-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Total Prelude with Text and Monad transformers -- -- Modern Prelude which provides safe alternatives for most of the -- partial functions. Text is preferred over String. Container types and -- Monad transformers are provided. Most important - this Prelude avoids -- fanciness. This means it just reexports from base and commonly used -- libraries and doesn't invent its own stuff. Everything is in one file. @package intro @version 0.0.2.0 module Intro -- | const x is a unary function which evaluates to x for -- all inputs. -- -- For instance, -- --
--   >>> map (const 42) [0..3]
--   [42,42,42,42]
--   
const :: a -> b -> a -- | flip f takes its (first) two arguments in the reverse -- order of f. flip :: (a -> b -> c) -> b -> a -> c -- | Application operator. This operator is redundant, since ordinary -- application (f x) means the same as (f $ x). -- However, $ has low, right-associative binding precedence, so it -- sometimes allows parentheses to be omitted; for example: -- --
--   f $ g $ h x  =  f (g (h x))
--   
-- -- It is also useful in higher-order situations, such as map -- ($ 0) xs, or zipWith ($) fs xs. ($) :: (a -> b) -> a -> b infixr 0 $ -- | Strict (call-by-value) application operator. It takes a function and -- an argument, evaluates the argument to weak head normal form (WHNF), -- then calls the function with that value. ($!) :: (a -> b) -> a -> b infixr 0 $! -- | & is a reverse application operator. This provides -- notational convenience. Its precedence is one higher than that of the -- forward application operator $, which allows & to be -- nested in $. (&) :: a -> (a -> b) -> b infixl 1 & -- | fix f is the least fixed point of the function -- f, i.e. the least defined x such that f x = -- x. fix :: (a -> a) -> a -- | (*) `on` f = \x y -> f x * f y. -- -- Typical usage: sortBy (compare `on` -- fst). -- -- Algebraic properties: -- -- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c infixl 0 `on` -- | Compose functions with one argument with function with two arguments (.:) :: (c -> d) -> (a -> b -> c) -> a -> b -> d infixr 8 .: -- | until p f yields the result of applying f -- until p holds. until :: (a -> Bool) -> (a -> a) -> a -> a -- | asTypeOf is a type-restricted version of const. It is -- usually used as an infix operator, and its typing forces its first -- argument (which is usually overloaded) to have the same type as the -- second. asTypeOf :: a -> a -> a -- | The value of seq a b is bottom if a is bottom, and -- otherwise equal to b. seq is usually introduced to -- improve performance by avoiding unneeded laziness. -- -- A note on evaluation order: the expression seq a b does -- not guarantee that a will be evaluated before -- b. The only guarantee given by seq is that the both -- a and b will be evaluated before seq -- returns a value. In particular, this means that b may be -- evaluated before a. If you need to guarantee a specific order -- of evaluation, you must use the function pseq from the -- "parallel" package. seq :: a -> b -> b -- | Uninhabited data type data Void :: * data Bool :: * False :: Bool True :: Bool -- | Boolean "and" (&&) :: Bool -> Bool -> Bool infixr 3 && -- | Boolean "or" (||) :: Bool -> Bool -> Bool infixr 2 || -- | Case analysis for the Bool type. bool x y p -- evaluates to x when p is False, and evaluates -- to y when p is True. -- -- This is equivalent to if p then y else x; that is, one can -- think of it as an if-then-else construct with its arguments reordered. -- --

Examples

-- -- Basic usage: -- --
--   >>> bool "foo" "bar" True
--   "bar"
--   
--   >>> bool "foo" "bar" False
--   "foo"
--   
-- -- Confirm that bool x y p and if p then y else -- x are equivalent: -- --
--   >>> let p = True; x = "bar"; y = "foo"
--   
--   >>> bool x y p == if p then y else x
--   True
--   
--   >>> let p = False
--   
--   >>> bool x y p == if p then y else x
--   True
--   
bool :: a -> a -> Bool -> a -- | Boolean "not" not :: Bool -> Bool -- | otherwise is defined as the value True. It helps to make -- guards more readable. eg. -- --
--   f x | x < 0     = ...
--       | otherwise = ...
--   
otherwise :: Bool -- | The Maybe type encapsulates an optional value. A value of type -- Maybe a either contains a value of type a -- (represented as Just a), or it is empty (represented -- as Nothing). Using Maybe is a good way to deal with -- errors or exceptional cases without resorting to drastic measures such -- as error. -- -- The Maybe type is also a monad. It is a simple kind of error -- monad, where all errors are represented by Nothing. A richer -- error monad can be built using the Either type. data Maybe a :: * -> * Nothing :: Maybe a Just :: a -> Maybe a -- | The catMaybes function takes a list of Maybes and -- returns a list of all the Just values. -- --

Examples

-- -- Basic usage: -- --
--   >>> catMaybes [Just 1, Nothing, Just 3]
--   [1,3]
--   
-- -- When constructing a list of Maybe values, catMaybes can -- be used to return all of the "success" results (if the list is the -- result of a map, then mapMaybe would be more -- appropriate): -- --
--   >>> import Text.Read ( readMaybe )
--   
--   >>> [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
--   [Just 1,Nothing,Just 3]
--   
--   >>> catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
--   [1,3]
--   
catMaybes :: [Maybe a] -> [a] -- | The fromMaybe function takes a default value and and -- Maybe value. If the Maybe is Nothing, it returns -- the default values; otherwise, it returns the value contained in the -- Maybe. -- --

Examples

-- -- Basic usage: -- --
--   >>> fromMaybe "" (Just "Hello, World!")
--   "Hello, World!"
--   
-- --
--   >>> fromMaybe "" Nothing
--   ""
--   
-- -- Read an integer from a string using readMaybe. If we fail to -- parse an integer, we want to return 0 by default: -- --
--   >>> import Text.Read ( readMaybe )
--   
--   >>> fromMaybe 0 (readMaybe "5")
--   5
--   
--   >>> fromMaybe 0 (readMaybe "")
--   0
--   
fromMaybe :: a -> Maybe a -> a -- | The isJust function returns True iff its argument is of -- the form Just _. -- --

Examples

-- -- Basic usage: -- --
--   >>> isJust (Just 3)
--   True
--   
-- --
--   >>> isJust (Just ())
--   True
--   
-- --
--   >>> isJust Nothing
--   False
--   
-- -- Only the outer constructor is taken into consideration: -- --
--   >>> isJust (Just Nothing)
--   True
--   
isJust :: Maybe a -> Bool -- | The isNothing function returns True iff its argument is -- Nothing. -- --

Examples

-- -- Basic usage: -- --
--   >>> isNothing (Just 3)
--   False
--   
-- --
--   >>> isNothing (Just ())
--   False
--   
-- --
--   >>> isNothing Nothing
--   True
--   
-- -- Only the outer constructor is taken into consideration: -- --
--   >>> isNothing (Just Nothing)
--   False
--   
isNothing :: Maybe a -> Bool -- | The listToMaybe function returns Nothing on an empty -- list or Just a where a is the first element -- of the list. -- --

Examples

-- -- Basic usage: -- --
--   >>> listToMaybe []
--   Nothing
--   
-- --
--   >>> listToMaybe [9]
--   Just 9
--   
-- --
--   >>> listToMaybe [1,2,3]
--   Just 1
--   
-- -- Composing maybeToList with listToMaybe should be the -- identity on singleton/empty lists: -- --
--   >>> maybeToList $ listToMaybe [5]
--   [5]
--   
--   >>> maybeToList $ listToMaybe []
--   []
--   
-- -- But not on lists with more than one element: -- --
--   >>> maybeToList $ listToMaybe [1,2,3]
--   [1]
--   
listToMaybe :: [a] -> Maybe a -- | The mapMaybe function is a version of map which can -- throw out elements. In particular, the functional argument returns -- something of type Maybe b. If this is Nothing, -- no element is added on to the result list. If it is Just -- b, then b is included in the result list. -- --

Examples

-- -- Using mapMaybe f x is a shortcut for -- catMaybes $ map f x in most cases: -- --
--   >>> import Text.Read ( readMaybe )
--   
--   >>> let readMaybeInt = readMaybe :: String -> Maybe Int
--   
--   >>> mapMaybe readMaybeInt ["1", "Foo", "3"]
--   [1,3]
--   
--   >>> catMaybes $ map readMaybeInt ["1", "Foo", "3"]
--   [1,3]
--   
-- -- If we map the Just constructor, the entire list should be -- returned: -- --
--   >>> mapMaybe Just [1,2,3]
--   [1,2,3]
--   
mapMaybe :: (a -> Maybe b) -> [a] -> [b] -- | The maybe function takes a default value, a function, and a -- Maybe value. If the Maybe value is Nothing, the -- function returns the default value. Otherwise, it applies the function -- to the value inside the Just and returns the result. -- --

Examples

-- -- Basic usage: -- --
--   >>> maybe False odd (Just 3)
--   True
--   
-- --
--   >>> maybe False odd Nothing
--   False
--   
-- -- Read an integer from a string using readMaybe. If we succeed, -- return twice the integer; that is, apply (*2) to it. If -- instead we fail to parse an integer, return 0 by default: -- --
--   >>> import Text.Read ( readMaybe )
--   
--   >>> maybe 0 (*2) (readMaybe "5")
--   10
--   
--   >>> maybe 0 (*2) (readMaybe "")
--   0
--   
-- -- Apply show to a Maybe Int. If we have Just -- n, we want to show the underlying Int n. But if -- we have Nothing, we return the empty string instead of (for -- example) "Nothing": -- --
--   >>> maybe "" show (Just 5)
--   "5"
--   
--   >>> maybe "" show Nothing
--   ""
--   
maybe :: b -> (a -> b) -> Maybe a -> b -- | The maybeToList function returns an empty list when given -- Nothing or a singleton list when not given Nothing. -- --

