ty a => Int -> (Int -> a) -> Vector s ty a {-# INLINE generate #-} generate i f = phony $ proxyW (G.generate i f) -- | /O(n)/ Apply function n times to value. Zeroth element is original value. iterateN :: VECTOR s ty a => Int -> (a -> a) -> a -> Vector s ty a {-# INLINE iterateN #-} iterateN i f a = phony $ proxyW (G.iterateN i f a) -- Unfolding -- --------- -- | /O(n)/ Construct a Vector s ty by repeatedly applying the generator function -- to a seed. The generator function yields 'Just' the next element and the -- new seed or 'Nothing' if there are no more elements. -- -- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10 -- > = <10,9,8,7,6,5,4,3,2,1> unfoldr :: VECTOR s ty a => (b -> Maybe (a, b)) -> b -> Vector s ty a {-# INLINE unfoldr #-} unfoldr g a = phony $ proxyW (G.unfoldr g a) -- | /O(n)/ Construct a vector with at most @n@ by repeatedly applying the -- generator function to the a seed. The generator function yields 'Just' the -- next element and the new seed or 'Nothing' if there are no more elements. -- -- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8> unfoldrN :: VECTOR s ty a => Int -> (b -> Maybe (a, b)) -> b -> Vector s ty a {-# INLINE unfoldrN #-} unfoldrN n g a = phony $ proxyW (G.unfoldrN n g a) -- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the -- generator function to the already constructed part of the vector. -- -- > constructN 3 f = let a = f <> ; b = f ; c = f in f -- constructN :: VECTOR s ty a => Int -> (Vector s ty a -> a) -> Vector s ty a {-# INLINE constructN #-} constructN n g = phony $ proxyW (G.constructN n (g.unW)) -- | /O(n)/ Construct a vector with @n@ elements from right to left by -- repeatedly applying the generator function to the already constructed part -- of the vector. -- -- > constructrN 3 f = let a = f <> ; b = f ; c = f in f -- constructrN :: VECTOR s ty a => Int -> (Vector s ty a -> a) -> Vector s ty a {-# INLINE constructrN #-} constructrN n g = phony $ proxyW (G.constructrN n (g.unW)) -- Enumeration -- ----------- -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@ -- etc. This operation is usually more efficient than 'enumFromTo'. -- -- > enumFromN 5 3 = <5,6,7> enumFromN :: (VECTOR s ty a, Num a) => a -> Int -> Vector s ty a {-# INLINE enumFromN #-} enumFromN a i = phony $ proxyW (G.enumFromN a i) -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'. -- -- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4> enumFromStepN :: (VECTOR s ty a, Num a) => a -> a -> Int -> Vector s ty a {-# INLINE enumFromStepN #-} enumFromStepN f t s = phony $ proxyW (G.enumFromStepN f t s) -- | /O(n)/ Enumerate values from @x@ to @y@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromN' instead. enumFromTo :: (VECTOR s ty a, Enum a) => a -> a -> Vector s ty a {-# INLINE enumFromTo #-} enumFromTo f t = phony $ proxyW (G.enumFromTo f t) -- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromThenTo :: (VECTOR s ty a, Enum a) => a -> a -> a -> Vector s ty a {-# INLINE enumFromThenTo #-} enumFromThenTo f t s = phony $ proxyW (G.enumFromThenTo f t s) -- Concatenation -- ------------- -- | /O(n)/ Prepend an element cons :: VECTOR s ty a => a -> Vector s ty a -> Vector s ty a {-# INLINE cons #-} cons a v = phony $ unW . proxyFW (G.cons a) v -- | /O(n)/ Append an element snoc :: VECTOR s ty a => Vector s ty a -> a -> Vector s ty a {-# INLINE snoc #-} snoc v a = phony $ unW . proxyFW (`G.snoc` a) v infixr 5 ++ -- | /O(m+n)/ Concatenate two vectors (++) :: VECTOR s ty a => Vector s ty a -> Vector s ty a -> Vector s ty a {-# INLINE (++) #-} v1 ++ v2 = phony $ unW . proxyFW2 (G.++) v1 v2 -- | /O(n)/ Concatenate all vectors in the list concat :: VECTOR s ty a => [Vector s ty a] -> Vector s ty a {-# INLINE concat #-} concat vs = phony $ \p -> unW $ G.concat $ Prelude.map (withW p) vs -- Monadic initialisation -- ---------------------- -- | /O(n)/ Execute the monadic action the given number of times and store the -- results in a vector. replicateM :: (Monad m, VECTOR s ty a) => Int -> m a -> m (Vector s ty a) {-# INLINE replicateM #-} replicateM n f = phony $ \p -> (\v -> proxyW v p) <$> G.replicateM n f -- | /O(n)/ Construct a vector of the given length by applying the monadic -- action to each index generateM :: (Monad m, VECTOR s ty a) => Int -> (Int -> m a) -> m (Vector s ty a) {-# INLINE generateM #-} generateM n f = phony $ \p -> (\v -> proxyW v p) <$> G.generateM n f -- | Execute the monadic action and freeze the resulting vector. -- -- @ -- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\> -- @ create :: VECTOR s ty a => (forall r. ST r (MVector r ty a)) -> Vector s ty a {-# INLINE create #-} -- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120 create f = phony $ \p -> unW $ G.create (Mutable.withW p <$> f) -- Restricting memory usage -- ------------------------ -- | /O(n)/ Yield the argument but force it not to retain any extra memory, -- possibly by copying it. -- -- This is especially useful when dealing with slices. For example: -- -- > force (slice 0 2 ) -- -- Here, the slice retains a reference to the huge vector. Forcing it creates -- a copy of just the elements that belong to the slice and allows the huge -- vector to be garbage collected. force :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE force #-} force v = phony $ unW . proxyFW G.force v -- Bulk updates -- ------------ -- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector -- element at position @i@ by @a@. -- -- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7> -- (//) :: VECTOR s ty a => Vector s ty a -- ^ initial vector (of length @m@) -> [(Int, a)] -- ^ list of index/value pairs (of length @n@) -> Vector s ty a {-# INLINE (//) #-} (//) v l = phony $ unW . proxyFW (G.// l) v {- -- | /O(m+min(n1,n2))/ For each index @i@ from the index Vector s ty and the -- corresponding value @a@ from the value vector, replace the element of the -- initial Vector s ty at position @i@ by @a@. -- -- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7> -- update_ :: VECTOR s ty a => Vector s ty a -- ^ initial vector (of length @m@) -> Vector Int -- ^ index vector (of length @n1@) -> Vector s ty a -- ^ value vector (of length @n2@) -> Vector s ty a {-# INLINE update_ #-} update_ = G.update_ -} -- | Same as ('//') but without bounds checking. unsafeUpd :: VECTOR s ty a => Vector s ty a -> [(Int, a)] -> Vector s ty a {-# INLINE unsafeUpd #-} unsafeUpd v l = phony $ unW . proxyFW (`G.unsafeUpd` l) v {- -- | Same as 'update_' but without bounds checking. unsafeUpdate_ :: VECTOR s ty a => Vector s ty a -> Vector Int -> Vector s ty a -> Vector s ty a {-# INLINE unsafeUpdate_ #-} unsafeUpdate_ = G.unsafeUpdate_ -} -- Accumulations -- ------------- -- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element -- @a@ at position @i@ by @f a b@. -- -- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4> accum :: VECTOR s ty a => (a -> b -> a) -- ^ accumulating function @f@ -> Vector s ty a -- ^ initial vector (of length @m@) -> [(Int,b)] -- ^ list of index/value pairs (of length @n@) -> Vector s ty a {-# INLINE accum #-} accum f v l = phony $ unW . proxyFW (\w -> G.accum f w l) v {- -- | /O(m+min(n1,n2))/ For each index @i@ from the index Vector s ty and the -- corresponding value @b@ from the the value vector, -- replace the element of the initial Vector s ty at -- position @i@ by @f a b@. -- -- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4> -- accumulate_ :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -- ^ accumulating function @f@ -> Vector s ty a -- ^ initial vector (of length @m@) -> Vector Int -- ^ index vector (of length @n1@) -> Vector s ty b -- ^ value vector (of length @n2@) -> Vector s ty a {-# INLINE accumulate_ #-} accumulate_ = G.accumulate_ -} -- | Same as 'accum' but without bounds checking. unsafeAccum :: VECTOR s ty a => (a -> b -> a) -> Vector s ty a -> [(Int,b)] -> Vector s ty a {-# INLINE unsafeAccum #-} unsafeAccum f v l = phony $ unW . proxyFW (\w -> G.unsafeAccum f w l) v {- -- | Same as 'accumulate_' but without bounds checking. unsafeAccumulate_ :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> Vector s ty a -> Vector Int -> Vector s ty b -> Vector s ty a {-# INLINE unsafeAccumulate_ #-} unsafeAccumulate_ = G.unsafeAccumulate_ -} -- Permutations -- ------------ -- | /O(n)/ Reverse a vector reverse :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE reverse #-} reverse v = phony $ unW . proxyFW G.reverse v {- -- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the -- index Vector s ty by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is -- often much more efficient. -- -- > backpermute <0,3,2,3,1,0> = backpermute :: VECTOR s ty a => Vector s ty a -> Vector Int -> Vector s ty a {-# INLINE backpermute #-} backpermute = G.backpermute -} {- -- | Same as 'backpermute' but without bounds checking. unsafeBackpermute :: VECTOR s ty a => Vector s ty a -> Vector Int -> Vector s ty a {-# INLINE unsafeBackpermute #-} unsafeBackpermute = G.unsafeBackpermute -} -- Safe destructive updates -- ------------------------ {- -- | Apply a destructive operation to a vector. The operation will be -- performed in place if it is safe to do so and will modify a copy of the -- vector otherwise. -- -- @ -- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\> -- @ modify :: VECTOR s ty a => (forall s. MVector s a -> ST s ()) -> Vector s ty a -> Vector s ty a {-# INLINE modify #-} modify p = G.modify p -} -- Mapping -- ------- -- | /O(n)/ Map a function over a vector map :: (VECTOR s ty a, VECTOR s ty b) => (a -> b) -> Vector s ty a -> Vector s ty b {-# INLINE map #-} map f v = phony $ unW . proxyFW (G.map f) v -- | /O(n)/ Apply a function to every element of a Vector s ty and its index imap :: (VECTOR s ty a, VECTOR s ty b) => (Int -> a -> b) -> Vector s ty a -> Vector s ty b {-# INLINE imap #-} imap f v = phony $ unW . proxyFW (G.imap f) v -- | Map a function over a Vector s ty and concatenate the results. concatMap :: (VECTOR s tya a, VECTOR s tyb b) => (a -> Vector s tyb b) -> Vector s tya a -> Vector s tyb b {-# INLINE concatMap #-} #if MIN_VERSION_vector(0,11,0) concatMap f v = phony $ \p -> let v' = G.stream (withW p v) in proxyW (G.unstream $ Bundle.fromStream (Stream.concatMap (sElems . G.stream . withW p . f) (sElems v')) Unknown) p #else concatMap f v = phony $ \p -> (`proxyW` p) $ G.unstream $ Stream.concatMap (G.stream . withW p . f) $ G.stream $ withW p v #endif -- Monadic mapping -- --------------- -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results mapM :: (Monad m, VECTOR s ty a, VECTOR s ty b) => (a -> m b) -> Vector s ty a -> m (Vector s ty b) {-# INLINE mapM #-} mapM f v = phony $ \p -> unW <$> proxyFW (G.mapM f) v p -- | /O(n)/ Apply the monadic action to all elements of a Vector s ty and ignore the -- results mapM_ :: (Monad m, VECTOR s ty a) => (a -> m b) -> Vector s ty a -> m () {-# INLINE mapM_ #-} mapM_ f v = phony $ proxyFW (G.mapM_ f) v -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results. Equvalent to @flip 'mapM'@. forM :: (Monad m, VECTOR s ty a, VECTOR s ty b) => Vector s ty a -> (a -> m b) -> m (Vector s ty b) {-# INLINE forM #-} forM v f = phony $ \p -> unW <$> proxyFW (`G.forM` f) v p -- | /O(n)/ Apply the monadic action to all elements of a Vector s ty and ignore the -- results. Equivalent to @flip 'mapM_'@. forM_ :: (Monad m, VECTOR s ty a) => Vector s ty a -> (a -> m b) -> m () {-# INLINE forM_ #-} forM_ v f = phony $ proxyFW (`G.forM_` f) v -- Zipping -- ------- #if MIN_VERSION_vector(0,11,0) smallest :: [Size] -> Size smallest = List.foldl1' smaller #endif -- | /O(min(m,n))/ Zip two vectors with the given function. zipWith :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c) => (a -> b -> c) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c {-# INLINE zipWith #-} #if MIN_VERSION_vector(0,11,0) zipWith f xs ys = phony $ \p -> let xs' = G.stream (withW p xs) ys' = G.stream (withW p ys) sz = smaller (sSize xs') (sSize ys') in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith f (sElems xs') (sElems ys')) sz) p #else zipWith f xs ys = phony $ \p -> proxyW (G.unstream (Stream.zipWith f (G.stream (withW p xs)) (G.stream (withW p ys)))) p #endif -- | Zip three vectors with the given function. zipWith3 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d) => (a -> b -> c -> d) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d {-# INLINE zipWith3 #-} #if MIN_VERSION_vector(0,11,0) zipWith3 f as bs cs = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) sz = smallest [sSize as', sSize bs', sSize cs'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith3 f (sElems as') (sElems bs') (sElems cs')) sz) p #else zipWith3 f as bs cs = phony $ \p -> proxyW (G.unstream (Stream.zipWith3 f (G.stream (withW p as)) (G.stream (withW p bs)) (G.stream (withW p cs)))) p #endif zipWith4 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e) => (a -> b -> c -> d -> e) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e {-# INLINE zipWith4 #-} #if MIN_VERSION_vector(0,11,0) zipWith4 f as bs cs ds = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) ds' = G.stream (withW p ds) sz = smallest [sSize as', sSize bs', sSize cs', sSize ds'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith4 f (sElems as') (sElems bs') (sElems cs') (sElems ds')) sz) p #else zipWith4 f as bs cs ds = phony $ \p -> proxyW (G.unstream (Stream.zipWith4 f (G.stream (withW p as)) (G.stream (withW p bs)) (G.stream (withW p cs)) (G.stream (withW p ds)))) p #endif zipWith5 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f) => (a -> b -> c -> d -> e -> f) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f {-# INLINE zipWith5 #-} #if MIN_VERSION_vector(0,11,0) zipWith5 f as bs cs ds es = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) ds' = G.stream (withW p ds) es' = G.stream (withW p es) sz = smallest [sSize as', sSize bs', sSize cs', sSize ds', sSize es'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith5 f (sElems as') (sElems bs') (sElems cs') (sElems ds') (sElems es')) sz) p #else zipWith5 f as bs cs ds es = phony $ \p -> proxyW (G.unstream (Stream.zipWith5 f (G.stream (withW p as)) (G.stream (withW