-- This file is part of Intricacy -- Copyright (C) 2013-2025 Martin Bays -- -- This program is free software: you can redistribute it and/or modify -- it under the terms of version 3 of the GNU General Public License as -- published by the Free Software Foundation, or any later version. -- -- You should have received a copy of the GNU General Public License -- along with this program. If not, see http://www.gnu.org/licenses/. module GraphColouring (fiveColour) where import Data.List import Data.Map (Map) import qualified Data.Map as Map import Data.Maybe type Colouring a = Map a Int type PlanarGraph a = Map a [a] fiveColour :: Ord a => PlanarGraph a -> Colouring a -> Colouring a -- ^algorithm based on that presented in -- http://people.math.gatech.edu/~thomas/PAP/fcstoc.pdf -- Key point: a planar graph can't have all vertices of degree >= 6 -- (Proof: suppose it does, so |E| >= 3|V|; WLOG the graph is triangulated, -- so then |F| <= 2/3 |E|. So \xi = |V|-|E|+|F| <= (1/3 - 1 + 2/3)|E| = 0. -- But a planar graph has Euler characteristic 1.) -- Aims to minimise changes from given (partial) colouring lastCol. fiveColour g lastCol = if Map.keysSet lastCol == Map.keysSet g && isColouring g lastCol then lastCol else fiveColour' lastCol g isColouring :: Ord a => PlanarGraph a -> Colouring a -> Bool isColouring g mapping = and [ Map.lookup s mapping /= Map.lookup e mapping | s <- Map.keys g , e <- g Map.! s ] fiveColour' :: Ord a => Colouring a -> PlanarGraph a -> Colouring a fiveColour' _ g | g == Map.empty = Map.empty fiveColour' pref g = let adjsOf v = nub (g Map.! v) \\ [v] v0 = head $ filter ((<=5) . length . adjsOf) $ Map.keys g adjs = adjsOf v0 addTo c = let vc = head $ possCols pref v0 \\ map (c Map.!) adjs in Map.insert v0 vc c in if length adjs < 5 then addTo $ fiveColour' pref $ deleteNode v0 g else let (v',v'') = if adjs!!2 `elem` (g Map.! head adjs) then (adjs!!1,adjs!!3) else (head adjs,adjs!!2) in addTo $ demerge v' v'' $ fiveColour' pref $ merge v0 v' v'' g possCols :: Ord a => Colouring a -> a -> [Int] possCols pref v = maybe [0..4] (\lvc -> lvc:([0..4] \\ [lvc])) $ Map.lookup v pref demerge :: Ord a => a -> a -> Colouring a -> Colouring a demerge v v' c = Map.insert v' (c Map.! v) c merge :: Ord a => a -> a -> a -> PlanarGraph a -> PlanarGraph a merge v v' v'' g = deleteNode v $ contractNodes v' v'' $ Map.adjust (concatAdjsOver v $ g Map.! v'') v' g concatAdjsOver :: Ord a => a -> [a] -> [a] -> [a] concatAdjsOver v adjs adjs' = let (s,_:e) = splitAt (fromJust $ elemIndex v adjs) adjs in s ++ adjs' ++ e deleteNode :: Ord a => a -> PlanarGraph a -> PlanarGraph a deleteNode v = fmap (filter (/= v)) . Map.delete v contractNodes :: Ord a => a -> a -> PlanarGraph a -> PlanarGraph a contractNodes v v' = fmap (map (\v'' -> if v'' == v' then v else v'')) . Map.delete v'