Examples

-- -- Basic usage: -- --
--   >>> maybeToList (Just 7)
--   [7]
--   
-- --
--   >>> maybeToList Nothing
--   []
--   
-- -- One can use maybeToList to avoid pattern matching when combined -- with a function that (safely) works on lists: -- --
--   >>> import Text.Read ( readMaybe )
--   
--   >>> sum $ maybeToList (readMaybe "3")
--   3
--   
--   >>> sum $ maybeToList (readMaybe "")
--   0
--   
maybeToList :: Maybe a -> [a] -- | The IsList class and its methods are intended to be used in -- conjunction with the OverloadedLists extension. class IsList l where type Item l :: * where { type family Item l :: *; } -- | The fromList function constructs the structure l from -- the given list of Item l fromList :: IsList l => [Item l] -> l -- | break, applied to a predicate p and a list -- xs, returns a tuple where first element is longest prefix -- (possibly empty) of xs of elements that do not satisfy -- p and second element is the remainder of the list: -- --
--   break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4])
--   break (< 9) [1,2,3] == ([],[1,2,3])
--   break (> 9) [1,2,3] == ([1,2,3],[])
--   
-- -- break p is equivalent to span (not . -- p). break :: (a -> Bool) -> [a] -> ([a], [a]) -- | drop n xs returns the suffix of xs after the -- first n elements, or [] if n > length -- xs: -- --
--   drop 6 "Hello World!" == "World!"
--   drop 3 [1,2,3,4,5] == [4,5]
--   drop 3 [1,2] == []
--   drop 3 [] == []
--   drop (-1) [1,2] == [1,2]
--   drop 0 [1,2] == [1,2]
--   
-- -- It is an instance of the more general genericDrop, in which -- n may be of any integral type. drop :: Int -> [a] -> [a] -- | Drop a number of elements from the end of the list. -- --
--   dropEnd 3 "hello"  == "he"
--   dropEnd 5 "bye"    == ""
--   dropEnd (-1) "bye" == "bye"
--   \i xs -> dropEnd i xs `isPrefixOf` xs
--   \i xs -> length (dropEnd i xs) == max 0 (length xs - max 0 i)
--   \i -> take 3 (dropEnd 5 [i..]) == take 3 [i..]
--   
dropEnd :: Int -> [a] -> [a] -- | dropWhile p xs returns the suffix remaining after -- takeWhile p xs: -- --
--   dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
--   dropWhile (< 9) [1,2,3] == []
--   dropWhile (< 0) [1,2,3] == [1,2,3]
--   
dropWhile :: (a -> Bool) -> [a] -> [a] -- | The dropWhileEnd function drops the largest suffix of a list in -- which the given predicate holds for all elements. For example: -- --
--   dropWhileEnd isSpace "foo\n" == "foo"
--   dropWhileEnd isSpace "foo bar" == "foo bar"
--   dropWhileEnd isSpace ("foo\n" ++ undefined) == "foo" ++ undefined
--   
dropWhileEnd :: (a -> Bool) -> [a] -> [a] -- | filter, applied to a predicate and a list, returns the list of -- those elements that satisfy the predicate; i.e., -- --
--   filter p xs = [ x | x <- xs, p x]
--   
filter :: (a -> Bool) -> [a] -> [a] -- | The group function takes a list and returns a list of lists -- such that the concatenation of the result is equal to the argument. -- Moreover, each sublist in the result contains only equal elements. For -- example, -- --
--   group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"]
--   
-- -- It is a special case of groupBy, which allows the programmer to -- supply their own equality test. group :: Eq a => [a] -> [[a]] -- | The groupBy function is the non-overloaded version of -- group. groupBy :: (a -> a -> Bool) -> [a] -> [[a]] -- | A version of group where the equality is done on some extracted -- value. groupOn :: Eq b => (a -> b) -> [a] -> [[a]] -- | The inits function returns all initial segments of the -- argument, shortest first. For example, -- --
--   inits "abc" == ["","a","ab","abc"]
--   
-- -- Note that inits has the following strictness property: -- inits (xs ++ _|_) = inits xs ++ _|_ -- -- In particular, inits _|_ = [] : _|_ inits :: [a] -> [[a]] -- | intercalate xs xss is equivalent to (concat -- (intersperse xs xss)). It inserts the list xs in -- between the lists in xss and concatenates the result. intercalate :: [a] -> [[a]] -> [a] -- | The intersperse function takes an element and a list and -- `intersperses' that element between the elements of the list. For -- example, -- --
--   intersperse ',' "abcde" == "a,b,c,d,e"
--   
intersperse :: a -> [a] -> [a] -- | The isPrefixOf function takes two lists and returns True -- iff the first list is a prefix of the second. isPrefixOf :: Eq a => [a] -> [a] -> Bool -- | The isSuffixOf function takes two lists and returns True -- iff the first list is a suffix of the second. The second list must be -- finite. isSuffixOf :: Eq a => [a] -> [a] -> Bool -- | iterate f x returns an infinite list of repeated -- applications of f to x: -- --
--   iterate f x == [x, f x, f (f x), ...]
--   
iterate :: (a -> a) -> a -> [a] -- | lookup key assocs looks up a key in an association -- list. lookup :: Eq a => a -> [(a, b)] -> Maybe b -- | O(n log n). The nubOrd function removes duplicate -- elements from a list. In particular, it keeps only the first -- occurrence of each element. Unlike the standard nub operator, -- this version requires an Ord instance and consequently runs -- asymptotically faster. -- --
--   nubOrd "this is a test" == "this ae"
--   nubOrd (take 4 ("this" ++ undefined)) == "this"
--   \xs -> nubOrd xs == nub xs
--   
nubOrd :: Ord a => [a] -> [a] -- | A version of nubOrd with a custom predicate. -- --
--   nubOrdBy (compare `on` length) ["a","test","of","this"] == ["a","test","of"]
--   
nubOrdBy :: (a -> a -> Ordering) -> [a] -> [a] -- | A version of nubOrd which operates on a portion of the value. -- --
--   nubOrdOn length ["a","test","of","this"] == ["a","test","of"]
--   
nubOrdOn :: Ord b => (a -> b) -> [a] -> [a] -- | The permutations function returns the list of all permutations -- of the argument. -- --
--   permutations "abc" == ["abc","bac","cba","bca","cab","acb"]
--   
permutations :: [a] -> [[a]] -- | repeat x is an infinite list, with x the -- value of every element. repeat :: a -> [a] -- | replicate n x is a list of length n with -- x the value of every element. It is an instance of the more -- general genericReplicate, in which n may be of any -- integral type. replicate :: Int -> a -> [a] -- | reverse xs returns the elements of xs in -- reverse order. xs must be finite. reverse :: [a] -> [a] -- | scanl is similar to foldl, but returns a list of -- successive reduced values from the left: -- --
--   scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
--   
-- -- Note that -- --
--   last (scanl f z xs) == foldl f z xs.
--   
scanl :: (b -> a -> b) -> b -> [a] -> [b] -- | scanr is the right-to-left dual of scanl. Note that -- --
--   head (scanr f z xs) == foldr f z xs.
--   
scanr :: (a -> b -> b) -> b -> [a] -> [b] -- | The sort function implements a stable sorting algorithm. It is -- a special case of sortBy, which allows the programmer to supply -- their own comparison function. sort :: Ord a => [a] -> [a] -- | The sortBy function is the non-overloaded version of -- sort. sortBy :: (a -> a -> Ordering) -> [a] -> [a] -- | Sort a list by comparing the results of a key function applied to each -- element. sortOn f is equivalent to sortBy (comparing -- f), but has the performance advantage of only evaluating -- f once for each element in the input list. This is called the -- decorate-sort-undecorate paradigm, or Schwartzian transform. sortOn :: Ord b => (a -> b) -> [a] -> [a] -- | span, applied to a predicate p and a list xs, -- returns a tuple where first element is longest prefix (possibly empty) -- of xs of elements that satisfy p and second element -- is the remainder of the list: -- --
--   span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4])
--   span (< 9) [1,2,3] == ([1,2,3],[])
--   span (< 0) [1,2,3] == ([],[1,2,3])
--   
-- -- span p xs is equivalent to (takeWhile p xs, -- dropWhile p xs) span :: (a -> Bool) -> [a] -> ([a], [a]) -- | splitAt n xs returns a tuple where first element is -- xs prefix of length n and second element is the -- remainder of the list: -- --
--   splitAt 6 "Hello World!" == ("Hello ","World!")
--   splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
--   splitAt 1 [1,2,3] == ([1],[2,3])
--   splitAt 3 [1,2,3] == ([1,2,3],[])
--   splitAt 4 [1,2,3] == ([1,2,3],[])
--   splitAt 0 [1,2,3] == ([],[1,2,3])
--   splitAt (-1) [1,2,3] == ([],[1,2,3])
--   
-- -- It is equivalent to (take n xs, drop n xs) when -- n is not _|_ (splitAt _|_ xs = _|_). -- splitAt is an instance of the more general -- genericSplitAt, in which n may be of any integral -- type. splitAt :: Int -> [a] -> ([a], [a]) -- | The subsequences function returns the list of all subsequences -- of the argument. -- --
--   subsequences "abc" == ["","a","b","ab","c","ac","bc","abc"]
--   
subsequences :: [a] -> [[a]] -- | The tails function returns all final segments of the argument, -- longest first. For example, -- --
--   tails "abc" == ["abc", "bc", "c",""]
--   
-- -- Note that tails has the following strictness property: -- tails _|_ = _|_ : _|_ tails :: [a] -> [[a]] -- | take n, applied to a list xs, returns the -- prefix of xs of length n, or xs itself if -- n > length xs: -- --
--   take 5 "Hello World!" == "Hello"
--   take 3 [1,2,3,4,5] == [1,2,3]
--   take 3 [1,2] == [1,2]
--   take 3 [] == []
--   take (-1) [1,2] == []
--   take 0 [1,2] == []
--   
-- -- It is an instance of the more general genericTake, in which -- n may be of any integral type. take :: Int -> [a] -> [a] -- | Take a number of elements from the end of the list. -- --
--   takeEnd 3 "hello"  == "llo"
--   takeEnd 5 "bye"    == "bye"
--   takeEnd (-1) "bye" == ""
--   \i xs -> takeEnd i xs `isSuffixOf` xs
--   \i xs -> length (takeEnd i xs) == min (max 0 i) (length xs)
--   
takeEnd :: Int -> [a] -> [a] -- | takeWhile, applied to a predicate p and a list -- xs, returns the longest prefix (possibly empty) of -- xs of elements that satisfy p: -- --
--   takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
--   takeWhile (< 9) [1,2,3] == [1,2,3]
--   takeWhile (< 0) [1,2,3] == []
--   
takeWhile :: (a -> Bool) -> [a] -> [a] -- | The transpose function transposes the rows and columns of its -- argument. For example, -- --
--   transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]
--   
-- -- If some of the rows are shorter than the following rows, their -- elements are skipped: -- --
--   transpose [[10,11],[20],[],[30,31,32]] == [[10,20,30],[11,31],[32]]
--   
transpose :: [[a]] -> [[a]] -- | The unfoldr function is a `dual' to foldr: while -- foldr reduces a list to a summary value, unfoldr builds -- a list from a seed value. The function takes the element and returns -- Nothing if it is done producing the list or returns Just -- (a,b), in which case, a is a prepended to the list -- and b is used as the next element in a recursive call. For -- example, -- --
--   iterate f == unfoldr (\x -> Just (x, f x))
--   
-- -- In some cases, unfoldr can undo a foldr operation: -- --
--   unfoldr f' (foldr f z xs) == xs
--   
-- -- if the following holds: -- --
--   f' (f x y) = Just (x,y)
--   f' z       = Nothing
--   
-- -- A simple use of unfoldr: -- --
--   unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
--    [10,9,8,7,6,5,4,3,2,1]
--   
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] -- | unzip transforms a list of pairs into a list of first -- components and a list of second components. unzip :: [(a, b)] -> ([a], [b]) -- | The unzip3 function takes a list of triples and returns three -- lists, analogous to unzip. unzip3 :: [(a, b, c)] -> ([a], [b], [c]) -- | zip takes two lists and returns a list of corresponding pairs. -- If one input list is short, excess elements of the longer list are -- discarded. -- -- zip is right-lazy: -- --
--   zip [] _|_ = []
--   
zip :: [a] -> [b] -> [(a, b)] -- | zip3 takes three lists and returns a list of triples, analogous -- to zip. zip3 :: [a] -> [b] -> [c] -> [(a, b, c)] -- | zipWith generalises zip by zipping with the function -- given as the first argument, instead of a tupling function. For -- example, zipWith (+) is applied to two lists to -- produce the list of corresponding sums. -- -- zipWith is right-lazy: -- --
--   zipWith f [] _|_ = []
--   
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] -- | The zipWith3 function takes a function which combines three -- elements, as well as three lists and returns a list of their -- point-wise combination, analogous to zipWith. zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] headDef :: a -> [a] -> a headMay :: [a] -> Maybe a initDef :: [a] -> [a] -> [a] initMay :: [a] -> Maybe [a] lastDef :: a -> [a] -> a lastMay :: [a] -> Maybe a -- |
--   tailDef [12] [] = [12]
--   tailDef [12] [1,3,4] = [3,4]
--   
tailDef :: [a] -> [a] -> [a] -- |
--   tailMay [] = Nothing
--   tailMay [1,3,4] = Just [3,4]
--   
tailMay :: [a] -> Maybe [a] cycleMay :: [a] -> Maybe [a] cycleDef :: [a] -> [a] -> [a] -- | Non-empty (and non-strict) list type. data NonEmpty a :: * -> * (:|) :: a -> [a] -> NonEmpty a -- | scanl1 is a variant of scanl that has no starting value -- argument: -- --
--   scanl1 f [x1, x2, ...] == x1 :| [x1 `f` x2, x1 `f` (x2 `f` x3), ...]
--   
scanl1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a -- | scanr1 is a variant of scanr that has no starting value -- argument. scanr1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a -- | Extract the first component of a pair. fst :: (a, b) -> a -- | Extract the second component of a pair. snd :: (a, b) -> b -- | curry converts an uncurried function to a curried function. curry :: ((a, b) -> c) -> a -> b -> c -- | uncurry converts a curried function to a function on pairs. uncurry :: (a -> b -> c) -> (a, b) -> c -- | Swap the components of a pair. swap :: (a, b) -> (b, a) -- | The Either type represents values with two possibilities: a -- value of type Either a b is either Left -- a or Right b. -- -- The Either type is sometimes used to represent a value which is -- either correct or an error; by convention, the Left constructor -- is used to hold an error value and the Right constructor is -- used to hold a correct value (mnemonic: "right" also means "correct"). -- --