p bs)) (G.stream (withW p cs)) (G.stream (withW p ds)) (G.stream (withW p es)))) p #endif zipWith6 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f, VECTOR s tyg g) => (a -> b -> c -> d -> e -> f -> g) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f -> Vector s tyg g {-# INLINE zipWith6 #-} #if MIN_VERSION_vector(0,11,0) zipWith6 f as bs cs ds es fs = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) ds' = G.stream (withW p ds) es' = G.stream (withW p es) fs' = G.stream (withW p fs) sz = smallest [sSize as', sSize bs', sSize cs', sSize ds', sSize es', sSize fs'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith6 f (sElems as') (sElems bs') (sElems cs') (sElems ds') (sElems es') (sElems fs')) sz) p #else zipWith6 f as bs cs ds es fs = phony $ \p -> proxyW (G.unstream (Stream.zipWith6 f (G.stream (withW p as)) (G.stream (withW p bs)) (G.stream (withW p cs)) (G.stream (withW p ds)) (G.stream (withW p es)) (G.stream (withW p fs)))) p #endif -- | /O(min(m,n))/ Zip two vectors with a function that also takes the -- elements' indices. izipWith :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c) => (Int -> a -> b -> c) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c {-# INLINE izipWith #-} #if MIN_VERSION_vector(0,11,0) izipWith f as bs = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) sz = smaller (sSize as') (sSize bs') in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith (uncurry f) (Stream.indexed (sElems as')) (sElems bs')) sz) p #else izipWith f as bs = phony $ \p -> proxyW (G.unstream (Stream.zipWith (uncurry f) (Stream.indexed (G.stream (withW p as))) (G.stream (withW p bs)))) p #endif -- | Zip three vectors and their indices with the given function. izipWith3 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d) => (Int -> a -> b -> c -> d) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d {-# INLINE izipWith3 #-} #if MIN_VERSION_vector(0,11,0) izipWith3 f as bs cs = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) sz = smallest [sSize as', sSize bs', sSize cs'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith3 (uncurry f) (Stream.indexed (sElems as')) (sElems bs') (sElems cs')) sz) p #else izipWith3 f as bs cs = phony $ \p -> proxyW (G.unstream (Stream.zipWith3 (uncurry f) (Stream.indexed (G.stream (withW p as))) (G.stream (withW p bs)) (G.stream (withW p cs)))) p #endif izipWith4 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e) => (Int -> a -> b -> c -> d -> e) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e {-# INLINE izipWith4 #-} #if MIN_VERSION_vector(0,11,0) izipWith4 f as bs cs ds = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) ds' = G.stream (withW p ds) sz = smallest [ sSize as', sSize bs', sSize cs', sSize ds'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith4 (uncurry f) (Stream.indexed (sElems as')) (sElems bs') (sElems cs') (sElems ds')) sz) p #else izipWith4 f as bs cs ds = phony $ \p -> proxyW (G.unstream (Stream.zipWith4 (uncurry f) (Stream.indexed (G.stream (withW p as))) (G.stream (withW p bs)) (G.stream (withW p cs)) (G.stream (withW p ds)))) p #endif izipWith5 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f) => (Int -> a -> b -> c -> d -> e -> f) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f {-# INLINE izipWith5 #-} #if MIN_VERSION_vector(0,11,0) izipWith5 f as bs cs ds es = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) ds' = G.stream (withW p ds) es' = G.stream (withW p es) sz = smallest [ sSize as', sSize bs', sSize cs', sSize ds', sSize es'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith5 (uncurry f) (Stream.indexed (sElems as')) (sElems bs') (sElems cs') (sElems ds') (sElems es')) sz) p #else izipWith5 f as bs cs ds es = phony $ \p -> proxyW (G.unstream (Stream.zipWith5 (uncurry f) (Stream.indexed (G.stream (withW p as))) (G.stream (withW p bs)) (G.stream (withW p cs)) (G.stream (withW p ds)) (G.stream (withW p es)))) p #endif izipWith6 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f, VECTOR s tyg g) => (Int -> a -> b -> c -> d -> e -> f -> g) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f -> Vector s tyg g {-# INLINE izipWith6 #-} #if MIN_VERSION_vector(0,11,0) izipWith6 f as bs cs ds es fs = phony $ \p -> let as' = G.stream (withW p as) bs' = G.stream (withW p bs) cs' = G.stream (withW p cs) ds' = G.stream (withW p ds) es' = G.stream (withW p es) fs' = G.stream (withW p fs) sz = smallest [ sSize as', sSize bs', sSize cs', sSize ds', sSize es', sSize fs'] in proxyW (G.unstream $ Bundle.fromStream (Stream.zipWith6 (uncurry f) (Stream.indexed (sElems as')) (sElems bs') (sElems cs') (sElems ds') (sElems es') (sElems fs')) sz) p #else izipWith6 f as bs cs ds es fs = phony $ \p -> proxyW (G.unstream (Stream.zipWith6 (uncurry f) (Stream.indexed (G.stream (withW p as))) (G.stream (withW p bs)) (G.stream (withW p cs)) (G.stream (withW p ds)) (G.stream (withW p es)) (G.stream (withW p fs)))) p #endif -- Monadic zipping -- --------------- -- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a -- vector of results zipWithM :: (MonadR m, VECTOR (Region m) tya a, VECTOR (Region m) tyb b, VECTOR (Region m) tyc c) => (a -> b -> m c) -> Vector (Region m) tya a -> Vector (Region m) tyb b -> m (Vector (Region m) tyc c) {-# INLINE zipWithM #-} #if MIN_VERSION_vector(0,11,0) zipWithM f xs ys = phony $ \p -> let xs' = lift $ G.stream (withW p xs) ys' = lift $ G.stream (withW p ys) sz = smaller (sSize xs') (sSize ys') in proxyW <$> Prelude.fmap G.unstream (Bundle.unsafeFromList sz <$> Stream.toList (Stream.zipWithM f (sElems xs') (sElems ys'))) <*> pure p #else zipWithM f xs ys = phony $ \p -> proxyW <$> unstreamM (Stream.zipWithM f (G.stream (withW p xs)) (G.stream (withW p ys))) <*> return p where -- Inlined from vector-0.10, which doesn't export unstreamM. unstreamM s = do zs <- MStream.toList s return $ G.unstream $ Stream.unsafeFromList (MStream.size s) zs #endif -- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the -- results zipWithM_ :: (Monad m, VECTOR s tya a, VECTOR s tyb b) => (a -> b -> m c) -> Vector s tya a -> Vector s tyb b -> m () {-# INLINE zipWithM_ #-} #if MIN_VERSION_vector(0,11,0) zipWithM_ f xs ys = phony $ \p -> let xs' = lift $ G.stream (withW p xs) ys' = lift $ G.stream (withW p ys) in Stream.zipWithM_ f (sElems xs') (sElems ys') #else zipWithM_ f xs ys = phony $ \p -> Stream.zipWithM_ f (G.stream (withW p xs)) (G.stream (withW p ys)) #endif -- Filtering -- --------- -- | /O(n)/ Drop elements that do not satisfy the predicate filter :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE filter #-} filter f v = phony $ unW . proxyFW (G.filter f) v -- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to -- values and their indices ifilter :: VECTOR s ty a => (Int -> a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE ifilter #-} ifilter f v = phony $ unW . proxyFW (G.ifilter f) v -- | /O(n)/ Drop elements that do not satisfy the monadic predicate filterM :: (Monad m, VECTOR s ty a) => (a -> m Bool) -> Vector s ty a -> m (Vector s ty a) {-# INLINE filterM #-} filterM f v = phony $ \p -> unW <$> proxyFW (G.filterM f) v p -- | /O(n)/ Yield the longest prefix of elements satisfying the predicate -- with copying. takeWhile :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE takeWhile #-} takeWhile f v = phony $ unW . proxyFW (G.takeWhile f) v -- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate -- with copying. dropWhile :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE dropWhile #-} dropWhile f v = phony $ unW . proxyFW (G.dropWhile f) v -- Parititioning -- ------------- -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. The -- relative order of the elements is preserved at the cost of a sometimes -- reduced performance compared to 'unstablePartition'. partition :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE partition #-} partition f v = phony $ (\(a,b) -> (unW a, unW b)) . proxyFW (G.partition f) v -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. -- The order of the elements is not preserved but the operation is often -- faster than 'partition'. unstablePartition :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE unstablePartition #-} unstablePartition f v = phony $ (\(a,b) -> (unW a, unW b)) . proxyFW (G.unstablePartition f) v -- | /O(n)/ Split the vector into the longest prefix of elements that satisfy -- the predicate and the rest with copying. span :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE span #-} span f v = phony $ (\(a,b) -> (unW a, unW b)) . proxyFW (G.span f) v -- | /O(n)/ Split the vector into the longest prefix of elements that do not -- satisfy the predicate and the rest with copying. break :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE break #-} break f v = phony $ (\(a,b) -> (unW a, unW b)) . proxyFW (G.break f) v -- Searching -- --------- infix 4 `elem` -- | /O(n)/ Check if the vector contains an element elem :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Bool {-# INLINE elem #-} elem a v = phony $ proxyFW (G.elem a) v infix 4 `notElem` -- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem') notElem :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Bool {-# INLINE notElem #-} notElem a v = phony $ proxyFW (G.notElem a) v -- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing' -- if no such element exists. find :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Maybe a {-# INLINE find #-} find f v = phony $ proxyFW (G.find f) v -- | /O(n)/ Yield 'Just' the index of the first element matching the predicate -- or 'Nothing' if no such element exists. findIndex :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Maybe Int {-# INLINE findIndex #-} findIndex f v = phony $ proxyFW (G.findIndex f) v {- -- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending -- order. findIndices :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector Int {-# INLINE findIndices #-} findIndices f v = phony $ proxyFW (G.findIndices f) v -} -- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element. This is a specialised -- version of 'findIndex'. elemIndex :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Maybe Int {-# INLINE elemIndex #-} elemIndex a v = phony $ proxyFW (G.elemIndex a) v {- -- | /O(n)/ Yield the indices of all occurences of the given element in -- ascending order. This is a specialised version of 'findIndices'. elemIndices :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Vector s 'R.Int Int32 {-# INLINE elemIndices #-} elemIndices s v = phony $ unW . proxyFW (G.elemIndices s) v -} -- Folding -- ------- -- | /O(n)/ Left fold foldl :: VECTOR s ty b => (a -> b -> a) -> a -> Vector s ty b -> a {-# INLINE foldl #-} foldl f s v = phony $ proxyFW (G.foldl f s) v -- | /O(n)/ Left fold on non-empty vectors foldl1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldl1 #-} foldl1 f v = phony $ proxyFW (G.foldl1 f) v -- | /O(n)/ Left fold with strict accumulator foldl' :: VECTOR s ty b => (a -> b -> a) -> a -> Vector s ty b -> a {-# INLINE foldl' #-} foldl' f s v = phony $ proxyFW (G.foldl' f s) v -- | /O(n)/ Left fold on non-empty vectors with strict accumulator foldl1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldl1' #-} foldl1' f v = phony $ proxyFW (G.foldl1' f) v -- | /O(n)/ Right fold foldr :: VECTOR s ty a => (a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE foldr #-} foldr f s v = phony $ proxyFW (G.foldr f s) v -- | /O(n)/ Right fold on non-empty vectors foldr1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldr1 #-} foldr1 f v = phony $ proxyFW (G.foldr1 f) v -- | /O(n)/ Right fold with a strict accumulator foldr' :: VECTOR s ty a => (a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE foldr' #-} foldr' f s v = phony $ proxyFW (G.foldr' f s) v -- | /O(n)/ Right fold on non-empty vectors with strict accumulator foldr1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldr1' #-} foldr1' f v = phony $ proxyFW (G.foldr1' f) v -- | /O(n)/ Left fold (function applied to each element and its index) ifoldl :: VECTOR s ty b => (a -> Int -> b -> a) -> a -> Vector s ty b -> a {-# INLINE ifoldl #-} ifoldl f s v = phony $ proxyFW (G.ifoldl f s) v -- | /O(n)/ Left fold with strict accumulator (function applied to each element -- and its index) ifoldl' :: VECTOR s ty b => (a -> Int -> b -> a) -> a -> Vector s ty b -> a {-# INLINE ifoldl' #-} ifoldl' f s v = phony $ proxyFW (G.ifoldl' f s) v -- | /O(n)/ Right fold (function applied to each element and its index) ifoldr :: VECTOR s ty a => (Int -> a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE ifoldr #-} ifoldr f s v = phony $ proxyFW (G.ifoldr f s) v -- | /O(n)/ Right fold with strict accumulator (function applied to each -- element and its index) ifoldr' :: VECTOR s ty a => (Int -> a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE ifoldr' #-} ifoldr' f s v = phony $ proxyFW (G.ifoldr' f s) v -- Specialised folds -- ----------------- -- | /O(n)/ Check if all elements satisfy the predicate. all :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Bool {-# INLINE all #-} all f v = phony $ \p -> G.all f (withW p v) -- | /O(n)/ Check if any element satisfies the predicate. any :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Bool {-# INLINE any #-} any f v = phony $ \p -> G.any f (withW p v) -- -- | /O(n)/ Check if all elements are 'True' -- and :: Vector s 'Logical Bool -> Bool -- {-# INLINE and #-} -- and v = phony $ \p -> G.and (withW p v) -- -- -- | /O(n)/ Check if any element is 'True' -- or :: Vector s 'Logical Bool -> Bool -- {-# INLINE or #-} -- or v = phony $ \p -> G.or (withW p v) -- | /O(n)/ Compute the sum of the elements sum :: (VECTOR s ty a, Num a) => Vector s ty a -> a {-# INLINE sum #-} sum v = phony $ proxyFW G.sum v -- | /O(n)/ Compute the produce of the elements product :: (VECTOR s ty a, Num a) => Vector s ty a -> a {-# INLINE product #-} product v = phony $ proxyFW G.product v -- | /O(n)/ Yield the maximum element of the vector. The vector may not be -- empty. maximum :: (VECTOR s ty a, Ord a) => Vector s ty a -> a {-# INLINE maximum #-} maximum v = phony $ proxyFW G.maximum v -- | /O(n)/ Yield the maximum element of the