Dd=@k      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij None ;<=FKT      :(c) Daan Leijen 2002 (c) Edward Kmett 2011 BSD-stylelibraries@haskell.org provisional&non-portable (TypeFamilies, MagicHash)None ;=DFT8%&A set of integers.O(n+m). See #.O(1). Is the set empty?O(1). Cardinality of the set. O(min(n,W))#. Is the value a member of the set? O(min(n,W)) . Is the element not in the set?O(1). The empty set.O(1). A set of one element. O(min(n,W))o. Add a value to the set. When the value is already an element of the set, it is replaced by the new one, ie.  is left-biased.  O(min(n,W))V. Delete a value in the set. Returns the original set when the value was not present.!The union of a list of sets."O(n+m). The union of two sets.#O(n+m). Difference between two sets.$O(n+m). The intersection of two sets.%O(n+m)8. Is this a proper subset? (ie. a subset but not equal).&O(n+m). Is this a subset? (s1 & s2) tells whether s1 is a subset of s2.'O(n)2. Filter all elements that satisfy some predicate.(O(n)0. partition the set according to some predicate.) O(min(n,W)). The expression () x set ) is a pair  (set1,set2) where set1 comprises the elements of set less than x and set2 comprises the elements of set greater than x. =split 3 (fromList [1..5]) == (fromList [1,2], fromList [4,5])* O(min(n,W)) . Performs a )K but also returns whether the pivot element was found in the original set.+ O(min(n,W))R. Retrieves the maximal key of the set, and the set stripped of that element, or k if passed an empty set., O(min(n,W))R. Retrieves the minimal key of the set, and the set stripped of that element, or k if passed an empty set.- O(min(n,W))&. Delete and find the minimal element. 0deleteFindMin set = (findMin set, deleteMin set). O(min(n,W))&. Delete and find the maximal element. 0deleteFindMax set = (findMax set, deleteMax set)/ O(min(n,W))!. The minimal element of the set.0 O(min(n,W)). The maximal element of a set.1 O(min(n,W)). Delete the minimal element.2 O(min(n,W)). Delete the maximal element.3 O(n*min(n,W)). 3 f s! is the set obtained by applying f to each element of s.KIt's worth noting that the size of the result may be smaller if, for some (x,y), x /= y && f x == f y4O(n):. Fold over the elements of a set in an unspecified order. 8sum set == fold (+) 0 set elems set == fold (:) [] set5O(n)A. The elements of a set. (For sets, this is equivalent to toList)6O(n)(. Convert the set to a list of elements.7O(n)3. Convert the set to an ascending list of elements.8 O(n*min(n,W))'. Create a set from a list of integers.9O(n)3. Build a set from an ascending list of elements. :The precondition (input list is ascending) is not checked.:O(n)<. Build a set from an ascending list of distinct elements. CThe precondition (input list is strictly ascending) is not checked.;O(n)\. Show the tree that implements the set. The tree is shown in a compressed, hanging format.<O(n). The expression (< hang wide map.) shows the tree that implements the set. If hang is l, a hanging6 tree is shown otherwise a rotated tree is shown. If wide is l!, an extra wide version is shown.& !"#$%&'()*+,-./0123456789:;<&&% "!#$'()*/012-.+,3456879:;<mnopqrstuvEwxyz9 None9    None;=FKT:GHIJGHIJGHIJL{|None;JGIGINone;=FT;STUVSTUVSTUVY}~None;=FT?@ABCDEFGHIJKLMNOOPQRSTUVWNKXYZ[K\]^_`aNbbcdKefghijNklmnopqrstuvwxyz{|}~x#intern-0.9.2-8EKitLLHQdG4nO2YaHCzQgData.Interned.InternalData.Interned.IntSet!Data.Interned.Internal.ByteStringData.Interned.Internal.StringData.Interned.Internal.Text Data.InternedData.Interned.ByteStringData.Interned.StringData.Interned.Text UninternableuninternInterned Description Uninterneddescribeidentify seedIdentity cacheWidth modifyAdvicecacheIdCachegetCache CacheStatefreshcontent cacheSizemkCacheinternrecoverIntSet\\nullsizemember notMemberempty singletoninsertdeleteunionsunion difference intersectionisProperSubsetOf isSubsetOffilter partitionsplit splitMembermaxViewminView deleteFindMin deleteFindMaxfindMinfindMax deleteMin deleteMaxmapfoldelemstoList toAscListfromList fromAscListfromDistinctAscListshowTree showTreeWith $fReadIntSet $fShowIntSet $fOrdIntSet $fEqIntSet$fMonoidIntSet$fSemigroupIntSet$fHashableDescription$fUninternableIntSet$fInternedIntSet$fEqDescriptionInternedByteStringinternedByteStringIduninternByteString $fUninternableInternedByteString$fInternedInternedByteString$fShowInternedByteString$fOrdInternedByteString$fEqInternedByteString$fIsStringInternedByteStringInternedStringISinternedStringIduninternString$fUninternableInternedString$fInternedInternedString$fShowInternedString$fOrdInternedString$fEqInternedString$fIsStringInternedString InternedTextinternedTextIduninternedText$fUninternableInternedText$fInternedInternedText$fShowInternedText$fOrdInternedText$fEqInternedText$fIsStringInternedTextbaseGHC.BaseNothingghc-prim GHC.TypesTrueStackPushNadaUninternedIntSetUNilUTipUBinNilTipBinD:R:DescriptionIntSet0DNilDTipDBin"D:R:DescriptionInternedByteString0DBSD:R:DescriptionInternedString0ConsD:R:DescriptionInternedText0DT