Examples

-- -- The type Either String Int is the type -- of values which can be either a String or an Int. The -- Left constructor can be used only on Strings, and the -- Right constructor can be used only on Ints: -- --
--   >>> let s = Left "foo" :: Either String Int
--   
--   >>> s
--   Left "foo"
--   
--   >>> let n = Right 3 :: Either String Int
--   
--   >>> n
--   Right 3
--   
--   >>> :type s
--   s :: Either String Int
--   
--   >>> :type n
--   n :: Either String Int
--   
-- -- The fmap from our Functor instance will ignore -- Left values, but will apply the supplied function to values -- contained in a Right: -- --
--   >>> let s = Left "foo" :: Either String Int
--   
--   >>> let n = Right 3 :: Either String Int
--   
--   >>> fmap (*2) s
--   Left "foo"
--   
--   >>> fmap (*2) n
--   Right 6
--   
-- -- The Monad instance for Either allows us to chain -- together multiple actions which may fail, and fail overall if any of -- the individual steps failed. First we'll write a function that can -- either parse an Int from a Char, or fail. -- --
--   >>> import Data.Char ( digitToInt, isDigit )
--   
--   >>> :{
--       let parseEither :: Char -> Either String Int
--           parseEither c
--             | isDigit c = Right (digitToInt c)
--             | otherwise = Left "parse error"
--   
--   >>> :}
--   
-- -- The following should work, since both '1' and '2' -- can be parsed as Ints. -- --
--   >>> :{
--       let parseMultiple :: Either String Int
--           parseMultiple = do
--             x <- parseEither '1'
--             y <- parseEither '2'
--             return (x + y)
--   
--   >>> :}
--   
-- --
--   >>> parseMultiple
--   Right 3
--   
-- -- But the following should fail overall, since the first operation where -- we attempt to parse 'm' as an Int will fail: -- --
--   >>> :{
--       let parseMultiple :: Either String Int
--           parseMultiple = do
--             x <- parseEither 'm'
--             y <- parseEither '2'
--             return (x + y)
--   
--   >>> :}
--   
-- --
--   >>> parseMultiple
--   Left "parse error"
--   
data Either a b :: * -> * -> * Left :: a -> Either a b Right :: b -> Either a b -- | Case analysis for the Either type. If the value is -- Left a, apply the first function to a; if it -- is Right b, apply the second function to b. -- --

Examples

-- -- We create two values of type Either String -- Int, one using the Left constructor and another -- using the Right constructor. Then we apply "either" the -- length function (if we have a String) or the -- "times-two" function (if we have an Int): -- --
--   >>> let s = Left "foo" :: Either String Int
--   
--   >>> let n = Right 3 :: Either String Int
--   
--   >>> either length (*2) s
--   3
--   
--   >>> either length (*2) n
--   6
--   
either :: (a -> c) -> (b -> c) -> Either a b -> c -- | Return the contents of a Left-value or a default value -- otherwise. -- --
--   fromLeft 1 (Left 3) == 3
--   fromLeft 1 (Right "foo") == 1
--   
fromLeft :: a -> Either a b -> a -- | Return the contents of a Right-value or a default value -- otherwise. -- --
--   fromRight 1 (Right 3) == 3
--   fromRight 1 (Left "foo") == 1
--   
fromRight :: b -> Either a b -> b -- | Return True if the given value is a Left-value, -- False otherwise. -- --

Examples

-- -- Basic usage: -- --
--   >>> isLeft (Left "foo")
--   True
--   
--   >>> isLeft (Right 3)
--   False
--   
-- -- Assuming a Left value signifies some sort of error, we can use -- isLeft to write a very simple error-reporting function that -- does absolutely nothing in the case of success, and outputs "ERROR" if -- any error occurred. -- -- This example shows how isLeft might be used to avoid pattern -- matching when one does not care about the value contained in the -- constructor: -- --
--   >>> import Control.Monad ( when )
--   
--   >>> let report e = when (isLeft e) $ putStrLn "ERROR"
--   
--   >>> report (Right 1)
--   
--   >>> report (Left "parse error")
--   ERROR
--   
isLeft :: Either a b -> Bool -- | Return True if the given value is a Right-value, -- False otherwise. -- --

Examples

-- -- Basic usage: -- --
--   >>> isRight (Left "foo")
--   False
--   
--   >>> isRight (Right 3)
--   True
--   
-- -- Assuming a Left value signifies some sort of error, we can use -- isRight to write a very simple reporting function that only -- outputs "SUCCESS" when a computation has succeeded. -- -- This example shows how isRight might be used to avoid pattern -- matching when one does not care about the value contained in the -- constructor: -- --
--   >>> import Control.Monad ( when )
--   
--   >>> let report e = when (isRight e) $ putStrLn "SUCCESS"
--   
--   >>> report (Left "parse error")
--   
--   >>> report (Right 1)
--   SUCCESS
--   
isRight :: Either a b -> Bool -- | Extracts from a list of Either all the Left elements. -- All the Left elements are extracted in order. -- --

Examples

-- -- Basic usage: -- --
--   >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   >>> lefts list
--   ["foo","bar","baz"]
--   
lefts :: [Either a b] -> [a] -- | Extracts from a list of Either all the Right elements. -- All the Right elements are extracted in order. -- --

Examples

-- -- Basic usage: -- --
--   >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   >>> rights list
--   [3,7]
--   
rights :: [Either a b] -> [b] -- | Partitions a list of Either into two lists. All the Left -- elements are extracted, in order, to the first component of the -- output. Similarly the Right elements are extracted to the -- second component of the output. -- --