Vector s ty according to the given -- comparison function. The vector may not be empty. maximumBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> a {-# INLINE maximumBy #-} maximumBy f v = phony $ proxyFW (G.maximumBy f) v -- | /O(n)/ Yield the minimum element of the vector. The vector may not be -- empty. minimum :: (VECTOR s ty a, Ord a) => Vector s ty a -> a {-# INLINE minimum #-} minimum v = phony $ proxyFW G.minimum v -- | /O(n)/ Yield the minimum element of the Vector s ty according to the given -- comparison function. The vector may not be empty. minimumBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> a {-# INLINE minimumBy #-} minimumBy f v = phony $ proxyFW (G.minimumBy f) v -- | /O(n)/ Yield the index of the maximum element of the vector. The vector -- may not be empty. maxIndex :: (VECTOR s ty a, Ord a) => Vector s ty a -> Int {-# INLINE maxIndex #-} maxIndex v = phony $ proxyFW G.maxIndex v -- | /O(n)/ Yield the index of the maximum element of the Vector s ty according to -- the given comparison function. The vector may not be empty. maxIndexBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> Int {-# INLINE maxIndexBy #-} maxIndexBy f v = phony $ proxyFW (G.maxIndexBy f) v -- | /O(n)/ Yield the index of the minimum element of the vector. The vector -- may not be empty. minIndex :: (VECTOR s ty a, Ord a) => Vector s ty a -> Int {-# INLINE minIndex #-} minIndex v = phony $ proxyFW G.minIndex v -- | /O(n)/ Yield the index of the minimum element of the Vector s ty according to -- the given comparison function. The vector may not be empty. minIndexBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> Int {-# INLINE minIndexBy #-} minIndexBy f v = phony $ proxyFW (G.minIndexBy f) v -- Monadic folds -- ------------- -- | /O(n)/ Monadic fold foldM :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m a {-# INLINE foldM #-} foldM f s v = phony $ proxyFW (G.foldM f s) v -- | /O(n)/ Monadic fold over non-empty vectors fold1M :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m a {-# INLINE fold1M #-} fold1M f v = phony $ proxyFW (G.fold1M f) v -- | /O(n)/ Monadic fold with strict accumulator foldM' :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m a {-# INLINE foldM' #-} foldM' f s v = phony $ proxyFW (G.foldM' f s) v -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator fold1M' :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m a {-# INLINE fold1M' #-} fold1M' f v = phony $ proxyFW (G.fold1M' f) v -- | /O(n)/ Monadic fold that discards the result foldM_ :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m () {-# INLINE foldM_ #-} foldM_ f s v = phony $ proxyFW (G.foldM_ f s) v -- | /O(n)/ Monadic fold over non-empty vectors that discards the result fold1M_ :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m () {-# INLINE fold1M_ #-} fold1M_ f v = phony $ proxyFW (G.fold1M_ f) v -- | /O(n)/ Monadic fold with strict accumulator that discards the result foldM'_ :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m () {-# INLINE foldM'_ #-} foldM'_ f s v = phony $ proxyFW (G.foldM'_ f s) v -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator -- that discards the result fold1M'_ :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m () {-# INLINE fold1M'_ #-} fold1M'_ f v = phony $ proxyFW (G.fold1M'_ f) v -- Prefix sums (scans) -- ------------------- -- | /O(n)/ Prescan -- -- @ -- prescanl f z = 'init' . 'scanl' f z -- @ -- -- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@ -- prescanl :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE prescanl #-} prescanl f s v = phony $ unW . proxyFW (G.prescanl f s) v -- | /O(n)/ Prescan with strict accumulator prescanl' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE prescanl' #-} prescanl' f s v = phony $ unW . proxyFW (G.prescanl' f s) v -- | /O(n)/ Scan -- -- @ -- postscanl f z = 'tail' . 'scanl' f z -- @ -- -- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@ -- postscanl :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE postscanl #-} postscanl f s v = phony $ unW . proxyFW (G.postscanl f s) v -- | /O(n)/ Scan with strict accumulator postscanl' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE postscanl' #-} postscanl' f s v = phony $ unW . proxyFW (G.postscanl' f s) v -- | /O(n)/ Haskell-style scan -- -- > scanl f z = -- > where y1 = z -- > yi = f y(i-1) x(i-1) -- -- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@ -- scanl :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE scanl #-} scanl f s v = phony $ unW . proxyFW (G.scanl f s) v -- | /O(n)/ Haskell-style scan with strict accumulator scanl' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE scanl' #-} scanl' f s v = phony $ unW . proxyFW (G.scanl' f