module Data.Functor.Invariant.TH.Internal where
import Control.Monad (liftM)
import Data.Foldable (foldr')
import Data.Functor.Invariant ()
import Data.List
import qualified Data.Map as Map (fromList, findWithDefault, singleton)
import Data.Map (Map)
import Data.Maybe (fromMaybe, mapMaybe)
import qualified Data.Set as Set
import Data.Set (Set)
import Language.Haskell.TH.Lib
import Language.Haskell.TH.Syntax
#ifndef CURRENT_PACKAGE_KEY
import Data.Version (showVersion)
import Paths_invariant (version)
#endif
expandSyn :: Type -> Q Type
expandSyn (ForallT tvs ctx t) = fmap (ForallT tvs ctx) $ expandSyn t
expandSyn t@AppT{} = expandSynApp t []
expandSyn t@ConT{} = expandSynApp t []
expandSyn (SigT t k) = do t' <- expandSyn t
k' <- expandSynKind k
return (SigT t' k')
expandSyn t = return t
expandSynKind :: Kind -> Q Kind
#if MIN_VERSION_template_haskell(2,8,0)
expandSynKind = expandSyn
#else
expandSynKind = return
#endif
expandSynApp :: Type -> [Type] -> Q Type
expandSynApp (AppT t1 t2) ts = do
t2' <- expandSyn t2
expandSynApp t1 (t2':ts)
expandSynApp (ConT n) ts | nameBase n == "[]" = return $ foldl' AppT ListT ts
expandSynApp t@(ConT n) ts = do
info <- reify n
case info of
TyConI (TySynD _ tvs rhs) ->
let (ts', ts'') = splitAt (length tvs) ts
subs = mkSubst tvs ts'
rhs' = substType subs rhs
in expandSynApp rhs' ts''
_ -> return $ foldl' AppT t ts
expandSynApp t ts = do
t' <- expandSyn t
return $ foldl' AppT t' ts
type TypeSubst = Map Name Type
type KindSubst = Map Name Kind
mkSubst :: [TyVarBndr] -> [Type] -> TypeSubst
mkSubst vs ts =
let vs' = map un vs
un (PlainTV v) = v
un (KindedTV v _) = v
in Map.fromList $ zip vs' ts
substType :: TypeSubst -> Type -> Type
substType subs (ForallT v c t) = ForallT v c $ substType subs t
substType subs t@(VarT n) = Map.findWithDefault t n subs
substType subs (AppT t1 t2) = AppT (substType subs t1) (substType subs t2)
substType subs (SigT t k) = SigT (substType subs t)
#if MIN_VERSION_template_haskell(2,8,0)
(substType subs k)
#else
k
#endif
substType _ t = t
substKind :: KindSubst -> Type -> Type
#if MIN_VERSION_template_haskell(2,8,0)
substKind = substType
#else
substKind _ = id
#endif
substNameWithKind :: Name -> Kind -> Type -> Type
substNameWithKind n k = substKind (Map.singleton n k)
substNamesWithKindStar :: [Name] -> Type -> Type
substNamesWithKindStar ns t = foldr' (flip substNameWithKind starK) t ns
data InvariantClass = Invariant | Invariant2
deriving (Eq, Ord)
instance Enum InvariantClass where
fromEnum Invariant = 1
fromEnum Invariant2 = 2
toEnum 1 = Invariant
toEnum 2 = Invariant2
toEnum i = error $ "No Invariant class for number " ++ show i
invmapConstName :: InvariantClass -> Name
invmapConstName Invariant = invmapConstValName
invmapConstName Invariant2 = invmap2ConstValName
invariantClassName :: InvariantClass -> Name
invariantClassName Invariant = invariantTypeName
invariantClassName Invariant2 = invariant2TypeName
invmapName :: InvariantClass -> Name
invmapName Invariant = invmapValName
invmapName Invariant2 = invmap2ValName
invmapConst :: f b -> (a -> b) -> (b -> a) -> f a -> f b
invmapConst = const . const . const
invmap2Const :: f c d
-> (a -> c) -> (c -> a)
-> (b -> d) -> (d -> b)
-> f a b -> f c d
invmap2Const = const . const . const . const . const
data StarKindStatus = NotKindStar
| KindStar
| IsKindVar Name
deriving Eq
canRealizeKindStar :: Type -> StarKindStatus
canRealizeKindStar t