Examples

-- -- Basic usage: -- --
--   >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   >>> partitionEithers list
--   (["foo","bar","baz"],[3,7])
--   
-- -- The pair returned by partitionEithers x should be the -- same pair as (lefts x, rights x): -- --
--   >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
--   
--   >>> partitionEithers list == (lefts list, rights list)
--   True
--   
partitionEithers :: [Either a b] -> ([a], [b]) -- | Given an Either, convert it to a Maybe, where -- Left becomes Nothing. -- --
--   \x -> eitherToMaybe (Left x) == Nothing
--   \x -> eitherToMaybe (Right x) == Just x
--   
eitherToMaybe :: Either a b -> Maybe b -- | Given a Maybe, convert it to an Either, providing a -- suitable value for the Left should the value be Nothing. -- --
--   \a b -> maybeToEither a (Just b) == Right b
--   \a -> maybeToEither a Nothing == Left a
--   
maybeToEither :: a -> Maybe b -> Either a b -- | The character type Char is an enumeration whose values -- represent Unicode (or equivalently ISO/IEC 10646) characters (see -- http://www.unicode.org/ for details). This set extends the ISO -- 8859-1 (Latin-1) character set (the first 256 characters), which is -- itself an extension of the ASCII character set (the first 128 -- characters). A character literal in Haskell has type Char. -- -- To convert a Char to or from the corresponding Int value -- defined by Unicode, use toEnum and fromEnum from the -- Enum class respectively (or equivalently ord and -- chr). data Char :: * -- | A String is a list of characters. String constants in Haskell -- are values of type String. type String = [Char] -- | A space efficient, packed, unboxed Unicode text type. data Text :: * -- | Alias for lazy Text type LText = Text -- | A space-efficient representation of a Word8 vector, supporting -- many efficient operations. -- -- A ByteString contains 8-bit bytes, or by using the operations -- from Data.ByteString.Char8 it can be interpreted as containing -- 8-bit characters. data ByteString :: * -- | Alias for lazy ByteString type LByteString = ByteString -- | Class for string-like datastructures; used by the overloaded string -- extension (-XOverloadedStrings in GHC). class IsString a fromString :: IsString a => String -> a class ConvertibleStrings a b convertString :: ConvertibleStrings a b => a -> b -- | A Map from keys k to values a. data Map k a :: * -> * -> * -- | Alias for lazy Map type LMap = Map -- | A set of values a. data Set a :: * -> * -- | A map of integers to values a. data IntMap a :: * -> * -- | A set of integers. data IntSet :: * -- | A map from keys to values. A map cannot contain duplicate keys; each -- key can map to at most one value. data HashMap k v :: * -> * -> * -- | Alias for lazy HashMap type LHashMap = HashMap -- | A set of values. A set cannot contain duplicate values. data HashSet a :: * -> * -- | The class of types that can be converted to a hash value. -- -- Minimal implementation: hashWithSalt. class Hashable a -- | General-purpose finite sequences. data Seq a :: * -> * -- | A difference list is a function that, given a list, returns the -- original contents of the difference list prepended to the given list. -- -- This structure supports O(1) append and snoc operations on -- lists, making it very useful for append-heavy uses (esp. left-nested -- uses of ++), such as logging and pretty printing. -- -- Here is an example using DList as the state type when printing a tree -- with the Writer monad: -- --
--   import Control.Monad.Writer
--   import Data.DList
--   
--   data Tree a = Leaf a | Branch (Tree a) (Tree a)
--   
--   flatten_writer :: Tree x -> DList x
--   flatten_writer = snd . runWriter . flatten
--       where
--         flatten (Leaf x)     = tell (singleton x)
--         flatten (Branch x y) = flatten x >> flatten y
--   
data DList a :: * -> * -- | Invariant: Jn# and Jp# are used iff value doesn't fit in -- S# -- -- Useful properties resulting from the invariants: -- -- data Integer :: * -- | Type representing arbitrary-precision non-negative integers. -- -- Operations whose result would be negative throw -- (Underflow :: ArithException). data Natural :: * -- | A fixed-precision integer type with at least the range [-2^29 .. -- 2^29-1]. The exact range for a given implementation can be -- determined by using minBound and maxBound from the -- Bounded class. data Int :: * -- | 8-bit signed integer type data Int8 :: * -- | 16-bit signed integer type data Int16 :: * -- | 32-bit signed integer type data Int32 :: * -- | 64-bit signed integer type data Int64 :: * -- | A Word is an unsigned integral type, with the same size as -- Int. data Word :: * -- | 8-bit unsigned integer type data Word8 :: * -- | 16-bit unsigned integer type data Word16 :: * -- | 32-bit unsigned integer type data Word32 :: * -- | 64-bit unsigned integer type data Word64 :: * -- | Single-precision floating point numbers. It is desirable that this -- type be at least equal in range and precision to the IEEE -- single-precision type. data Float :: * -- | Double-precision floating point numbers. It is desirable that this -- type be at least equal in range and precision to the IEEE -- double-precision type. data Double :: * -- | Rational numbers, with numerator and denominator of some -- Integral type. data Ratio a :: * -> * -- | Arbitrary-precision rational numbers, represented as a ratio of two -- Integer values. A rational number may be constructed using the -- % operator. type Rational = Ratio Integer -- | Forms the ratio of two integral numbers. (%) :: Integral a => a -> a -> Ratio a infixl 7 % -- | Extract the numerator of the ratio in reduced form: the numerator and -- denominator have no common factor and the denominator is positive. numerator :: Ratio a -> a -- | Extract the denominator of the ratio in reduced form: the numerator -- and denominator have no common factor and the denominator is positive. denominator :: Ratio a -> a -- | approxRational, applied to two real fractional numbers -- x and epsilon, returns the simplest rational number -- within epsilon of x. A rational number y is -- said to be simpler than another y' if -- -- -- -- Any real interval contains a unique simplest rational; in particular, -- note that 0/1 is the simplest rational of all. approxRational :: RealFrac a => a -> a -> Rational -- | Basic numeric class. class Num a (+) :: Num a => a -> a -> a (-) :: Num a => a -> a -> a (*) :: Num a => a -> a -> a -- | Unary negation. negate :: Num a => a -> a -- | Absolute value. abs :: Num a => a -> a -- | Sign of a number. The functions abs and signum should -- satisfy the law: -- --
--   abs x * signum x == x
--   
-- -- For real numbers, the signum is either -1 (negative), -- 0 (zero) or 1 (positive). signum :: Num a => a -> a -- | Conversion from an Integer. An integer literal represents the -- application of the function fromInteger to the appropriate -- value of type Integer, so such literals have type -- (Num a) => a. fromInteger :: Num a => Integer -> a -- | raise a number to a non-negative integral power (^) :: (Num a, Integral b) => a -> b -> a infixr 8 ^ class (Num a, Ord a) => Real a -- | the rational equivalent of its real argument with full precision toRational :: Real a => a -> Rational -- | general coercion to fractional types realToFrac :: (Real a, Fractional b) => a -> b -- | Integral numbers, supporting integer division. class (Real a, Enum a) => Integral a -- | integer division truncated toward zero quot :: Integral a => a -> a -> a -- | integer remainder, satisfying -- --
--   (x `quot` y)*y + (x `rem` y) == x
--   
rem :: Integral a => a -> a -> a -- | integer division truncated toward negative infinity div :: Integral a => a -> a -> a -- | integer modulus, satisfying -- --
--   (x `div` y)*y + (x `mod` y) == x
--   
mod :: Integral a => a -> a -> a -- | simultaneous quot and rem quotRem :: Integral a => a -> a -> (a, a) -- | simultaneous div and mod divMod :: Integral a => a -> a -> (a, a) -- | conversion to Integer toInteger :: Integral a => a -> Integer -- | general coercion from integral types fromIntegral :: (Integral a, Num b) => a -> b even :: Integral a => a -> Bool odd :: Integral a => a -> Bool -- | Fractional numbers, supporting real division. class Num a => Fractional a -- | fractional division (/) :: Fractional a => a -> a -> a -- | reciprocal fraction recip :: Fractional a => a -> a -- | Conversion from a Rational (that is Ratio -- Integer). A floating literal stands for an application of -- fromRational to a value of type Rational, so such -- literals have type (Fractional a) => a. fromRational :: Fractional a => Rational -> a -- | raise a number to an integral power (^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 ^^ -- | Trigonometric and hyperbolic functions and related functions. class Fractional a => Floating a pi :: Floating a => a exp :: Floating a => a -> a log :: Floating a => a -> a sqrt :: Floating a => a -> a (**) :: Floating a => a -> a -> a logBase :: Floating a => a -> a -> a sin :: Floating a => a -> a cos :: Floating a => a -> a tan :: Floating a => a -> a asin :: Floating a => a -> a acos :: Floating a => a -> a atan :: Floating a => a -> a sinh :: Floating a => a -> a cosh :: Floating a => a -> a tanh :: Floating a => a -> a asinh :: Floating a => a -> a acosh :: Floating a => a -> a atanh :: Floating a => a -> a -- | Extracting components of fractions. class (Real a, Fractional a) => RealFrac a -- | The function properFraction takes a real fractional number -- x and returns a pair (n,f) such that x = -- n+f, and: -- -- -- -- The default definitions of the ceiling, floor, -- truncate and round functions are in terms of -- properFraction. properFraction :: (RealFrac a, Integral b) => a -> (b, a) -- | truncate x returns the integer nearest x -- between zero and x truncate :: (RealFrac a, Integral b) => a -> b -- | round x returns the nearest integer to x; the -- even integer if x is equidistant between two integers round :: (RealFrac a, Integral b) => a -> b -- | ceiling x returns the least integer not less than -- x ceiling :: (RealFrac a, Integral b) => a -> b -- | floor x returns the greatest integer not greater than -- x floor :: (RealFrac a, Integral b) => a -> b -- | Efficient, machine-independent access to the components of a -- floating-point number. class (RealFrac a, Floating a) => RealFloat a -- | a constant function, returning the radix of the representation (often -- 2) floatRadix :: RealFloat a => a -> Integer -- | a constant function, returning the number of digits of -- floatRadix in the significand floatDigits :: RealFloat a => a -> Int -- | a constant function, returning the lowest and highest values the -- exponent may assume floatRange :: RealFloat a => a -> (Int, Int) -- | The function decodeFloat applied to a real floating-point -- number returns the significand expressed as an Integer and an -- appropriately scaled exponent (an Int). If -- decodeFloat x yields (m,n), then x -- is equal in value to m*b^^n, where b is the -- floating-point radix, and furthermore, either m and -- n are both zero or else b^(d-1) <= abs m < -- b^d, where d is the value of floatDigits -- x. In particular, decodeFloat 0 = (0,0). If the -- type contains a negative zero, also decodeFloat (-0.0) = -- (0,0). The result of decodeFloat x is -- unspecified if either of isNaN x or -- isInfinite x is True. decodeFloat :: RealFloat a => a -> (Integer, Int) -- | encodeFloat performs the inverse of decodeFloat in the -- sense that for finite x with the exception of -0.0, -- uncurry encodeFloat (decodeFloat x) = -- x. encodeFloat m n is one of the two closest -- representable floating-point numbers to m*b^^n (or -- ±Infinity if overflow occurs); usually the closer, but if -- m contains too many bits, the result may be rounded in the -- wrong direction. encodeFloat :: RealFloat a => Integer -> Int -> a -- | exponent corresponds to the second component of -- decodeFloat. exponent 0 = 0 and for finite -- nonzero x, exponent x = snd (decodeFloat x) -- + floatDigits x. If x is a finite floating-point -- number, it is equal in value to significand x * b ^^ -- exponent x, where b is the floating-point radix. -- The behaviour is unspecified on infinite or NaN values. exponent :: RealFloat a => a -> Int -- | The first component of decodeFloat, scaled to lie in the open -- interval (-1,1), either 0.0 or of absolute -- value >= 1/b, where b is the floating-point -- radix. The behaviour is unspecified on infinite or NaN -- values. significand :: RealFloat a => a -> a -- | multiplies a floating-point number by an integer power of the radix scaleFloat :: RealFloat a => Int -> a -> a -- | True if the argument is an IEEE "not-a-number" (NaN) value isNaN :: RealFloat a => a -> Bool -- | True if the argument is an IEEE infinity or negative infinity isInfinite :: RealFloat a => a -> Bool -- | True if the argument is too small to be represented in -- normalized format isDenormalized :: RealFloat a => a -> Bool -- | True if the argument is an IEEE negative zero isNegativeZero :: RealFloat a => a -> Bool -- | True if the argument is an IEEE floating point number isIEEE :: RealFloat a => a -> Bool -- | a version of arctangent taking two real floating-point arguments. For -- real floating x and y, atan2 y x -- computes the angle (from the positive x-axis) of the vector from the -- origin to the point (x,y). atan2 y x returns -- a value in the range [-pi, pi]. It follows the -- Common Lisp semantics for the origin when signed zeroes are supported. -- atan2 y 1, with y in a type that is -- RealFloat, should return the same value as atan -- y. A default definition of atan2 is provided, but -- implementors can provide a more accurate implementation. atan2 :: RealFloat a => a -> a -> a -- | The Bits class defines bitwise operations over integral types. -- -- class Eq a => Bits a -- | Bitwise "and" (.&.) :: Bits a => a -> a -> a -- | Bitwise "or" (.|.) :: Bits a => a -> a -> a -- | Bitwise "xor" xor :: Bits a => a -> a -> a -- | Reverse all the bits in the argument complement :: Bits a => a -> a -- | shift x i shifts x left by i bits if -- i is positive, or right by -i bits otherwise. Right -- shifts perform sign extension on signed number types; i.e. they fill -- the top bits with 1 if the x is negative and with 0 -- otherwise. -- -- An instance can define either this unified shift or -- shiftL and shiftR, depending on which is more convenient -- for the type in question. shift :: Bits a => a -> Int -> a -- | rotate x i rotates x left by i bits -- if i is positive, or right by -i bits otherwise. -- -- For unbounded types like Integer, rotate is equivalent -- to shift. -- -- An instance can define either this unified rotate or -- rotateL and rotateR, depending on which is more -- convenient for the type in question. rotate :: Bits a => a -> Int -> a -- | zeroBits is the value with all bits unset. -- -- The following laws ought to hold (for all valid bit indices -- n): -- -- -- -- This method uses clearBit (bit 0) 0 as its -- default implementation (which ought to be equivalent to -- zeroBits for types which possess a 0th bit). zeroBits :: Bits a => a -- | bit i is a value with the ith bit set -- and all other bits clear. -- -- Can be implemented using bitDefault if a is also an -- instance of Num. -- -- See also zeroBits. bit :: Bits a => Int -> a -- | x `setBit` i is the same as x .|. bit i setBit :: Bits a => a -> Int -> a -- | x `clearBit` i is the same as x .&. complement (bit -- i) clearBit :: Bits a => a -> Int -> a -- | x `complementBit` i is the same as x `xor` bit i complementBit :: Bits a => a -> Int -> a -- | Return True if the nth bit of the argument is 1 -- -- Can be implemented using testBitDefault if a is also -- an instance of Num. testBit :: Bits a => a -> Int -> Bool -- | Return True if the argument is a signed type. The actual value -- of the argument is ignored isSigned :: Bits a => a -> Bool -- | Rotate the argument left by the specified number of bits (which must -- be non-negative). -- -- An instance can define either this and rotateR or the unified -- rotate, depending on which is more convenient for the type in -- question. rotateL :: Bits a => a -> Int -> a -- | Rotate the argument right by the specified number of bits (which must -- be non-negative). -- -- An instance can define either this and rotateL or the unified -- rotate, depending on which is more convenient for the type in -- question. rotateR :: Bits a => a -> Int -> a -- | Return the number of set bits in the argument. This number is known as -- the population count or the Hamming weight. -- -- Can be implemented using popCountDefault if a is also -- an instance of Num. popCount :: Bits a => a -> Int -- | The FiniteBits class denotes types with a finite, fixed number -- of bits. class Bits b => FiniteBits b -- | Return the number of bits in the type of the argument. The actual -- value of the argument is ignored. Moreover, finiteBitSize is -- total, in contrast to the deprecated bitSize function it -- replaces. -- --