s) v -- | /O(n)/ Scan over a non-empty vector -- -- > scanl f = -- > where y1 = x1 -- > yi = f y(i-1) xi -- scanl1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanl1 #-} scanl1 f v = phony $ unW . proxyFW (G.scanl1 f) v -- | /O(n)/ Scan over a non-empty vector with a strict accumulator scanl1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanl1' #-} scanl1' f v = phony $ unW . proxyFW (G.scanl1' f) v -- | /O(n)/ Right-to-left prescan -- -- @ -- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse' -- @ -- prescanr :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE prescanr #-} prescanr f s v = phony $ unW . proxyFW (G.prescanr f s) v -- | /O(n)/ Right-to-left prescan with strict accumulator prescanr' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE prescanr' #-} prescanr' f s v = phony $ unW . proxyFW (G.prescanr' f s) v -- | /O(n)/ Right-to-left scan postscanr :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE postscanr #-} postscanr f s v = phony $ unW . proxyFW (G.postscanr f s) v -- | /O(n)/ Right-to-left scan with strict accumulator postscanr' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE postscanr' #-} postscanr' f s v = phony $ unW . proxyFW (G.postscanr' f s) v -- | /O(n)/ Right-to-left Haskell-style scan scanr :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE scanr #-} scanr f s v = phony $ unW . proxyFW (G.scanr f s) v -- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator scanr' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE scanr' #-} scanr' f s v = phony $ unW . proxyFW (G.scanr' f s) v -- | /O(n)/ Right-to-left scan over a non-empty vector scanr1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanr1 #-} scanr1 f v = phony $ unW . proxyFW (G.scanr1 f) v -- | /O(n)/ Right-to-left scan over a non-empty vector with a strict -- accumulator scanr1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanr1' #-} scanr1' f v = phony $ unW . proxyFW (G.scanr1' f) v -- Conversions - Lists -- ------------------------ -- | /O(n)/ Convert a vector to a list toList :: VECTOR s ty a => Vector s ty a -> [a] {-# INLINE toList #-} toList v = phony $ proxyFW G.toList v -- | /O(n)/ Convert a list to a vector fromList :: forall s ty a . VECTOR s ty a => [a] -> Vector s ty a {-# INLINE fromList #-} fromList xs = phony $ proxyW (G.fromListN (Prelude.length xs) xs) -- | /O(n)/ Convert the first @n@ elements of a list to a vector -- -- @ -- fromListN n xs = 'fromList' ('take' n xs) -- @ fromListN :: forall s ty a . VECTOR s ty a => Int -> [a] -> Vector s ty a {-# INLINE fromListN #-} fromListN i l = phony $ proxyW (G.fromListN i l) -- Conversions - Unsafe casts -- -------------------------- -- Conversions - Mutable vectors -- ----------------------------- -- | /O(1)/ Unsafe convert a mutable vector to an immutable one with -- copying. The mutable vector may not be used after this operation. unsafeFreeze :: (VECTOR (Region m) ty a, MonadR m) => MVector (Region m) ty a -> m (Vector (Region m) ty a) {-# INLINE unsafeFreeze #-} unsafeFreeze m = withAcquire $ \p -> unW <$> G.unsafeFreeze (Mutable.withW p m) -- | /O(1)/ Unsafely convert an immutable vector to a mutable one with -- copying. The immutable vector may not be used after this operation. unsafeThaw :: (MonadR m, VECTOR (Region m) ty a) => Vector (Region m) ty a -> m (MVector (Region m) ty a) {-# INLINE unsafeThaw #-} unsafeThaw v = withAcquire $ \p -> Mutable.unW <$> G.unsafeThaw (withW p v) -- | /O(n)/ Yield a mutable copy of the immutable vector. thaw :: (MonadR m, VECTOR (Region m) ty a) => Vector (Region m) ty a -> m (MVector (Region m) ty a) {-# INLINE thaw #-} thaw v1 = withAcquire $ \p -> Mutable.unW <$> G.thaw (withW p v1) -- | /O(n)/ Yield an immutable copy of the mutable vector. freeze :: (MonadR m, VECTOR (Region m) ty a) => MVector (Region m) ty a -> m (Vector (Region m) ty a) {-# INLINE freeze #-} freeze m1 = withAcquire $ \p -> unW <$> G.freeze (Mutable.withW p m1) -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. This is not checked. unsafeCopy :: (MonadR m, VECTOR (Region m) ty a) => MVector (Region m) ty a -> Vector (Region m) ty a -> m () {-# INLINE unsafeCopy #-} unsafeCopy m1 v2 = withAcquire $ \p -> G.unsafeCopy (Mutable.withW p m1) (withW p v2) -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. copy :: (MonadR m, VECTOR (Region m) ty a) => MVector (Region m) ty a -> Vector (Region m) ty a -> m () {-# INLINE copy #-} copy m1 v2 = withAcquire $ \p -> G.copy (Mutable.withW p m1) (withW p v2) phony :: (forall t . Reifies t (AcquireIO s) => Proxy t -> r) -> r phony f = reify (AcquireIO acquireIO) $ \p -> f p where acquireIO :: SEXP V ty -> IO (SEXP g ty) acquireIO x = do R.preserveObject x return $ R.unsafeRelease x