| hasKindStar t = KindStar
| otherwise = case t of
#if MIN_VERSION_template_haskell(2,8,0)
SigT _ (VarT k) -> IsKindVar k
#endif
_ -> NotKindStar
starKindStatusToName :: StarKindStatus -> Maybe Name
starKindStatusToName (IsKindVar n) = Just n
starKindStatusToName _ = Nothing
catKindVarNames :: [StarKindStatus] -> [Name]
catKindVarNames = mapMaybe starKindStatusToName
hasKindStar :: Type -> Bool
hasKindStar VarT{} = True
#if MIN_VERSION_template_haskell(2,8,0)
hasKindStar (SigT _ StarT) = True
#else
hasKindStar (SigT _ StarK) = True
#endif
hasKindStar _ = False
isStarOrVar :: Kind -> Bool
#if MIN_VERSION_template_haskell(2,8,0)
isStarOrVar StarT = True
isStarOrVar VarT{} = True
#else
isStarOrVar StarK = True
#endif
isStarOrVar _ = False
tyVarNamesOfType :: Type -> [Name]
tyVarNamesOfType = go
where
go :: Type -> [Name]
go (AppT t1 t2) = go t1 ++ go t2
go (SigT t _k) = go t
#if MIN_VERSION_template_haskell(2,8,0)
++ go _k
#endif
go (VarT n) = [n]
go _ = []
tyVarNamesOfKind :: Kind -> [Name]
#if MIN_VERSION_template_haskell(2,8,0)
tyVarNamesOfKind = tyVarNamesOfType
#else
tyVarNamesOfKind _ = []
#endif
hasKindVarChain :: Int -> Type -> Maybe [Name]
hasKindVarChain kindArrows t =
let uk = uncurryKind (tyKind t)
in if (length uk 1 == kindArrows) && all isStarOrVar uk
then Just (concatMap tyVarNamesOfKind uk)
else Nothing
tyKind :: Type -> Kind
tyKind (SigT _ k) = k
tyKind _ = starK
stealKindForType :: TyVarBndr -> Type -> Type
stealKindForType tvb t@VarT{} = SigT t (tvbKind tvb)
stealKindForType _ t = t
concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b]
concatMapM f xs = liftM concat (mapM f xs)
type TyVarMap = Map Name (Name, Name)
fst3 :: (a, b, c) -> a
fst3 (a, _, _) = a
thd3 :: (a, b, c) -> c
thd3 (_, _, c) = c
lookup2 :: Eq a => a -> [(a, b, c)] -> Maybe (b, c)
lookup2 _ [] = Nothing
lookup2 key ((x,y,z):xyzs)
| key == x = Just (y, z)
| otherwise = lookup2 key xyzs
constructorName :: Con -> Name
constructorName (NormalC name _ ) = name
constructorName (RecC name _ ) = name
constructorName (InfixC _ name _ ) = name
constructorName (ForallC _ _ con) = constructorName con
#if MIN_VERSION_template_haskell(2,11,0)
constructorName (GadtC names _ _) = head names
constructorName (RecGadtC names _ _) = head names
#endif
newNameList :: String -> Int -> Q [Name]
newNameList prefix n = mapM (newName . (prefix ++) . show) [1..n]
tvbKind :: TyVarBndr -> Kind
tvbKind (PlainTV _) = starK
tvbKind (KindedTV _ k) = k
tvbToType :: TyVarBndr -> Type
tvbToType (PlainTV n) = VarT n
tvbToType (KindedTV n k) = SigT (VarT n) k
createKindChain :: Int -> Kind
createKindChain = go starK
where
go :: Kind -> Int -> Kind
go k 0 = k
#if MIN_VERSION_template_haskell(2,8,0)
go k n = n `seq` go (AppT (AppT ArrowT StarT) k) (n 1)
#else
go k n = n `seq` go (ArrowK StarK k) (n 1)
#endif
applyClass :: Name -> Name -> Pred
#if MIN_VERSION_template_haskell(2,10,0)
applyClass con t = AppT (ConT con) (VarT t)
#else
applyClass con t = ClassP con [VarT t]
#endif
canEtaReduce :: [Type] -> [Type] -> Bool
canEtaReduce remaining dropped =
all isTyVar dropped
&& allDistinct droppedNames
&& not (any (`mentionsName` droppedNames) remaining)
where
droppedNames :: [Name]
droppedNames = map varTToName dropped
varTToName_maybe :: Type -> Maybe Name
varTToName_maybe (VarT n) = Just n
varTToName_maybe (SigT t _) = varTToName_maybe t
varTToName_maybe _ = Nothing
varTToName :: Type -> Name