--   finiteBitSize = bitSize
--   bitSizeMaybe = Just . finiteBitSize
--   
finiteBitSize :: FiniteBits b => b -> Int -- | Count number of zero bits preceding the most significant set bit. -- --
--   countLeadingZeros (zeroBits :: a) = finiteBitSize (zeroBits :: a)
--   
-- -- countLeadingZeros can be used to compute log base 2 via -- --
--   logBase2 x = finiteBitSize x - 1 - countLeadingZeros x
--   
-- -- Note: The default implementation for this method is intentionally -- naive. However, the instances provided for the primitive integral -- types are implemented using CPU specific machine instructions. countLeadingZeros :: FiniteBits b => b -> Int -- | Count number of zero bits following the least significant set bit. -- --
--   countTrailingZeros (zeroBits :: a) = finiteBitSize (zeroBits :: a)
--   countTrailingZeros . negate = countTrailingZeros
--   
-- -- The related find-first-set operation can be expressed in terms -- of countTrailingZeros as follows -- --
--   findFirstSet x = 1 + countTrailingZeros x
--   
-- -- Note: The default implementation for this method is intentionally -- naive. However, the instances provided for the primitive integral -- types are implemented using CPU specific machine instructions. countTrailingZeros :: FiniteBits b => b -> Int -- | Conversion of values to readable Strings. -- -- Derived instances of Show have the following properties, which -- are compatible with derived instances of Read: -- -- -- -- For example, given the declarations -- --
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   
-- -- the derived instance of Show is equivalent to -- --
--   instance (Show a) => Show (Tree a) where
--   
--          showsPrec d (Leaf m) = showParen (d > app_prec) $
--               showString "Leaf " . showsPrec (app_prec+1) m
--            where app_prec = 10
--   
--          showsPrec d (u :^: v) = showParen (d > up_prec) $
--               showsPrec (up_prec+1) u .
--               showString " :^: "      .
--               showsPrec (up_prec+1) v
--            where up_prec = 5
--   
-- -- Note that right-associativity of :^: is ignored. For example, -- -- class Show a -- | Lifting of the Show class to unary type constructors. class Show1 (f :: * -> *) -- | Lifting of the Show class to binary type constructors. class Show2 (f :: * -> * -> *) show :: (Show a, ConvertibleStrings String b) => a -> b showS :: Show a => a -> String -- | Parsing of Strings, producing values. -- -- Derived instances of Read make the following assumptions, which -- derived instances of Show obey: -- -- -- -- For example, given the declarations -- --
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   
-- -- the derived instance of Read in Haskell 2010 is equivalent to -- --
--   instance (Read a) => Read (Tree a) where
--   
--           readsPrec d r =  readParen (d > app_prec)
--                            (\r -> [(Leaf m,t) |
--                                    ("Leaf",s) <- lex r,
--                                    (m,t) <- readsPrec (app_prec+1) s]) r
--   
--                         ++ readParen (d > up_prec)
--                            (\r -> [(u:^:v,w) |
--                                    (u,s) <- readsPrec (up_prec+1) r,
--                                    (":^:",t) <- lex s,
--                                    (v,w) <- readsPrec (up_prec+1) t]) r
--   
--             where app_prec = 10
--                   up_prec = 5
--   
-- -- Note that right-associativity of :^: is unused. -- -- The derived instance in GHC is equivalent to -- --
--   instance (Read a) => Read (Tree a) where
--   
--           readPrec = parens $ (prec app_prec $ do
--                                    Ident "Leaf" <- lexP
--                                    m <- step readPrec
--                                    return (Leaf m))
--   
--                        +++ (prec up_prec $ do
--                                    u <- step readPrec
--                                    Symbol ":^:" <- lexP
--                                    v <- step readPrec
--                                    return (u :^: v))
--   
--             where app_prec = 10
--                   up_prec = 5
--   
--           readListPrec = readListPrecDefault
--   
class Read a -- | Lifting of the Read class to unary type constructors. class Read1 (f :: * -> *) -- | Lifting of the Read class to binary type constructors. class Read2 (f :: * -> * -> *) readMaybe :: (Read b, ConvertibleStrings a String) => a -> Maybe b -- | The Eq class defines equality (==) and inequality -- (/=). All the basic datatypes exported by the Prelude -- are instances of Eq, and Eq may be derived for any -- datatype whose constituents are also instances of Eq. -- -- Minimal complete definition: either == or /=. class Eq a (==) :: Eq a => a -> a -> Bool (/=) :: Eq a => a -> a -> Bool -- | Lifting of the Eq class to unary type constructors. class Eq1 (f :: * -> *) -- | Lifting of the Eq class to binary type constructors. class Eq2 (f :: * -> * -> *) -- | The Ord class is used for totally ordered datatypes. -- -- Instances of Ord can be derived for any user-defined datatype -- whose constituent types are in Ord. The declared order of the -- constructors in the data declaration determines the ordering in -- derived Ord instances. The Ordering datatype allows a -- single comparison to determine the precise ordering of two objects. -- -- Minimal complete definition: either compare or <=. -- Using compare can be more efficient for complex types. class Eq a => Ord a compare :: Ord a => a -> a -> Ordering (<) :: Ord a => a -> a -> Bool (<=) :: Ord a => a -> a -> Bool (>) :: Ord a => a -> a -> Bool (>=) :: Ord a => a -> a -> Bool max :: Ord a => a -> a -> a min :: Ord a => a -> a -> a -- | Lifting of the Ord class to unary type constructors. class Eq1 f => Ord1 (f :: * -> *) -- | Lifting of the Ord class to binary type constructors. class Eq2 f => Ord2 (f :: * -> * -> *) data Ordering :: * LT :: Ordering EQ :: Ordering GT :: Ordering -- | The Down type allows you to reverse sort order conveniently. A -- value of type Down a contains a value of type -- a (represented as Down a). If a has -- an Ord instance associated with it then comparing two -- values thus wrapped will give you the opposite of their normal sort -- order. This is particularly useful when sorting in generalised list -- comprehensions, as in: then sortWith by Down x -- -- Provides Show and Read instances (since: -- 4.7.0.0). newtype Down a :: * -> * Down :: a -> Down a -- |
--   comparing p x y = compare (p x) (p y)
--   
-- -- Useful combinator for use in conjunction with the xxxBy -- family of functions from Data.List, for example: -- --
--   ... sortBy (comparing fst) ...
--   
comparing :: Ord a => (b -> a) -> b -> b -> Ordering -- | Class Enum defines operations on sequentially ordered types. -- -- The enumFrom... methods are used in Haskell's translation of -- arithmetic sequences. -- -- Instances of Enum may be derived for any enumeration type -- (types whose constructors have no fields). The nullary constructors -- are assumed to be numbered left-to-right by fromEnum from -- 0 through n-1. See Chapter 10 of the Haskell -- Report for more details. -- -- For any type that is an instance of class Bounded as well as -- Enum, the following should hold: -- -- -- --
--   enumFrom     x   = enumFromTo     x maxBound
--   enumFromThen x y = enumFromThenTo x y bound
--     where
--       bound | fromEnum y >= fromEnum x = maxBound
--             | otherwise                = minBound
--   
class Enum a -- | Convert to an Int. It is implementation-dependent what -- fromEnum returns when applied to a value that is too large to -- fit in an Int. fromEnum :: Enum a => a -> Int -- | Used in Haskell's translation of [n..]. enumFrom :: Enum a => a -> [a] -- | Used in Haskell's translation of [n,n'..]. enumFromThen :: Enum a => a -> a -> [a] -- | Used in Haskell's translation of [n..m]. enumFromTo :: Enum a => a -> a -> [a] -- | Used in Haskell's translation of [n,n'..m]. enumFromThenTo :: Enum a => a -> a -> a -> [a] toEnumMay :: (Enum a, Bounded a) => Int -> Maybe a toEnumDef :: (Enum a, Bounded a) => a -> Int -> a -- | The Bounded class is used to name the upper and lower limits of -- a type. Ord is not a superclass of Bounded since types -- that are not totally ordered may also have upper and lower bounds. -- -- The Bounded class may be derived for any enumeration type; -- minBound is the first constructor listed in the data -- declaration and maxBound is the last. Bounded may also -- be derived for single-constructor datatypes whose constituent types -- are in Bounded. class Bounded a minBound :: Bounded a => a maxBound :: Bounded a => a -- | A class for categories. id and (.) must form a monoid. class Category k (cat :: k -> k -> *) -- | the identity morphism id :: Category k cat => cat a a -- | morphism composition (.) :: Category k cat => cat b c -> cat a b -> cat a c -- | Right-to-left composition (<<<) :: Category k cat => cat b c -> cat a b -> cat a c infixr 1 <<< -- | Left-to-right composition (>>>) :: Category k cat => cat a b -> cat b c -> cat a c infixr 1 >>> -- | The class of semigroups (types with an associative binary operation). class Semigroup a -- | An associative operation. -- --
--   (a <> b) <> c = a <> (b <> c)
--   
-- -- If a is also a Monoid we further require -- --
--   (<>) = mappend
--   
(<>) :: Semigroup a => a -> a -> a -- | Reduce a non-empty list with <> -- -- The default definition should be sufficient, but this can be -- overridden for efficiency. sconcat :: Semigroup a => NonEmpty a -> a -- | Repeat a value n times. -- -- Given that this works on a Semigroup it is allowed to fail if -- you request 0 or fewer repetitions, and the default definition will do -- so. -- -- By making this a member of the class, idempotent semigroups and -- monoids can upgrade this to execute in O(1) by picking -- stimes = stimesIdempotent or stimes = -- stimesIdempotentMonoid respectively. stimes :: (Semigroup a, Integral b) => b -> a -> a -- | Use Option (First a) to get the behavior of -- First from Data.Monoid. newtype First a :: * -> * First :: a -> First a [getFirst] :: First a -> a -- | Use Option (Last a) to get the behavior of -- Last from Data.Monoid newtype Last a :: * -> * Last :: a -> Last a [getLast] :: Last a -> a newtype Min a :: * -> * Min :: a -> Min a [getMin] :: Min a -> a newtype Max a :: * -> * Max :: a -> Max a [getMax] :: Max a -> a -- | Option is effectively Maybe with a better instance of -- Monoid, built off of an underlying Semigroup instead of -- an underlying Monoid. -- -- Ideally, this type would not exist at all and we would just fix the -- Monoid instance of Maybe newtype Option a :: * -> * Option :: Maybe a -> Option a [getOption] :: Option a -> Maybe a -- | The class of monoids (types with an associative binary operation that -- has an identity). Instances should satisfy the following laws: -- -- -- -- The method names refer to the monoid of lists under concatenation, but -- there are many other instances. -- -- Some types can be viewed as a monoid in more than one way, e.g. both -- addition and multiplication on numbers. In such cases we often define -- newtypes and make those instances of Monoid, e.g. -- Sum and Product. class Monoid a -- | Identity of mappend mempty :: Monoid a => a -- | An associative operation mappend :: Monoid a => a -> a -> a -- | Fold a list using the monoid. For most types, the default definition -- for mconcat will be used, but the function is included in the -- class definition so that an optimized version can be provided for -- specific types. mconcat :: Monoid a => [a] -> a -- | The dual of a Monoid, obtained by swapping the arguments of -- mappend. newtype Dual a :: * -> * Dual :: a -> Dual a [getDual] :: Dual a -> a -- | The monoid of endomorphisms under composition. newtype Endo a :: * -> * Endo :: (a -> a) -> Endo a [appEndo] :: Endo a -> a -> a -- | Boolean monoid under conjunction (&&). newtype All :: * All :: Bool -> All [getAll] :: All -> Bool -- | Boolean monoid under disjunction (||). newtype Any :: * Any :: Bool -> Any [getAny] :: Any -> Bool -- | Monoid under <|>. newtype Alt k (f :: k -> *) (a :: k) :: forall k. (k -> *) -> k -> * Alt :: f a -> Alt k [getAlt] :: Alt k -> f a -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
--   fmap id  ==  id
--   fmap (f . g)  ==  fmap f . fmap g
--   
-- -- The instances of Functor for lists, Maybe and IO -- satisfy these laws. class Functor (f :: * -> *) -- | Replace all locations in the input with the same value. The default -- definition is fmap . const, but this may be -- overridden with a more efficient version. (<$) :: Functor f => a -> f b -> f a -- | Flipped version of <$. -- --

Examples

-- -- Replace the contents of a Maybe Int with a -- constant String: -- --
--   >>> Nothing $> "foo"
--   Nothing
--   
--   >>> Just 90210 $> "foo"
--   Just "foo"
--   
-- -- Replace the contents of an Either Int -- Int with a constant String, resulting in an -- Either Int String: -- --
--   >>> Left 8675309 $> "foo"
--   Left 8675309
--   
--   >>> Right 8675309 $> "foo"
--   Right "foo"
--   
-- -- Replace each element of a list with a constant String: -- --
--   >>> [1,2,3] $> "foo"
--   ["foo","foo","foo"]
--   
-- -- Replace the second element of a pair with a constant String: -- --
--   >>> (1,2) $> "foo"
--   (1,"foo")
--   
($>) :: Functor f => f a -> b -> f b infixl 4 $> -- | An infix synonym for fmap. -- -- The name of this operator is an allusion to $. Note the -- similarities between their types: -- --
--    ($)  ::              (a -> b) ->   a ->   b
--   (<$>) :: Functor f => (a -> b) -> f a -> f b
--   
-- -- Whereas $ is function application, <$> is -- function application lifted over a Functor. -- --

Examples

-- -- Convert from a Maybe Int to a -- Maybe String using show: -- --
--   >>> show <$> Nothing
--   Nothing
--   
--   >>> show <$> Just 3
--   Just "3"
--   
-- -- Convert from an Either Int Int to -- an Either Int String using -- show: -- --
--   >>> show <$> Left 17
--   Left 17
--   
--   >>> show <$> Right 17
--   Right "17"
--   
-- -- Double each element of a list: -- --
--   >>> (*2) <$> [1,2,3]
--   [2,4,6]
--   
-- -- Apply even to the second element of a pair: -- --
--   >>> even <$> (2,2)
--   (2,True)
--   
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 <$> -- | Map over a Functor type map :: Functor f => (a -> b) -> f a -> f b -- | void value discards or ignores the result of -- evaluation, such as the return value of an IO action. -- --