varTToName = fromMaybe (error "Not a type variable!") . varTToName_maybe
unSigT :: Type -> Type
unSigT (SigT t _) = t
unSigT t = t
isTyVar :: Type -> Bool
isTyVar (VarT _) = True
isTyVar (SigT t _) = isTyVar t
isTyVar _ = False
isTyFamily :: Type -> Q Bool
isTyFamily (ConT n) = do
info <- reify n
return $ case info of
#if MIN_VERSION_template_haskell(2,11,0)
FamilyI OpenTypeFamilyD{} _ -> True
#elif MIN_VERSION_template_haskell(2,7,0)
FamilyI (FamilyD TypeFam _ _ _) _ -> True
#else
TyConI (FamilyD TypeFam _ _ _) -> True
#endif
#if MIN_VERSION_template_haskell(2,9,0)
FamilyI ClosedTypeFamilyD{} _ -> True
#endif
_ -> False
isTyFamily _ = return False
allDistinct :: Ord a => [a] -> Bool
allDistinct = allDistinct' Set.empty
where
allDistinct' :: Ord a => Set a -> [a] -> Bool
allDistinct' uniqs (x:xs)
| x `Set.member` uniqs = False
| otherwise = allDistinct' (Set.insert x uniqs) xs
allDistinct' _ _ = True
mentionsName :: Type -> [Name] -> Bool
mentionsName = go
where
go :: Type -> [Name] -> Bool
go (AppT t1 t2) names = go t1 names || go t2 names
go (SigT t _k) names = go t names
#if MIN_VERSION_template_haskell(2,8,0)
|| go _k names
#endif
go (VarT n) names = n `elem` names
go _ _ = False
predMentionsName :: Pred -> [Name] -> Bool
#if MIN_VERSION_template_haskell(2,10,0)
predMentionsName = mentionsName
#else
predMentionsName (ClassP n tys) names = n `elem` names || any (`mentionsName` names) tys
predMentionsName (EqualP t1 t2) names = mentionsName t1 names || mentionsName t2 names
#endif
applyTy :: Type -> [Type] -> Type
applyTy = foldl' AppT
applyTyCon :: Name -> [Type] -> Type
applyTyCon = applyTy . ConT
unapplyTy :: Type -> [Type]
unapplyTy = reverse . go
where
go :: Type -> [Type]
go (AppT t1 t2) = t2:go t1
go (SigT t _) = go t
go (ForallT _ _ t) = go t
go t = [t]
uncurryTy :: Type -> (Cxt, [Type])
uncurryTy (AppT (AppT ArrowT t1) t2) =
let (ctxt, tys) = uncurryTy t2
in (ctxt, t1:tys)
uncurryTy (SigT t _) = uncurryTy t
uncurryTy (ForallT _ ctxt t) =
let (ctxt', tys) = uncurryTy t
in (ctxt ++ ctxt', tys)
uncurryTy t = ([], [t])
uncurryKind :: Kind -> [Kind]
#if MIN_VERSION_template_haskell(2,8,0)
uncurryKind = snd . uncurryTy
#else
uncurryKind (ArrowK k1 k2) = k1:uncurryKind k2
uncurryKind k = [k]
#endif
invariantPackageKey :: String
#ifdef CURRENT_PACKAGE_KEY
invariantPackageKey = CURRENT_PACKAGE_KEY
#else
invariantPackageKey = "invariant-" ++ showVersion version
#endif
mkInvariantName_tc :: String -> String -> Name
mkInvariantName_tc = mkNameG_tc invariantPackageKey
mkInvariantName_v :: String -> String -> Name
mkInvariantName_v = mkNameG_v invariantPackageKey
invariantTypeName :: Name
invariantTypeName = mkInvariantName_tc "Data.Functor.Invariant" "Invariant"
invariant2TypeName :: Name
invariant2TypeName = mkInvariantName_tc "Data.Functor.Invariant" "Invariant2"
invmapValName :: Name
invmapValName = mkInvariantName_v "Data.Functor.Invariant" "invmap"
invmap2ValName :: Name
invmap2ValName = mkInvariantName_v "Data.Functor.Invariant" "invmap2"
invmapConstValName :: Name
invmapConstValName = mkInvariantName_v "Data.Functor.Invariant.TH.Internal" "invmapConst"
invmap2ConstValName :: Name
invmap2ConstValName = mkInvariantName_v "Data.Functor.Invariant.TH.Internal" "invmap2Const"
errorValName :: Name
errorValName = mkNameG_v "base" "GHC.Err" "error"
#if MIN_VERSION_base(4,6,0) && !(MIN_VERSION_base(4,9,0))
starKindName :: Name
starKindName = mkNameG_tc "ghc-prim" "GHC.Prim" "*"
#endif