Examples

-- -- Replace the contents of a Maybe Int with -- unit: -- --
--   >>> void Nothing
--   Nothing
--   
--   >>> void (Just 3)
--   Just ()
--   
-- -- Replace the contents of an Either Int -- Int with unit, resulting in an Either -- Int '()': -- --
--   >>> void (Left 8675309)
--   Left 8675309
--   
--   >>> void (Right 8675309)
--   Right ()
--   
-- -- Replace every element of a list with unit: -- --
--   >>> void [1,2,3]
--   [(),(),()]
--   
-- -- Replace the second element of a pair with unit: -- --
--   >>> void (1,2)
--   (1,())
--   
-- -- Discard the result of an IO action: -- --
--   >>> mapM print [1,2]
--   1
--   2
--   [(),()]
--   
--   >>> void $ mapM print [1,2]
--   1
--   2
--   
void :: Functor f => f a -> f () -- | The Const functor. newtype Const k a (b :: k) :: forall k. * -> k -> * Const :: a -> Const k a [getConst] :: Const k a -> a -- | Identity functor and monad. (a non-strict monad) newtype Identity a :: * -> * Identity :: a -> Identity a [runIdentity] :: Identity a -> a -- | A functor with application, providing operations to -- -- -- -- A minimal complete definition must include implementations of these -- functions satisfying the following laws: -- -- -- -- The other methods have the following default definitions, which may be -- overridden with equivalent specialized implementations: -- -- -- -- As a consequence of these laws, the Functor instance for -- f will satisfy -- -- -- -- If f is also a Monad, it should satisfy -- -- -- -- (which implies that pure and <*> satisfy the -- applicative functor laws). class Functor f => Applicative (f :: * -> *) -- | Lift a value. pure :: Applicative f => a -> f a -- | Sequential application. (<*>) :: Applicative f => f (a -> b) -> f a -> f b -- | Sequence actions, discarding the value of the first argument. (*>) :: Applicative f => f a -> f b -> f b -- | Sequence actions, discarding the value of the second argument. (<*) :: Applicative f => f a -> f b -> f a -- | Lists, but with an Applicative functor based on zipping, so -- that -- --
--   f <$> ZipList xs1 <*> ... <*> ZipList xsn = ZipList (zipWithn f xs1 ... xsn)
--   
newtype ZipList a :: * -> * ZipList :: [a] -> ZipList a [getZipList] :: ZipList a -> [a] -- | A variant of <*> with the arguments reversed. (<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 <**> -- | Lift a binary function to actions. liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c -- | Lift a ternary function to actions. liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d -- | Shortcut for 'pure ()' skip :: Applicative m => m () -- | '(<>)' lifted to Applicative (<>^) :: (Applicative f, Semigroup a) => f a -> f a -> f a infixr 6 <>^ -- | A monoid on applicative functors. -- -- If defined, some and many should be the least solutions -- of the equations: -- -- class Applicative f => Alternative (f :: * -> *) -- | The identity of <|> empty :: Alternative f => f a -- | An associative binary operation (<|>) :: Alternative f => f a -> f a -> f a -- | Zero or more. many :: Alternative f => f a -> f [a] -- | One or none. optional :: Alternative f => f a -> f (Maybe a) -- | some1 x sequences x one or more times. some1 :: Alternative f => f a -> f (NonEmpty a) -- | The Monad class defines the basic operations over a -- monad, a concept from a branch of mathematics known as -- category theory. From the perspective of a Haskell programmer, -- however, it is best to think of a monad as an abstract datatype -- of actions. Haskell's do expressions provide a convenient -- syntax for writing monadic expressions. -- -- Instances of Monad should satisfy the following laws: -- -- -- -- Furthermore, the Monad and Applicative operations should -- relate as follows: -- -- -- -- The above laws imply: -- -- -- -- and that pure and (<*>) satisfy the applicative -- functor laws. -- -- The instances of Monad for lists, Maybe and IO -- defined in the Prelude satisfy these laws. class Applicative m => Monad (m :: * -> *) -- | Sequentially compose two actions, passing any value produced by the -- first as an argument to the second. (>>=) :: Monad m => m a -> (a -> m b) -> m b -- | When a value is bound in do-notation, the pattern on the left -- hand side of <- might not match. In this case, this class -- provides a function to recover. -- -- A Monad without a MonadFail instance may only be used in -- conjunction with pattern that always match, such as newtypes, tuples, -- data types with only a single data constructor, and irrefutable -- patterns (~pat). -- -- Instances of MonadFail should satisfy the following law: -- fail s should be a left zero for >>=, -- --
--   fail s >>= f  =  fail s
--   
-- -- If your Monad is also MonadPlus, a popular definition -- is -- --
--   fail _ = mzero
--   
class Monad m => MonadFail (m :: * -> *) fail :: MonadFail m => String -> m a -- | Same as >>=, but with the arguments interchanged. (=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 =<< -- | Right-to-left Kleisli composition of monads. -- (>=>), with the arguments flipped. -- -- Note how this operator resembles function composition -- (.): -- --
--   (.)   ::            (b ->   c) -> (a ->   b) -> a ->   c
--   (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
--   
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c infixr 1 <=< -- | Left-to-right Kleisli composition of monads. (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 >=> -- | Monads that also support choice and failure. class (Alternative m, Monad m) => MonadPlus (m :: * -> *) -- | the identity of mplus. It should also satisfy the equations -- --
--   mzero >>= f  =  mzero
--   v >> mzero   =  mzero
--   
mzero :: MonadPlus m => m a -- | an associative operation mplus :: MonadPlus m => m a -> m a -> m a -- | The join function is the conventional monad join operator. It -- is used to remove one level of monadic structure, projecting its bound -- argument into the outer level. join :: Monad m => m (m a) -> m a -- | guard b is pure () if b is -- True, and empty if b is False. guard :: Alternative f => Bool -> f () -- | Conditional execution of Applicative expressions. For example, -- --
--   when debug (putStrLn "Debugging")
--   
-- -- will output the string Debugging if the Boolean value -- debug is True, and otherwise do nothing. when :: Applicative f => Bool -> f () -> f () -- | The reverse of when. unless :: Applicative f => Bool -> f () -> f () -- | replicateM n act performs the action n times, -- gathering the results. replicateM :: Applicative m => Int -> m a -> m [a] -- | Like replicateM, but discards the result. replicateM_ :: Applicative m => Int -> m a -> m () -- | Strict version of <$>. (<$!>) :: Monad m => (a -> b) -> m a -> m b infixl 4 <$!> -- | Like when, but where the test can be monadic. whenM :: Monad m => m Bool -> m () -> m () -- | Like unless, but where the test can be monadic. unlessM :: Monad m => m Bool -> m () -> m () -- | Like if, but where the test can be monadic. ifM :: Monad m => m Bool -> m a -> m a -> m a -- | A version of all lifted to a monad. Retains the -- short-circuiting behaviour. -- --
--   allM Just [True,False,undefined] == Just False
--   allM Just [True,True ,undefined] == undefined
--   \(f :: Int -> Maybe Bool) xs -> anyM f xs == orM (map f xs)
--   
allM :: Monad m => (a -> m Bool) -> [a] -> m Bool -- | A version of any lifted to a monad. Retains the -- short-circuiting behaviour. -- --
--   anyM Just [False,True ,undefined] == Just True
--   anyM Just [False,False,undefined] == undefined
--   \(f :: Int -> Maybe Bool) xs -> anyM f xs == orM (map f xs)
--   
anyM :: Monad m => (a -> m Bool) -> [a] -> m Bool -- | A version of and lifted to a monad. Retains the -- short-circuiting behaviour. -- --
--   andM [Just True,Just False,undefined] == Just False
--   andM [Just True,Just True ,undefined] == undefined
--   \xs -> Just (and xs) == andM (map Just xs)
--   
andM :: Monad m => [m Bool] -> m Bool -- | A version of or lifted to a monad. Retains the short-circuiting -- behaviour. -- --
--   orM [Just False,Just True ,undefined] == Just True
--   orM [Just False,Just False,undefined] == undefined
--   \xs -> Just (or xs) == orM (map Just xs)
--   
orM :: Monad m => [m Bool] -> m Bool -- | A version of concatMap that works with a monadic predicate. concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b] -- | The lazy && operator lifted to a monad. If the first -- argument evaluates to False the second argument will not be -- evaluated. -- --
--   Just False &&^ undefined  == Just False
--   Just True  &&^ Just True  == Just True
--   Just True  &&^ Just False == Just False
--   
(&&^) :: Monad m => m Bool -> m Bool -> m Bool -- | The lazy || operator lifted to a monad. If the first argument -- evaluates to True the second argument will not be evaluated. -- --
--   Just True  ||^ undefined  == Just True
--   Just False ||^ Just True  == Just True
--   Just False ||^ Just False == Just False
--   
(||^) :: Monad m => m Bool -> m Bool -> m Bool -- | Data structures that can be folded. -- -- For example, given a data type -- --
--   data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--   
-- -- a suitable instance would be -- --
--   instance Foldable Tree where
--      foldMap f Empty = mempty
--      foldMap f (Leaf x) = f x
--      foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
--   
-- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
--   instance Foldable Tree where
--      foldr f z Empty = z
--      foldr f z (Leaf x) = f x z
--      foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
--   
-- -- Foldable instances are expected to satisfy the following -- laws: -- --
--   foldr f z t = appEndo (foldMap (Endo . f) t ) z
--   
-- --
--   foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
--   
-- --
--   fold = foldMap id
--   
-- -- sum, product, maximum, and minimum -- should all be essentially equivalent to foldMap forms, such -- as -- --
--   sum = getSum . foldMap Sum
--   
-- -- but may be less defined. -- -- If the type is also a Functor instance, it should satisfy -- --
--   foldMap f = fold . fmap f
--   
-- -- which implies that -- --
--   foldMap f . fmap g = foldMap (f . g)
--   
class Foldable (t :: * -> *) -- | Combine the elements of a structure using a monoid. fold :: (Foldable t, Monoid m) => t m -> m -- | Map each element of the structure to a monoid, and combine the -- results. foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m -- | Right-associative fold of a structure. -- -- In the case of lists, foldr, when applied to a binary operator, -- a starting value (typically the right-identity of the operator), and a -- list, reduces the list using the binary operator, from right to left: -- --
--   foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
--   
-- -- Note that, since the head of the resulting expression is produced by -- an application of the operator to the first element of the list, -- foldr can produce a terminating expression from an infinite -- list. -- -- For a general Foldable structure this should be semantically -- identical to, -- --
--   foldr f z = foldr f z . toList
--   
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b -- | Right-associative fold of a structure, but with strict application of -- the operator. foldr' :: Foldable t => (a -> b -> b) -> b -> t a -> b -- | Left-associative fold of a structure but with strict application of -- the operator. -- -- This ensures that each step of the fold is forced to weak head normal -- form before being applied, avoiding the collection of thunks that -- would otherwise occur. This is often what you want to strictly reduce -- a finite list to a single, monolithic result (e.g. length). -- -- For a general Foldable structure this should be semantically -- identical to, -- --
--   foldl f z = foldl' f z . toList
--   
foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b -- | List of elements of a structure, from left to right. toList :: Foldable t => t a -> [a] -- | Test whether the structure is empty. The default implementation is -- optimized for structures that are similar to cons-lists, because there -- is no general way to do better. null :: Foldable t => t a -> Bool -- | Returns the size/length of a finite structure as an Int. The -- default implementation is optimized for structures that are similar to -- cons-lists, because there is no general way to do better. length :: Foldable t => t a -> Int -- | Does the element occur in the structure? elem :: (Foldable t, Eq a) => a -> t a -> Bool -- | The sum function computes the sum of the numbers of a -- structure. sum :: (Foldable t, Num a) => t a -> a -- | The product function computes the product of the numbers of a -- structure. product :: (Foldable t, Num a) => t a -> a -- | Test whether the structure is empty. The default implementation is -- optimized for structures that are similar to cons-lists, because there -- is no general way to do better. null :: Foldable t => forall a. t a -> Bool -- | Returns the size/length of a finite structure as an Int. The -- default implementation is optimized for structures that are similar to -- cons-lists, because there is no general way to do better. length :: Foldable t => forall a. t a -> Int -- | Monadic fold over the elements of a structure, associating to the -- right, i.e. from right to left. foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b -- | Monadic fold over the elements of a structure, associating to the -- left, i.e. from left to right. foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b -- | Map each element of a structure to an action, evaluate these actions -- from left to right, and ignore the results. For a version that doesn't -- ignore the results see traverse. traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () -- | for_ is traverse_ with its arguments flipped. For a -- version that doesn't ignore the results see for. -- --
--   >>> for_ [1..4] print
--   1
--   2
--   3
--   4
--   
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () -- | The sum of a collection of actions, generalizing concat. asum :: (Foldable t, Alternative f) => t (f a) -> f a -- | Map a function over all the elements of a container and concatenate -- the resulting lists. concatMap :: Foldable t => (a -> [b]) -> t a -> [b] -- | Determines whether all elements of the structure satisfy the -- predicate. all :: Foldable t => (a -> Bool) -> t a -> Bool -- | Determines whether any element of the structure satisfies the -- predicate. any :: Foldable t => (a -> Bool) -> t a -> Bool -- | or returns the disjunction of a container of Bools. For the -- result to be False, the container must be finite; True, -- however, results from a True value finitely far from the left -- end. or :: Foldable t => t Bool -> Bool -- | and returns the conjunction of a container of Bools. For the -- result to be True, the container must be finite; False, -- however, results from a False value finitely far from the left -- end. and :: Foldable t => t Bool -> Bool -- | The find function takes a predicate and a structure and returns -- the leftmost element of the structure matching the predicate, or -- Nothing if there is no such element. find :: Foldable t => (a -> Bool) -> t a -> Maybe a -- | notElem is the negation of elem. notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 `notElem` -- | Evaluate each action in the structure from left to right, and ignore -- the results. For a version that doesn't ignore the results see -- sequenceA. sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () maximumByMay :: (a -> a -> Ordering) -> [a] -> Maybe a maximumByDef :: a -> (a -> a -> Ordering) -> [a] -> a minimumByMay :: (a -> a -> Ordering) -> [a] -> Maybe a minimumByDef :: a -> (a -> a -> Ordering) -> [a] -> a maximumMay :: Ord a => [a] -> Maybe a maximumDef :: Ord a => a -> [a] -> a minimumMay :: Ord a => [a] -> Maybe a minimumDef :: Ord a => a -> [a] -> a -- | Functors representing data structures that can be traversed from left -- to right. -- -- A definition of traverse must satisfy the following laws: -- -- -- -- A definition of sequenceA must satisfy the following laws: -- -- -- -- where an applicative transformation is a function -- --
--   t :: (Applicative f, Applicative g) => f a -> g a
--   
-- -- preserving the Applicative operations, i.e. -- -- -- -- and the identity functor Identity and composition of functors -- Compose are defined as -- --
--   newtype Identity a = Identity a
--   
--   instance Functor Identity where
--     fmap f (Identity x) = Identity (f x)
--   
--   instance Applicative Identity where
--     pure x = Identity x
--     Identity f <*> Identity x = Identity (f x)
--   
--   newtype Compose f g a = Compose (f (g a))
--   
--   instance (Functor f, Functor g) => Functor (Compose f g) where
--     fmap f (Compose x) = Compose (fmap (fmap f) x)
--   
--   instance (Applicative f, Applicative g) => Applicative (Compose f g) where
--     pure x = Compose (pure (pure x))
--     Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
--   
-- -- (The naturality law is implied by parametricity.) -- -- Instances are similar to Functor, e.g. given a data type -- --
--   data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--   
-- -- a suitable instance would be -- --
--   instance Traversable Tree where
--      traverse f Empty = pure Empty
--      traverse f (Leaf x) = Leaf <$> f x
--      traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
--   
-- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- -- class (Functor t, Foldable t) => Traversable (t :: * -> *) -- | Map each element of a structure to an action, evaluate these actions -- from left to right, and collect the results. For a version that -- ignores the results see traverse_. traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) -- | Evaluate each action in the structure from left to right, and and -- collect the results. For a version that ignores the results see -- sequenceA_. sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a) -- | for is traverse with its arguments flipped. For a -- version that ignores the results see for_. for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) -- | The mapAccumL function behaves like a combination of -- fmap and foldl; it applies a function to each element -- of a structure, passing an accumulating parameter from left to right, -- and returning a final value of this accumulator together with the new -- structure. mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) -- | The mapAccumR function behaves like a combination of -- fmap and foldr; it applies a function to each element -- of a structure, passing an accumulating parameter from right to left, -- and returning a final value of this accumulator together with the new -- structure. mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) -- | Formally, the class Bifunctor represents a bifunctor from -- Hask -> Hask. -- -- Intuitively it is a bifunctor where both the first and second -- arguments are covariant. -- -- You can define a Bifunctor by either defining bimap or -- by defining both first and second. -- -- If you supply bimap, you should ensure that: -- --
--   bimap id idid
--   
-- -- If you supply first and second, ensure: -- --
--   first idid
--   second idid
--   
-- -- If you supply both, you should also ensure: -- --
--   bimap f g ≡ first f . second g
--   
-- -- These ensure by parametricity: -- --
--   bimap  (f . g) (h . i) ≡ bimap f h . bimap g i
--   first  (f . g) ≡ first  f . first  g
--   second (f . g) ≡ second f . second g
--   
class Bifunctor (p :: * -> * -> *) -- | Map over both arguments at the same time. -- --
--   bimap f g ≡ first f . second g
--   
bimap :: Bifunctor p => (a -> b) -> (c -> d) -> p a c -> p b d -- | Map covariantly over the first argument. -- --
--   first f ≡ bimap f id
--   
first :: Bifunctor p => (a -> b) -> p a c -> p b c -- | Map covariantly over the second argument. -- --
--   secondbimap id
--   
second :: Bifunctor p => (b -> c) -> p a b -> p a c -- | Bifoldable identifies foldable structures with two different -- varieties of elements (as opposed to Foldable, which has one -- variety of element). Common examples are Either and '(,)': -- --
--   instance Bifoldable Either where
--     bifoldMap f _ (Left  a) = f a
--     bifoldMap _ g (Right b) = g b
--   
--   instance Bifoldable (,) where
--     bifoldr f g z (a, b) = f a (g b z)
--   
-- -- A minimal Bifoldable definition consists of either -- bifoldMap or bifoldr. When defining more than this -- minimal set, one should ensure that the following identities hold: -- --
--   bifoldbifoldMap id id
--   bifoldMap f g ≡ bifoldr (mappend . f) (mappend . g) mempty
--   bifoldr f g z t ≡ appEndo (bifoldMap (Endo . f) (Endo . g) t) z
--   
-- -- If the type is also a Bifunctor instance, it should satisfy: -- --
--   'bifoldMap' f g ≡ 'bifold' . 'bimap' f g
--   
-- -- which implies that -- --
--   'bifoldMap' f g . 'bimap' h i ≡ 'bifoldMap' (f . h) (g . i)
--   
class Bifoldable (p :: * -> * -> *) -- | Combines the elements of a structure, given ways of mapping them to a -- common monoid. -- --
--   bifoldMap f g ≡ bifoldr (mappend . f) (mappend . g) mempty
--   
bifoldMap :: (Bifoldable p, Monoid m) => (a -> m) -> (b -> m) -> p a b -> m -- | Combines the elements of a structure in a right associative manner. -- Given a hypothetical function toEitherList :: p a b -> [Either -- a b] yielding a list of all elements of a structure in order, the -- following would hold: -- --
--   bifoldr f g z ≡ foldr (either f g) z . toEitherList
--   
bifoldr :: Bifoldable p => (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c -- | Combines the elments of a structure in a left associative manner. -- Given a hypothetical function toEitherList :: p a b -> [Either -- a b] yielding a list of all elements of a structure in order, the -- following would hold: -- --
--   bifoldl f g z ≡ foldl (acc -> either (f acc) (g acc)) z .  toEitherList
--   
-- -- Note that if you want an efficient left-fold, you probably want to use -- bifoldl' instead of bifoldl. The reason is that the -- latter does not force the "inner" results, resulting in a thunk chain -- which then must be evaluated from the outside-in. bifoldl :: Bifoldable p => (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c -- | Map each element of a structure using one of two actions, evaluate -- these actions from left to right, and ignore the results. For a -- version that doesn't ignore the results, see bitraverse. bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () -- | As bisequenceA, but ignores the results of the actions. bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () -- | As bitraverse_, but with the structure as the primary argument. -- For a version that doesn't ignore the results, see bifor. -- --
--   >>> > bifor_ ('a', "bc") print (print . reverse)
--   'a'
--   "cb"
--   
bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () -- | Bitraversable identifies bifunctorial data structures whose -- elements can be traversed in order, performing Applicative or -- Monad actions at each element, and collecting a result -- structure with the same shape. -- -- As opposed to Traversable data structures, which have one -- variety of element on which an action can be performed, -- Bitraversable data structures have two such varieties of -- elements. -- -- A definition of traverse must satisfy the following laws: -- -- -- -- where an applicative transformation is a function -- --
--   t :: (Applicative f, Applicative g) => f a -> g a
--   
-- -- preserving the Applicative operations: -- --
--   t (pure x) = pure x
--   t (f <*> x) = t f <*> t x
--   
-- -- and the identity functor Identity and composition functors -- Compose are defined as -- --
--   newtype Identity a = Identity { runIdentity :: a }
--   
--   instance Functor Identity where
--     fmap f (Identity x) = Identity (f x)
--   
--   instance Applicative Identity where
--     pure = Identity
--     Identity f <*> Identity x = Identity (f x)
--   
--   newtype Compose f g a = Compose (f (g a))
--   
--   instance (Functor f, Functor g) => Functor (Compose f g) where
--     fmap f (Compose x) = Compose (fmap (fmap f) x)
--   
--   instance (Applicative f, Applicative g) => Applicative (Compose f g) where
--     pure = Compose . pure . pure
--     Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
--   
-- -- Some simple examples are Either and '(,)': -- --
--   instance Bitraversable Either where
--     bitraverse f _ (Left x) = Left <$> f x
--     bitraverse _ g (Right y) = Right <$> g y
--   
--   instance Bitraversable (,) where
--     bitraverse f g (x, y) = (,) <$> f x <*> g y
--   
-- -- Bitraversable relates to its superclasses in the following -- ways: -- --
--   bimap f g ≡ runIdentity . bitraverse (Identity . f) (Identity . g)
--   bifoldMap f g = getConst . bitraverse (Const . f) (Const . g)
--   
-- -- These are available as bimapDefault and bifoldMapDefault -- respectively. class (Bifunctor t, Bifoldable t) => Bitraversable (t :: * -> * -> *) -- | Evaluates the relevant functions at each element in the structure, -- running the action, and builds a new structure with the same shape, -- using the elements produced from sequencing the actions. -- --
--   bitraverse f g ≡ bisequenceA . bimap f g
--   
-- -- For a version that ignores the results, see bitraverse_. bitraverse :: (Bitraversable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) -- | bifor is bitraverse with the structure as the first -- argument. For a version that ignores the results, see bifor_. bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) -- | Sequences all the actions in a structure, building a new structure -- with the same shape using the results of the actions. For a version -- that ignores the results, see bisequenceA_. -- --
--   bisequenceAbitraverse id id
--   
bisequenceA :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) -- | The class of monad transformers. Instances should satisfy the -- following laws, which state that lift is a monad -- transformation: -- -- class MonadTrans (t :: (* -> *) -> * -> *) -- | Lift a computation from the argument monad to the constructed monad. lift :: (MonadTrans t, Monad m) => m a -> t m a -- | The parameterizable maybe monad, obtained by composing an arbitrary -- monad with the Maybe monad. -- -- Computations are actions that may produce a value or exit. -- -- The return function yields a computation that produces that -- value, while >>= sequences two subcomputations, exiting -- if either computation does. newtype MaybeT (m :: * -> *) a :: (* -> *) -> * -> * MaybeT :: m (Maybe a) -> MaybeT a [runMaybeT] :: MaybeT a -> m (Maybe a) -- | Transform the computation inside a MaybeT. -- -- mapMaybeT :: (m (Maybe a) -> n (Maybe b)) -> MaybeT m a -> MaybeT n b -- | The strategy of combining computations that can throw exceptions by -- bypassing bound functions from the point an exception is thrown to the -- point that it is handled. -- -- Is parameterized over the type of error information and the monad type -- constructor. It is common to use Either String as the -- monad type constructor for an error monad in which error descriptions -- take the form of strings. In that case and many other common cases the -- resulting monad is already defined as an instance of the -- MonadError class. You can also define your own error type -- and/or use a monad type constructor other than Either -- String or Either IOError. In -- these cases you will have to explicitly define instances of the -- Error and/or MonadError classes. class Monad m => MonadError e (m :: * -> *) | m -> e -- | Is used within a monadic computation to begin exception processing. throwError :: MonadError e m => e -> m a -- | A handler function to handle previous errors and return to normal -- execution. A common idiom is: -- --
--   do { action1; action2; action3 } `catchError` handler
--   
-- -- where the action functions can call throwError. Note -- that handler and the do-block must have the same return type. catchError :: MonadError e m => m a -> (e -> m a) -> m a -- | The parameterizable exception monad. -- -- Computations are either exceptions or normal values. -- -- The return function returns a normal value, while -- >>= exits on the first exception. For a variant that -- continues after an error and collects all the errors, see -- Errors. type Except e = ExceptT e Identity -- | Extractor for computations in the exception monad. (The inverse of -- except). runExcept :: Except e a -> Either e a -- | Map the unwrapped computation using the given function. -- -- mapExcept :: (Either e a -> Either e' b) -> Except e a -> Except e' b -- | Transform any exceptions thrown by the computation using the given -- function (a specialization of withExceptT). withExcept :: (e -> e') -> Except e a -> Except e' a -- | A monad transformer that adds exceptions to other monads. -- -- ExceptT constructs a monad parameterized over two things: -- -- -- -- The return function yields a computation that produces the -- given value, while >>= sequences two subcomputations, -- exiting on the first exception. newtype ExceptT e (m :: * -> *) a :: * -> (* -> *) -> * -> * ExceptT :: m (Either e a) -> ExceptT e a -- | The inverse of ExceptT. runExceptT :: ExceptT e m a -> m (Either e a) -- | Map the unwrapped computation using the given function. -- -- mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b -- | Transform any exceptions thrown by the computation using the given -- function. withExceptT :: Functor m => (e -> e') -> ExceptT e m a -> ExceptT e' m a -- | See examples in Control.Monad.Reader. Note, the partially -- applied function type (->) r is a simple reader monad. See -- the instance declaration below. class Monad m => MonadReader r (m :: * -> *) | m -> r -- | Retrieves the monad environment. ask :: MonadReader r m => m r -- | Executes a computation in a modified environment. local :: MonadReader r m => (r -> r) -> m a -> m a -- | Retrieves a function of the current environment. reader :: MonadReader r m => (r -> a) -> m a -- | Retrieves a function of the current environment. asks :: MonadReader r m => (r -> a) -> m a -- | The parameterizable reader monad. -- -- Computations are functions of a shared environment. -- -- The return function ignores the environment, while -- >>= passes the inherited environment to both -- subcomputations. type Reader r = ReaderT * r Identity -- | Runs a Reader and extracts the final value from it. (The -- inverse of reader.) runReader :: Reader r a -> r -> a -- | Transform the value returned by a Reader. -- -- mapReader :: (a -> b) -> Reader r a -> Reader r b -- | Execute a computation in a modified environment (a specialization of -- withReaderT). -- -- withReader :: (r' -> r) -> Reader r a -> Reader r' a -- | The reader monad transformer, which adds a read-only environment to -- the given monad. -- -- The return function ignores the environment, while -- >>= passes the inherited environment to both -- subcomputations. newtype ReaderT k r (m :: k -> *) (a :: k) :: forall k. * -> (k -> *) -> k -> * ReaderT :: (r -> m a) -> ReaderT k r [runReaderT] :: ReaderT k r -> r -> m a -- | Transform the computation inside a ReaderT. -- -- mapReaderT :: (m a -> n b) -> ReaderT k1 r m a -> ReaderT k r n b -- | Execute a computation in a modified environment (a more general -- version of local). -- -- withReaderT :: (r' -> r) -> ReaderT k r m a -> ReaderT k r' m a class (Monoid w, Monad m) => MonadWriter w (m :: * -> *) | m -> w -- | writer (a,w) embeds a simple writer action. writer :: MonadWriter w m => (a, w) -> m a -- | tell w is an action that produces the output -- w. tell :: MonadWriter w m => w -> m () -- | listen m is an action that executes the action -- m and adds its output to the value of the computation. listen :: MonadWriter w m => m a -> m (a, w) -- | pass m is an action that executes the action -- m, which returns a value and a function, and returns the -- value, applying the function to the output. pass :: MonadWriter w m => m (a, w -> w) -> m a -- | A writer monad parameterized by the type w of output to -- accumulate. -- -- The return function produces the output mempty, while -- >>= combines the outputs of the subcomputations using -- mappend. type Writer w = WriterT w Identity -- | Unwrap a writer computation as a (result, output) pair. (The inverse -- of writer.) runWriter :: Monoid w => Writer w a -> (a, w) -- | Extract the output from a writer computation. -- -- execWriter :: Monoid w => Writer w a -> w -- | Map both the return value and output of a computation using the given -- function. -- -- mapWriter :: (Monoid w, Monoid w') => ((a, w) -> (b, w')) -> Writer w a -> Writer w' b -- | A writer monad parameterized by: -- -- -- -- The return function produces the output mempty, while -- >>= combines the outputs of the subcomputations using -- mappend. data WriterT w (m :: * -> *) a :: * -> (* -> *) -> * -> * -- | Unwrap a writer computation. runWriterT :: Monoid w => WriterT w m a -> m (a, w) -- | Extract the output from a writer computation. -- -- execWriterT :: (Monad m, Monoid w) => WriterT w m a -> m w -- | Map both the return value and output of a computation using the given -- function. -- -- mapWriterT :: (Monad n, Monoid w, Monoid w') => (m (a, w) -> n (b, w')) -> WriterT w m a -> WriterT w' n b -- | Minimal definition is either both of get and put or -- just state class Monad m => MonadState s (m :: * -> *) | m -> s -- | Return the state from the internals of the monad. get :: MonadState s m => m s -- | Replace the state inside the monad. put :: MonadState s m => s -> m () -- | Embed a simple state action into the monad. state :: MonadState s m => (s -> (a, s)) -> m a -- | A state monad parameterized by the type s of the state to -- carry. -- -- The return function leaves the state unchanged, while -- >>= uses the final state of the first computation as -- the initial state of the second. type State s = StateT s Identity -- | Gets specific component of the state, using a projection function -- supplied. gets :: MonadState s m => (s -> a) -> m a -- | Monadic state transformer. -- -- Maps an old state to a new state inside a state monad. The old state -- is thrown away. -- --
--   Main> :t modify ((+1) :: Int -> Int)
--   modify (...) :: (MonadState Int a) => a ()
--   
-- -- This says that modify (+1) acts over any Monad that is a -- member of the MonadState class, with an Int state. modify :: MonadState s m => (s -> s) -> m () -- | A variant of modify in which the computation is strict in the -- new state. modify' :: MonadState s m => (s -> s) -> m () -- | Unwrap a state monad computation as a function. (The inverse of -- state.) runState :: State s a -> s -> (a, s) -- | Evaluate a state computation with the given initial state and return -- the final value, discarding the final state. -- -- evalState :: State s a -> s -> a -- | Evaluate a state computation with the given initial state and return -- the final state, discarding the final value. -- -- execState :: State s a -> s -> s -- | Map both the return value and final state of a computation using the -- given function. -- -- mapState :: ((a, s) -> (b, s)) -> State s a -> State s b -- | withState f m executes action m on a state -- modified by applying f. -- -- withState :: (s -> s) -> State s a -> State s a -- | A state transformer monad parameterized by: -- -- -- -- The return function leaves the state unchanged, while -- >>= uses the final state of the first computation as -- the initial state of the second. newtype StateT s (m :: * -> *) a :: * -> (* -> *) -> * -> * StateT :: (s -> m (a, s)) -> StateT s a [runStateT] :: StateT s a -> s -> m (a, s) -- | Evaluate a state computation with the given initial state and return -- the final value, discarding the final state. -- -- evalStateT :: Monad m => StateT s m a -> s -> m a -- | Evaluate a state computation with the given initial state and return -- the final state, discarding the final value. -- -- execStateT :: Monad m => StateT s m a -> s -> m s -- | Map both the return value and final state of a computation using the -- given function. -- -- mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b -- | withStateT f m executes action m on a state -- modified by applying f. -- -- withStateT :: (s -> s) -> StateT s m a -> StateT s m a class (Monoid w, MonadReader r m, MonadWriter w m, MonadState s m) => MonadRWS r w s (m :: * -> *) | m -> r, m -> w, m -> s -- | A monad containing an environment of type r, output of type -- w and an updatable state of type s. type RWS r w s = RWST r w s Identity -- | Unwrap an RWS computation as a function. (The inverse of rws.) runRWS :: Monoid w => RWS r w s a -> r -> s -> (a, s, w) -- | Evaluate a computation with the given initial state and environment, -- returning the final value and output, discarding the final state. evalRWS :: Monoid w => RWS r w s a -> r -> s -> (a, w) -- | Evaluate a computation with the given initial state and environment, -- returning the final state and output, discarding the final value. execRWS :: Monoid w => RWS r w s a -> r -> s -> (s, w) -- | Map the return value, final state and output of a computation using -- the given function. -- -- mapRWS :: (Monoid w, Monoid w') => ((a, s, w) -> (b, s, w')) -> RWS r w s a -> RWS r w' s b -- | A monad transformer adding reading an environment of type r, -- collecting an output of type w and updating a state of type -- s to an inner monad m. data RWST r w s (m :: * -> *) a :: * -> * -> * -> (* -> *) -> * -> * -- | Unwrap an RWST computation as a function. runRWST :: Monoid w => RWST r w s m a -> r -> s -> m (a, s, w) -- | Evaluate a computation with the given initial state and environment, -- returning the final value and output, discarding the final state. evalRWST :: (Monad m, Monoid w) => RWST r w s m a -> r -> s -> m (a, w) -- | Evaluate a computation with the given initial state and environment, -- returning the final state and output, discarding the final value. execRWST :: (Monad m, Monoid w) => RWST r w s m a -> r -> s -> m (s, w) -- | Map the inner computation using the given function. -- -- mapRWST :: (Monad n, Monoid w, Monoid w') => (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b -- | Representable types of kind *. This class is derivable in GHC with the -- DeriveGeneric flag on. class Generic a -- | The class Typeable allows a concrete representation of a type -- to be calculated. class Typeable k (a :: k) -- | A class of types that can be fully evaluated. class NFData a -- | The Binary class provides put and get, methods to -- encode and decode a Haskell value to a lazy ByteString. It -- mirrors the Read and Show classes for textual -- representation of Haskell types, and is suitable for serialising -- Haskell values to disk, over the network. -- -- For decoding and generating simple external binary formats (e.g. C -- structures), Binary may be used, but in general is not suitable for -- complex protocols. Instead use the Put and Get -- primitives directly. -- -- Instances of Binary should satisfy the following property: -- --
--   decode . encode == id
--   
-- -- That is, the get and put methods should be the inverse -- of each other. A range of instances are provided for basic Haskell -- types. class Binary t -- | The kind of types with values. For example Int :: Type. type Type = * -- | The kind of constraints, like Show a data Constraint :: * -- | A concrete, poly-kinded proxy type data Proxy k (t :: k) :: forall k. k -> * Proxy :: Proxy k -- | A Tagged s b value is a value b with an -- attached phantom type s. This can be used in place of the -- more traditional but less safe idiom of passing in an undefined value -- with the type, because unlike an (s -> b), a -- Tagged s b can't try to use the argument s as -- a real value. -- -- Moreover, you don't have to rely on the compiler to inline away the -- extra argument, because the newtype is "free" -- -- Tagged has kind k -> * -> * if the compiler -- supports PolyKinds, therefore there is an extra k -- showing in the instance haddocks that may cause confusion. newtype Tagged k (s :: k) b :: forall k. k -> * -> * Tagged :: b -> Tagged k b [unTagged] :: Tagged k b -> b unTagged :: Tagged k s b -> b -- | File and directory names are values of type String, whose -- precise meaning is operating system dependent. Files can be opened, -- yielding a handle which can then be used to operate on the contents of -- that file. type FilePath = String -- | A value of type IO a is a computation which, when -- performed, does some I/O before returning a value of type a. -- -- There is really only one way to "perform" an I/O action: bind it to -- Main.main in your program. When your program is run, the I/O -- will be performed. It isn't possible to perform I/O from an arbitrary -- function, unless that function is itself in the IO monad and -- called at some point, directly or indirectly, from Main.main. -- -- IO is a monad, so IO actions can be combined using -- either the do-notation or the >> and >>= -- operations from the Monad class. data IO a :: * -> * -- | Monads in which IO computations may be embedded. Any monad -- built by applying a sequence of monad transformers to the IO -- monad will be an instance of this class. -- -- Instances should satisfy the following laws, which state that -- liftIO is a transformer of monads: -- -- class Monad m => MonadIO (m :: * -> *) -- | Lift a computation from the IO monad. liftIO :: MonadIO m => IO a -> m a print :: (MonadIO m, Show a) => a -> m () getContents :: MonadIO m => m Text getLine :: MonadIO m => m Text getChar :: MonadIO m => m Char putChar :: MonadIO m => Char -> m () putStr :: MonadIO m => Text -> m () putStrLn :: MonadIO m => Text -> m () readFile :: MonadIO m => FilePath -> m ByteString writeFile :: MonadIO m => FilePath -> ByteString -> m () appendFile :: MonadIO m => FilePath -> ByteString -> m () readFileUtf8 :: MonadIO m => FilePath -> m Text writeFileUtf8 :: MonadIO m => FilePath -> Text -> m () appendFileUtf8 :: MonadIO m => FilePath -> Text -> m () -- | Throw an unhandled error. Use this function instead of error panic :: HasCallStack => a -- | Throw an undefined error. Use only for debugging. -- | Warning: undefined remains in code undefined :: HasCallStack => a -- | See 'Debug.trace.trace' -- | Warning: trace remains in code trace :: Text -> a -> a -- | See traceIO -- | Warning: traceIO remains in code traceIO :: Text -> IO () -- | See traceM -- | Warning: traceM remains in code traceM :: Monad m => Text -> m () -- | See traceShow -- | Warning: traceShow remains in code traceShow :: Show a => a -> b -> b -- | See traceShowM -- | Warning: traceShowM remains in code traceShowM :: (Show a, Monad m) => a -> m () -- | See 'Debug.trace.traceStack' -- | Warning: traceStack remains in code traceStack :: Text -> a -> a -- | traceStack lifted to a Monad -- | Warning: traceStackM remains in code traceStackM :: Monad m => Text -> m ()